Files
aare/include/aare/NDArray.hpp
Erik Fröjdh c0357e2020
All checks were successful
Build on RHEL9 / build (push) Successful in 3m11s
Build on RHEL8 / build (push) Successful in 3m25s
Improvements to NDArray (#258)
- Removed redundant arr.value(ix,iy...) on NDArray use arr(ix,iy...)
- Removed Print/Print_some/Print_all form NDArray (operator << still
works)
- Added const* version of .data()
- Comment for documentation
- Some extra tests
2025-12-19 14:49:41 +01:00

602 lines
18 KiB
C++

// SPDX-License-Identifier: MPL-2.0
//
// Container holding image data, or a time series of image data in contigious
// memory. Used for all data processing in Aare.
//
#pragma once
#include "aare/ArrayExpr.hpp"
#include "aare/NDView.hpp"
#include <algorithm>
#include <array>
#include <cmath>
#include <fmt/format.h>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <numeric>
namespace aare {
template <typename T, ssize_t Ndim = 2>
class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
std::array<ssize_t, Ndim> shape_;
std::array<ssize_t, Ndim> strides_;
size_t size_{}; // TODO! do we need to store size when we have shape?
T *data_;
public:
///////////////////////////////////////////////////////////////////////////////
// Constructors
//
///////////////////////////////////////////////////////////////////////////////
/**
* @brief Default constructor. Constructs an empty NDArray.
*
*/
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr) {};
/**
* @brief Construct a new NDArray object with a given shape.
* @note The data is uninitialized.
*
* @param shape shape of the new NDArray
*/
explicit NDArray(std::array<ssize_t, Ndim> shape)
: shape_(shape), strides_(c_strides<Ndim>(shape_)),
size_(num_elements(shape_)), data_(new T[size_]) {}
/**
* @brief Construct a new NDArray object with a shape and value.
*
* @param shape shape of the new array
* @param value value to initialize the array with
*/
NDArray(std::array<ssize_t, Ndim> shape, T value) : NDArray(shape) {
this->operator=(value);
}
// Allow NDArray of different type and dimension to be friend classes
// This is needed for the move constructor from NDArray<T,Ndim+1>
template <typename U, ssize_t Dim> friend class NDArray;
/**
* @brief Construct a new NDArray object from a NDView.
* @note The data is copied from the view to the NDArray.
*
* @param v view of data to initialize the NDArray with
*/
explicit NDArray(const NDView<T, Ndim> v) : NDArray(v.shape()) {
std::copy(v.begin(), v.end(), begin());
}
/**
* @brief Construct a new NDArray object from an std::array.
*/
template <size_t Size>
NDArray(const std::array<T, Size> &arr) : NDArray<T, 1>({Size}) {
std::copy(arr.begin(), arr.end(), begin());
}
/**
* @brief Move construct a new NDArray object. Cheap since it just
* reassigns the pointer and copy size/strides.
*
* @param other
*/
NDArray(NDArray &&other) noexcept
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
size_(other.size_), data_(other.data_) {
other.reset(); // Needed to avoid double free
}
/**
* @brief Move construct a new NDArray object from an array with Ndim + 1.
* Can be used to drop a dimension cheaply.
* @param other
*/
template <ssize_t M, typename = std::enable_if_t<(M == Ndim + 1)>>
NDArray(NDArray<T, M> &&other)
: shape_(drop_first_dim(other.shape())),
strides_(c_strides<Ndim>(shape_)), size_(num_elements(shape_)),
data_(other.data()) {
// For now only allow move if the size matches, to avoid unreachable
// data if the use case arises we can remove this check
if (size() != other.size()) {
data_ = nullptr; // avoid double free, other will clean up the
// memory in it's destructor
throw std::runtime_error(
LOCATION +
"Size mismatch in move constructor of NDArray<T, Ndim-1>");
}
other.reset();
}
/**
* @brief Copy construct a new NDArray object from another NDArray.
*
* @param other
*/
NDArray(const NDArray &other)
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
size_(other.size_), data_(new T[size_]) {
std::copy(other.data_, other.data_ + size_, data_);
}
/**
* @brief Conversion from a ArrayExpr to an actual NDArray. Used when
* the expression is evaluated and data needed.
