import sys sys.path.append('/home/l_msdetect/erik/aare/build') from aare._aare import ClusterVector_i, Interpolator import pickle import numpy as np import matplotlib.pyplot as plt import boost_histogram as bh import torch import math import time def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2): """ Generate a 2D gaussian as position mx, my, with sigma=sigma. The gaussian is placed on a 2x2 pixel matrix with resolution res in one dimesion. """ x = torch.linspace(0, pixel_size*grid_size, res) x,y = torch.meshgrid(x,x, indexing="ij") return 1 / (2*math.pi*sigma**2) * \ torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2))) scale = 1000 #Scale factor when converting to integer pixel_size = 25 #um grid = 2 resolution = 100 sigma_um = 10 xa = np.linspace(0,grid*pixel_size,resolution) ticks = [0, 25, 50] hit = np.array((20,20)) etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl" local_resolution = 99 grid_size = 3 xaxis = np.linspace(0,grid_size*pixel_size, local_resolution) t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution) pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1) pixels = pixels.numpy() pixels = (pixels*scale).astype(np.int32) v = ClusterVector_i(3,3) v.push_back(1,1, pixels) with open(etahist_fname, "rb") as f: hist = pickle.load(f) eta = hist.view().copy() etabinsx = np.array(hist.axes.edges.T[0].flat) etabinsy = np.array(hist.axes.edges.T[1].flat) ebins = np.array(hist.axes.edges.T[2].flat) p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1]) #Generate the hit tmp = p.interpolate(v) print(f'tmp:{tmp}') pos = np.array((tmp['x'], tmp['y']))*25 print(pixels) fig, ax = plt.subplots(figsize = (7,7)) ax.pcolormesh(xaxis, xaxis, t) ax.plot(*pos, 'o') ax.set_xticks([0,25,50,75]) ax.set_yticks([0,25,50,75]) ax.set_xlim(0,75) ax.set_ylim(0,75) ax.grid() print(f'{hit=}') print(f'{pos=}')