import matplotlib.pyplot as plt import numpy as np from aare import fit_gaus, fit_pol1 from aare import gaus, pol1 textpm = f"±" # textmu = f"μ" # textsigma = f"σ" # # ================================= Gauss fit ================================= # Parameters mu = np.random.uniform(1, 100) # Mean of Gaussian sigma = np.random.uniform(4, 20) # Standard deviation num_points = 10000 # Number of points for smooth distribution noise_sigma = 100 # Generate Gaussian distribution data = np.random.normal(mu, sigma, num_points) # Generate errors for each point errors = np.abs(np.random.normal(0, sigma, num_points)) # Errors with mean 0, std 0.5 # Create subplot fig0, ax0 = plt.subplots(1, 1, num=0, figsize=(12, 8)) x = np.histogram(data, bins=30)[1][:-1] + 0.05 y = np.histogram(data, bins=30)[0] yerr = errors[:30] # Add the errors as error bars in the step plot ax0.errorbar(x, y, yerr=yerr, fmt=". ", capsize=5) ax0.grid() par, err = fit_gaus(x, y, yerr) print(par, err) x = np.linspace(x[0], x[-1], 1000) ax0.plot(x, gaus(x, par), marker="") ax0.set(xlabel="x", ylabel="Counts", title=f"A0 = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n" f"{textmu} = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n" f"{textsigma} = {par[2]:0.2f}{textpm}{err[2]:0.2f}\n" f"(init: {textmu}: {mu:0.2f}, {textsigma}: {sigma:0.2f})") fig0.tight_layout() # ================================= pol1 fit ================================= # Parameters n_points = 40 # Generate random slope and intercept (origin) slope = np.random.uniform(-10, 10) # Random slope between 0.5 and 2.0 intercept = np.random.uniform(-10, 10) # Random intercept between -10 and 10 # Generate random x values x_values = np.random.uniform(-10, 10, n_points) # Calculate y values based on the linear function y = mx + b + error errors = np.abs(np.random.normal(0, np.random.uniform(1, 5), n_points)) var_points = np.random.normal(0, np.random.uniform(0.1, 2), n_points) y_values = slope * x_values + intercept + var_points fig1, ax1 = plt.subplots(1, 1, num=1, figsize=(12, 8)) ax1.errorbar(x_values, y_values, yerr=errors, fmt=". ", capsize=5) par, err = fit_pol1(x_values, y_values, errors) x = np.linspace(np.min(x_values), np.max(x_values), 1000) ax1.plot(x, pol1(x, par), marker="") ax1.set(xlabel="x", ylabel="y", title=f"a = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n" f"b = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n" f"(init: {slope:0.2f}, {intercept:0.2f})") fig1.tight_layout() plt.show()