*
* @tparam E
* @param expr
*/
template <typename E>
NDArray(ArrayExpr<E, Ndim> &&expr) : NDArray(expr.shape()) {
for (size_t i = 0; i < size_; ++i) {
data_[i] = expr[i];
}
}
/**
* @brief Destroy the NDArray object. Frees the allocated memory.
*
*/
~NDArray() { delete[] data_; }
///////////////////////////////////////////////////////////////////////////////
// Iterators and indexing
//
///////////////////////////////////////////////////////////////////////////////
auto *begin() { return data_; }
const auto *begin() const { return data_; }
auto *end() { return data_ + size_; }
const auto *end() const { return data_ + size_; }
/*
* @brief Access element at given multi-dimensional index.
* i.e. arr(i,j,k,...)
*
* @note The fast index is the last index. Please take care when iterating
* through the array.
*/
template <typename... Ix>
std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) {
return data_[element_offset(strides_, index...)];
}
/*
* @brief Access element at given multi-dimensional index (const version).
* i.e. arr(i,j,k,...)
*
* @note The fast index is the last index. Please take care when iterating
* through the array.
*/
template <typename... Ix>
std::enable_if_t<sizeof...(Ix) == Ndim, const T &>
operator()(Ix... index) const {
return data_[element_offset(strides_, index...)];
}
/*
@brief Index the array as it would be a 1D array. To get a certain
pixel in a multidimensional array use the (i,j,k,...) operator instead.
*/
T &operator()(ssize_t i) { return data_[i]; }
/*
@brief Index the array as it would be a 1D array. To get a certain
pixel in a multidimensional array use the (i,j,k,...) operator instead.
*/
const T &operator()(ssize_t i) const { return data_[i]; }
/*
@brief Index the array as it would be a 1D array. To get a certain
pixel in a multidimensional array use the (i,j,k,...) operator instead.
*/
T &operator[](ssize_t i) { return data_[i]; }
/*
@brief Index the array as it would be a 1D array. To get a certain
pixel in a multidimensional array use the (i,j,k,...) operator instead.
*/
const T &operator[](ssize_t i) const { return data_[i]; }
/* @brief Return a raw pointer to the data */
T *data() { return data_; }
/* @brief Return a const raw pointer to the data */
const T *data() const { return data_; }
/* @brief Return a byte pointer to the data. Useful for memcpy like
* operations */
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
/**
* @brief Return the total number of elements in the array as a signed
* integer
*/
ssize_t size() const { return static_cast<ssize_t>(size_); }
/** @brief Return the total number of bytes in the array */
size_t total_bytes() const { return size_ * sizeof(T); }
/** @brief Return the shape of the array */
Shape<Ndim> shape() const noexcept { return shape_; }
/** @brief Return the size of dimension i */
ssize_t shape(ssize_t i) const noexcept { return shape_[i]; }
/** @brief Return the strides of the array */
std::array<ssize_t, Ndim> strides() const noexcept { return strides_; }
/**
* @brief Return the bitdepth of the array. Useful for checking that
* detector data can fit in the array type.
*/
size_t bitdepth() const noexcept { return sizeof(T) * 8; }
/**
* @brief Return the number of bytes to step in each dimension when
* traversing the array.
*/
std::array<ssize_t, Ndim> byte_strides() const noexcept {
auto byte_strides = strides_;
for (auto &val : byte_strides)
val *= sizeof(T);
return byte_strides;
}
using value_type = T;
///////////////////////////////////////////////////////////////////////////////
// Assignments
//
///////////////////////////////////////////////////////////////////////////////
/**
* @brief Copy to the NDArray from an std::array. If the size of the array
* is different we reallocate the data.
*
*/
template <size_t Size>
NDArray<T, 1> &operator=(const std::array<T, Size> &other) {
if (Size != size_) {
delete[] data_;
size_ = Size;
data_ = new T[size_];
}
for (size_t i = 0; i < Size; ++i) {
data_[i] = other[i];
}
return *this;
}
/**
* @brief Move assignment operator.
