mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-04-30 18:30:03 +02:00
71 lines
2.6 KiB
C++
71 lines
2.6 KiB
C++
#include "aare/ClusterFinder.hpp"
|
|
#include "aare/Pedestal.hpp"
|
|
#include <catch2/catch_test_macros.hpp>
|
|
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
|
#include <chrono>
|
|
#include <random>
|
|
|
|
using namespace aare;
|
|
|
|
// TODO! Find a way to test the cluster finder
|
|
|
|
// class ClusterFinderUnitTest : public ClusterFinder {
|
|
// public:
|
|
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma
|
|
// = 5.0, double threshold = 0.0)
|
|
// : ClusterFinder(cluster_sizeX, cluster_sizeY, nSigma, threshold) {}
|
|
// double get_c2() { return c2; }
|
|
// double get_c3() { return c3; }
|
|
// auto get_threshold() { return m_threshold; }
|
|
// auto get_nSigma() { return m_nSigma; }
|
|
// auto get_cluster_sizeX() { return m_cluster_sizeX; }
|
|
// auto get_cluster_sizeY() { return m_cluster_sizeY; }
|
|
// };
|
|
|
|
// TEST_CASE("test ClusterFinder constructor") {
|
|
// ClusterFinderUnitTest cf(55, 100);
|
|
// REQUIRE(cf.get_cluster_sizeX() == 55);
|
|
// REQUIRE(cf.get_cluster_sizeY() == 100);
|
|
// REQUIRE(cf.get_threshold() == 0.0);
|
|
// REQUIRE(cf.get_nSigma() == 5.0);
|
|
// double c2 = sqrt((100 + 1) / 2 * (55 + 1) / 2);
|
|
// double c3 = sqrt(55 * 100);
|
|
// // REQUIRE(compare_floats<double>(cf.get_c2(), c2));
|
|
// // REQUIRE(compare_floats<double>(cf.get_c3(), c3));
|
|
// REQUIRE_THAT(cf.get_c2(), Catch::Matchers::WithinRel(c2, 1e-9));
|
|
// REQUIRE_THAT(cf.get_c3(), Catch::Matchers::WithinRel(c3, 1e-9));
|
|
// }
|
|
|
|
TEST_CASE("Construct a cluster finder") {
|
|
ClusterFinder clusterFinder({400, 400});
|
|
// REQUIRE(clusterFinder.get_cluster_sizeX() == 3);
|
|
// REQUIRE(clusterFinder.get_cluster_sizeY() == 3);
|
|
// REQUIRE(clusterFinder.get_threshold() == 1);
|
|
// REQUIRE(clusterFinder.get_nSigma() == 1);
|
|
}
|
|
|
|
// TEST_CASE("test cluster finder") {
|
|
// aare::Pedestal pedestal(10, 10, 5);
|
|
// NDArray<double, 2> frame({10, 10});
|
|
// frame = 0;
|
|
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1
|
|
// threshold
|
|
|
|
// auto clusters =
|
|
// clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
|
|
|
|
// REQUIRE(clusters.size() == 0);
|
|
|
|
// frame(5, 5) = 10;
|
|
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(),
|
|
// pedestal); REQUIRE(clusters.size() == 1); REQUIRE(clusters[0].x == 5);
|
|
// REQUIRE(clusters[0].y == 5);
|
|
// for (int i = 0; i < 3; i++) {
|
|
// for (int j = 0; j < 3; j++) {
|
|
// if (i == 1 && j == 1)
|
|
// REQUIRE(clusters[0].get<double>(i * 3 + j) == 10);
|
|
// else
|
|
// REQUIRE(clusters[0].get<double>(i * 3 + j) == 0);
|
|
// }
|
|
// }
|
|
// }
|