aare/examples/testing_pedestal.cpp
Bechir Braham 68dcfca74e
Feature/reactivate python bindings (#74)
major changes:
- add python bindings for all c++ features except network_io
- changes to cross compile on windows,linux and macos
- fix bugs with cluster_finder
- use Dtype in Frame instead of bitdepth
- remove boost::program_options and replace with our implementation 
- add Transforms class that applies a sequence of functions (c++ or
python functions) on a Frame.
- remove frame reorder and flip from SubFile.cpp. use Transforms instead
- Test clusterFinder and Pedestal results in comparison with
slsDetectorCalibration

---------

Co-authored-by: Bechir <bechir.brahem420@gmail.com>
Co-authored-by: Erik Fröjdh <erik.frojdh@gmail.com>
2024-07-04 11:51:48 +02:00

112 lines
3.9 KiB
C++

#include "aare.hpp"
#include <iostream>
using namespace std;
using namespace aare;
#include <algorithm>
#include <chrono>
#include <numeric>
#include <random>
#include <vector>
void print_vpair(std::vector<std::pair<int, double>> &v) {
std::cout << "[ ";
for (unsigned int i = 0; i < v.size(); i++) {
std::cout << "(" << v[i].first << "," << v[i].second << "), ";
}
std::cout << "]" << std::endl;
}
int range(int min, int max, int i, int steps) { return min + (max - min) * i / steps; }
int main() {
const int rows = 1, cols = 1;
double MEAN = 5.0, STD = 1.0;
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
std::default_random_engine generator(seed);
std::normal_distribution<double> distribution(MEAN, STD);
Pedestal pedestal(rows, cols, 1000);
std::vector<double> values;
std::vector<double> vmean, vvariance, pmean, pvariance, pstandard_deviation;
std::vector<int> samples;
std::vector<std::pair<int, double>> cur_mean, cur_variance;
// int steps = 1000;
// for (int n_iters = 0; n_iters < steps; n_iters++) {
// int x=range(1000, 1000000, n_iters,steps);
// std::cout<<x<<std::endl;
// for (int i = 0; i < x; i++) {
// Frame frame(rows, cols, 64);
// for (int j = 0; j < rows; j++)
// for (int k = 0; k < cols; k++) {
// double val = distribution(generator);
// frame.set<double>(j, k, val);
// }
// pedestal.push<double>(frame);
// }
// pmean.push_back({x, pedestal.mean(0, 0)});
// pvariance.push_back({x, pedestal.variance(0, 0)});
// }
long double sum = 0;
long double sum2 = 0;
// fill 1000 first values of pedestal
for (int x = 0; x < 1000; x++) {
Frame frame(rows, cols, Dtype::DOUBLE);
double val = distribution(generator);
frame.set<double>(0, 0, val);
pedestal.push<double>(frame);
values.push_back(val);
sum += val;
sum2 += val * val;
}
for (int x = 0, aa = 0; x < 100000; x++, aa++) {
Frame frame(rows, cols, Dtype::DOUBLE);
double val = distribution(generator);
frame.set<double>(0, 0, val);
pedestal.push<double>(frame);
values.push_back(val);
auto old_val = values[values.size() - 1000 - 1];
sum += val - old_val;
sum2 += val * val - old_val * old_val;
if (aa % 100 == 1) {
aa = 2;
samples.push_back(x);
vmean.push_back(sum / 1000);
vvariance.push_back(sum2 / (1000) - (sum / (1000)) * (sum / (1000)));
pmean.push_back(pedestal.mean(0, 0));
pvariance.push_back(pedestal.variance(0, 0));
}
if (x % 1000 == 999) {
MEAN *= 1.1;
STD *= 1.1;
distribution.param(std::normal_distribution<double>::param_type(MEAN, STD));
cur_mean.push_back({x, MEAN});
cur_variance.push_back({x, STD * STD});
}
}
logger::info("x6=", samples);
logger::info("pmean6=", pmean);
logger::info("pvar6=", pvariance);
logger::info("vmean6=", vmean);
logger::info("vvar6=", vvariance);
std::cout << "cur_mean6=";
print_vpair(cur_mean);
std::cout << "cur_variance6=";
print_vpair(cur_variance);
// std::cout << "PEDESTAL" << std::endl;
// std::cout << "Mean: " << pmean(0, 0) << std::endl;
// std::cout << "Variance: " << pvariance(0, 0) << std::endl;
// std::cout << "Standard Deviation: " << pstandard_deviation(0, 0) << std::endl;
// std::cout << "VALUES" << std::endl;
// std::cout << "Mean: " << std::accumulate(values.begin(), values.end(), 0.0) / values.size() << std::endl;
// std::cout << "Variance: " << variance<double>(values) << std::endl;
// std::cout << "Standard Deviation: " << std::sqrt(variance<double>(values)) << std::endl;
}