*/
NDArray &operator=(NDArray &&other) noexcept {
// TODO! Should we use swap?
if (this != &other) {
delete[] data_;
data_ = other.data_;
shape_ = other.shape_;
size_ = other.size_;
strides_ = other.strides_;
other.reset();
}
return *this;
}
/**
* @brief Copy assignment operator.
*/
NDArray &operator=(const NDArray &other) {
if (this != &other) {
delete[] data_;
shape_ = other.shape_;
strides_ = other.strides_;
size_ = other.size_;
data_ = new T[size_];
std::copy(other.data_, other.data_ + size_, data_);
}
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// Math operators
//
///////////////////////////////////////////////////////////////////////////////
/**
* @brief Add elementwise from another NDArray.
*/
NDArray &operator+=(const NDArray &other) {
if (shape_ != other.shape_)
throw(std::runtime_error(
"Shape of NDArray must match for operator +="));
for (size_t i = 0; i < size_; ++i) {
data_[i] += other.data_[i];
}
return *this;
}
/**
* @brief Subtract elementwise with another NDArray.
*/
NDArray &operator-=(const NDArray &other) {
if (shape_ != other.shape_)
throw(std::runtime_error(
"Shape of NDArray must match for operator -="));
for (size_t i = 0; i < size_; ++i) {
data_[i] -= other.data_[i];
}
return *this;
}
/**
* @brief Multiply elementwise with another NDArray.
*/
NDArray &operator*=(const NDArray &other) {
if (shape_ != other.shape_)
throw(std::runtime_error(
"Shape of NDArray must match for operator *="));
for (size_t i = 0; i < size_; ++i) {
data_[i] *= other.data_[i];
}
return *this;
}
/**
* @brief Divide elementwise by another NDArray. Templated to allow division
* with different types.
*
* TODO! Why is this templated when the others are not?
*/
template <typename V> NDArray &operator/=(const NDArray<V, Ndim> &other) {
// check shape
if (shape_ == other.shape()) {
for (size_t i = 0; i < size_; ++i) {
data_[i] /= other(i);
}
return *this;
}
throw(std::runtime_error("Shape of NDArray must match"));
}
/**
* @brief Assign a scalar value to all elements in the NDArray.
*/
NDArray &operator=(const T &value) {
std::fill_n(data_, size_, value);
return *this;
}
/**
* @brief Add a scalar value to all elements in the NDArray.
*/
NDArray &operator+=(const T &value) {
for (size_t i = 0; i < size_; ++i)
data_[i] += value;
return *this;
}
/**
* @brief Subtract a scalar value to all elements in the NDArray.
*/
NDArray &operator-=(const T &value) {
for (size_t i = 0; i < size_; ++i)
data_[i] -= value;
return *this;
}
/**
* @brief Multiply all elements in the NDArray with a scalar value
*/
NDArray &operator*=(const T &value) {
for (size_t i = 0; i < size_; ++i)
data_[i] *= value;
return *this;
}
/**
* @brief Divide all elements in the NDArray with a scalar value
*/
NDArray &operator/=(const T &value) {
for (size_t i = 0; i < size_; ++i)
data_[i] /= value;
return *this;
}
/**
* @brief Bitwise AND all elements in the NDArray with a scalar mask.
* Used for example to mask out gain bits for Jungfrau detectors.
*/
NDArray &operator&=(const T &mask) {
for (auto it = begin(); it != end(); ++it)
*it &= mask;
return *this;
}
/**
* @brief Operator + with a scalar value. Returns a new NDArray.
*
* TODO! Expression template version of this?
*/
NDArray operator+(const T &value) {
NDArray result = *this;
result += value;
return result;
}
/**
* @brief Operator - with a scalar value. Returns a new NDArray.
*
* TODO! Expression template version of this?
*/
NDArray operator-(const T &value) {
NDArray result = *this;
result -= value;
return result;
}
/**
* @brief Operator * with a scalar value. Returns a new NDArray.
*
* TODO! Expression template version of this?
