mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-07 05:10:39 +02:00
312 lines
10 KiB
C++
312 lines
10 KiB
C++
#include "aare/ClusterFile.hpp"
|
|
|
|
namespace aare {
|
|
|
|
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size): m_chunk_size(chunk_size) {
|
|
fp = fopen(fname.c_str(), "rb");
|
|
if (!fp) {
|
|
throw std::runtime_error("Could not open file: " + fname.string());
|
|
}
|
|
}
|
|
|
|
std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
|
|
std::vector<Cluster> clusters(n_clusters);
|
|
|
|
int32_t iframe = 0; // frame number needs to be 4 bytes!
|
|
size_t nph_read = 0;
|
|
uint32_t nn = m_num_left;
|
|
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
|
|
|
|
auto buf = reinterpret_cast<Cluster *>(clusters.data());
|
|
// if there are photons left from previous frame read them first
|
|
if (nph) {
|
|
if (nph > n_clusters) {
|
|
// if we have more photons left in the frame then photons to read we
|
|
// read directly the requested number
|
|
nn = n_clusters;
|
|
} else {
|
|
nn = nph;
|
|
}
|
|
nph_read += fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
|
|
m_num_left = nph - nn; // write back the number of photons left
|
|
}
|
|
|
|
if (nph_read < n_clusters) {
|
|
// keep on reading frames and photons until reaching n_clusters
|
|
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
|
// read number of clusters in frame
|
|
if (fread(&nph, sizeof(nph), 1, fp)) {
|
|
if (nph > (n_clusters - nph_read))
|
|
nn = n_clusters - nph_read;
|
|
else
|
|
nn = nph;
|
|
|
|
nph_read +=
|
|
fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
|
|
m_num_left = nph - nn;
|
|
}
|
|
if (nph_read >= n_clusters)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Resize the vector to the number of clusters.
|
|
// No new allocation, only change bounds.
|
|
clusters.resize(nph_read);
|
|
return clusters;
|
|
}
|
|
|
|
std::vector<Cluster> ClusterFile::read_frame(int32_t &out_fnum) {
|
|
if (m_num_left) {
|
|
throw std::runtime_error("There are still photons left in the last frame");
|
|
}
|
|
|
|
if (fread(&out_fnum, sizeof(out_fnum), 1, fp) != 1) {
|
|
throw std::runtime_error("Could not read frame number");
|
|
}
|
|
|
|
int n_clusters;
|
|
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
|
|
throw std::runtime_error("Could not read number of clusters");
|
|
}
|
|
std::vector<Cluster> clusters(n_clusters);
|
|
|
|
if (fread(clusters.data(), sizeof(Cluster), n_clusters, fp) != n_clusters) {
|
|
throw std::runtime_error("Could not read clusters");
|
|
}
|
|
return clusters;
|
|
|
|
}
|
|
|
|
std::vector<Cluster> ClusterFile::read_cluster_with_cut(size_t n_clusters,
|
|
double *noise_map,
|
|
int nx, int ny) {
|
|
|
|
std::vector<Cluster> clusters(n_clusters);
|
|
// size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
|
|
// uint32_t *n_left, double *noise_map, int
|
|
// nx, int ny) {
|
|
int iframe = 0;
|
|
// uint32_t nph = *n_left;
|
|
uint32_t nph = m_num_left;
|
|
// uint32_t nn = *n_left;
|
|
uint32_t nn = m_num_left;
|
|
size_t nph_read = 0;
|
|
|
|
int32_t t2max, tot1;
|
|
int32_t tot3;
|
|
// Cluster *ptr = buf;
|
|
Cluster *ptr = clusters.data();
|
|
int good = 1;
|
|
double noise;
|
|
// read photons left from previous frame
|
|
if (noise_map)
|
|
printf("Using noise map\n");
|
|
|
|
if (nph) {
|
|
if (nph > n_clusters) {
|
|
// if we have more photons left in the frame then photons to
|
|
// read we read directly the requested number
|
|
nn = n_clusters;
|
|
} else {
|
|
nn = nph;
|
|
}
|
|
for (size_t iph = 0; iph < nn; iph++) {
|
|
// read photons 1 by 1
|
|
size_t n_read = fread((void *)(ptr), sizeof(Cluster), 1, fp);
|
|
if (n_read != 1) {
|
|
clusters.resize(nph_read);
|
|
return clusters;
|
|
}
|
|
// TODO! error handling on read
|
|
good = 1;
|
|
if (noise_map) {
|
|
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
|
|
tot1 = ptr->data[4];
|
|
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,
|
|
NULL);
|
|
noise = noise_map[ptr->y * nx + ptr->x];
|
|
if (tot1 > noise || t2max > 2 * noise || tot3 > 3 * noise) {
|
|
;
|
|
} else {
|
|
good = 0;
|
|
printf("%d %d %f %d %d %d\n", ptr->x, ptr->y, noise,
|
|
tot1, t2max, tot3);
|
|
}
|
|
} else {
|
|
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