*/
NDArray operator*(const T &value) {
NDArray result = *this;
result *= value;
return result;
}
/**
* @brief Operator / with a scalar value. Returns a new NDArray.
*
* TODO! Expression template version of this?
*/
NDArray operator/(const T &value) {
NDArray result = *this;
result /= value;
return result;
}
/**
* @brief Compare two NDArrays elementwise for equality.
*/
bool operator==(const NDArray &other) const {
if (shape_ != other.shape_)
return false;
for (size_t i = 0; i != size_; ++i)
if (data_[i] != other.data_[i])
return false;
return true;
}
/**
* @brief Compare two NDArrays elementwise for non-equality.
*/
bool operator!=(const NDArray &other) const { return !((*this) == other); }
/**
* @brief Compute the square root of all elements in the NDArray.
*/
void sqrt() {
for (size_t i = 0; i < size_; ++i) {
data_[i] = std::sqrt(data_[i]);
}
}
/*
* @brief Prefix increment operator. Increments all elements by 1.
*/
NDArray &operator++() {
for (size_t i = 0; i < size_; ++i)
data_[i] += T{1};
return *this;
}
/**
* @brief Create a view of the NDArray.
*
* @return NDView<T, Ndim>
*/
NDView<T, Ndim> view() const { return NDView<T, Ndim>{data_, shape_}; }
private:
/**
* @brief Reset the NDArray to an empty state. Dropping the ownership of
* the data. Used internally for move operations to avoid double free or
* dangling pointers.
*/
void reset() {
data_ = nullptr;
size_ = 0;
std::fill(shape_.begin(), shape_.end(), 0);
std::fill(strides_.begin(), strides_.end(), 0);
}
};
///////////////////////////////////////////////////////////////////////////////
// Free functions closely related to NDArray
//
///////////////////////////////////////////////////////////////////////////////
template <typename T, ssize_t Ndim>
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
for (auto row = 0; row < arr.shape(0); ++row) {
for (auto col = 0; col < arr.shape(1); ++col) {
os << std::setw(3);
os << arr(row, col) << " ";
}
os << "\n";
}
return os;
}
template <typename T, ssize_t Ndim>
[[deprecated("Saving of raw arrays without metadata is deprecated")]] void
save(NDArray<T, Ndim> &img, std::string &pathname) {
std::ofstream f;
f.open(pathname, std::ios::binary);
f.write(img.buffer(), img.size() * sizeof(T));
f.close();
}
template <typename T, ssize_t Ndim>
[[deprecated(
"Loading of raw arrays without metadata is deprecated")]] NDArray<T, Ndim>
load(const std::string &pathname, std::array<ssize_t, Ndim> shape) {
NDArray<T, Ndim> img{shape};
std::ifstream f;
f.open(pathname, std::ios::binary);
f.read(img.buffer(), img.size() * sizeof(T));
f.close();
return img;
}
/**
* @brief Free function to safely divide two NDArrays elementwise, handling
* division by zero. Uses static_cast to convert types as needed.
*
* @tparam RT Result type
* @tparam NT Numerator type
* @tparam DT Denominator type
* @tparam Ndim Number of dimensions
* @param numerator The numerator NDArray
* @param denominator The denominator NDArray
* @return NDArray<RT, Ndim> Resulting NDArray after safe division
* @throws std::runtime_error if the shapes of the numerator and denominator do
* not match
*/
template <typename RT, typename NT, typename DT, ssize_t Ndim>
NDArray<RT, Ndim> safe_divide(const NDArray<NT, Ndim> &numerator,
const NDArray<DT, Ndim> &denominator) {
if (numerator.shape() != denominator.shape()) {
throw std::runtime_error(
"Shapes of numerator and denominator must match");
}
NDArray<RT, Ndim> result(numerator.shape());
for (ssize_t i = 0; i < numerator.size(); ++i) {
if (denominator[i] != 0) {
result[i] =
static_cast<RT>(numerator[i]) / static_cast<RT>(denominator[i]);
} else {
result[i] = RT{0}; // or handle division by zero as needed
}
}
return result;
}
} // namespace aare