|
|
good = 0;
|
|
}
|
|
}
|
|
if (good) {
|
|
ptr++;
|
|
nph_read++;
|
|
}
|
|
(m_num_left)--;
|
|
if (nph_read >= n_clusters)
|
|
break;
|
|
}
|
|
}
|
|
if (nph_read < n_clusters) {
|
|
// // keep on reading frames and photons until reaching n_clusters
|
|
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
|
// // printf("%d\n",nph_read);
|
|
|
|
if (fread(&nph, sizeof(nph), 1, fp)) {
|
|
// // printf("** %d\n",nph);
|
|
m_num_left = nph;
|
|
for (size_t iph = 0; iph < nph; iph++) {
|
|
// // read photons 1 by 1
|
|
size_t n_read =
|
|
fread((void *)(ptr), sizeof(Cluster), 1, fp);
|
|
if (n_read != 1) {
|
|
clusters.resize(nph_read);
|
|
return clusters;
|
|
// return nph_read;
|
|
}
|
|
good = 1;
|
|
if (noise_map) {
|
|
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
|
|
ptr->y < ny) {
|
|
tot1 = ptr->data[4];
|
|
analyze_cluster(*ptr, &t2max, &tot3, NULL,
|
|
NULL,
|
|
NULL, NULL, NULL);
|
|
// noise = noise_map[ptr->y * nx + ptr->x];
|
|
noise = noise_map[ptr->y + ny * ptr->x];
|
|
if (tot1 > noise || t2max > 2 * noise ||
|
|
tot3 > 3 * noise) {
|
|
;
|
|
} else
|
|
good = 0;
|
|
} else {
|
|
printf("Bad pixel number %d %d\n", ptr->x,
|
|
ptr->y); good = 0;
|
|
}
|
|
}
|
|
if (good) {
|
|
ptr++;
|
|
nph_read++;
|
|
}
|
|
(m_num_left)--;
|
|
if (nph_read >= n_clusters)
|
|
break;
|
|
}
|
|
}
|
|
if (nph_read >= n_clusters)
|
|
break;
|
|
}
|
|
}
|
|
// printf("%d\n",nph_read);
|
|
clusters.resize(nph_read);
|
|
return clusters;
|
|
|
|
}
|
|
|
|
int ClusterFile::analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
|
|
double *eta2x, double *eta2y, double *eta3x,
|
|
double *eta3y) {
|
|
|
|
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
|
|
}
|
|
|
|
int ClusterFile::analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
|
|
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
|
|
|
|
int ok = 1;
|
|
|
|
int32_t tot2[4];
|
|
int32_t t2max = 0;
|
|
char c = 0;
|
|
int32_t val, tot3;
|
|
|
|
tot3 = 0;
|
|
for (int i = 0; i < 4; i++)
|
|
tot2[i] = 0;
|
|
|
|
for (int ix = 0; ix < 3; ix++) {
|
|
for (int iy = 0; iy < 3; iy++) {
|
|
val = data[iy * 3 + ix];
|
|
// printf ("%d ",data[iy * 3 + ix]);
|
|
tot3 += val;
|
|
if (ix <= 1 && iy <= 1)
|
|
tot2[cBottomLeft] += val;
|
|
if (ix >= 1 && iy <= 1)
|
|
tot2[cBottomRight] += val;
|
|
if (ix <= 1 && iy >= 1)
|
|
tot2[cTopLeft] += val;
|
|
if (ix >= 1 && iy >= 1)
|
|
tot2[cTopRight] += val;
|
|
}
|
|
// printf ("\n");
|
|
}
|
|
// printf ("\n");
|
|
|
|
if (t2 || quad) {
|
|
|
|
t2max = tot2[0];
|
|
c = cBottomLeft;
|
|
for (int i = 1; i < 4; i++) {
|
|
if (tot2[i] > t2max) {
|
|
t2max = tot2[i];
|
|
c = i;
|
|
}
|
|
}
|
|
//printf("*** %d %d %d %d -- %d\n",tot2[0],tot2[1],tot2[2],tot2[3],t2max);
|
|
if (quad)
|
|
*quad = c;
|
|
if (t2)
|
|
*t2 = t2max;
|
|
}
|
|
if (t3)
|
|
*t3 = tot3;
|
|
|
|
if (eta2x || eta2y) {
|
|
if (eta2x)
|
|
*eta2x = 0;
|
|
if (eta2y)
|
|
*eta2y = 0;
|
|
switch (c) {
|
|
case cBottomLeft:
|
|
if (eta2x && (data[3] + data[4]) != 0)
|
|
*eta2x = (double)(data[4]) / (data[3] + data[4]);
|
|
if (eta2y && (data[1] + data[4]) != 0)
|
|
*eta2y = (double)(data[4]) / (data[1] + data[4]);
|
|
break;
|
|
case cBottomRight:
|
|
if (eta2x && (data[2] + data[5]) != 0)
|
|
*eta2x = (double)(data[5]) / (data[4] + data[5]);
|
|
if (eta2y && (data[1] + data[4]) != 0)
|
|
*eta2y = (double)(data[4]) / (data[1] + data[4]);
|
|
break;
|
|
case cTopLeft:
|
|
if (eta2x && (data[7] + data[4]) != 0)
|
|
*eta2x = (double)(data[4]) / (data[3] + data[4]);
|
|
if (eta2y && (data[7] + data[4]) != 0)
|
|
*eta2y = (double)(data[7]) / (data[7] + data[4]);
|
|
break;
|
|
case cTopRight:
|
|
if (eta2x && t2max != 0)
|
|
*eta2x = (double)(data[5]) / (data[5] + data[4]);
|
|
if (eta2y && t2max != 0)
|
|
*eta2y = (double)(data[7]) / (data[7] + data[4]);
|
|
break;
|
|
default:;
|
|
}
|
|
}
|
|
|
|
if (eta3x || eta3y) {
|
|
if (eta3x && (data[3] + data[4] + data[5]) != 0)
|
|
*eta3x = (double)(-data[3] + data[3 + 2]) /
|
|
(data[3] + data[4] + data[5]);
|
|
if (eta3y && (data[1] + data[4] + data[7]) != 0)
|
|
*eta3y = (double)(-data[1] + data[2 * 3 + 1]) /
|
|
(data[1] + data[4] + data[7]);
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
|
|
|
|
} // namespace aare
|