mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-20 10:57:57 +02:00
formatted main branch
This commit is contained in:
238
src/Fit.cpp
238
src/Fit.cpp
@ -1,13 +1,12 @@
|
||||
#include "aare/Fit.hpp"
|
||||
#include "aare/utils/task.hpp"
|
||||
#include "aare/utils/par.hpp"
|
||||
#include "aare/utils/task.hpp"
|
||||
#include <lmcurve2.h>
|
||||
#include <lmfit.hpp>
|
||||
#include <thread>
|
||||
|
||||
#include <array>
|
||||
|
||||
|
||||
namespace aare {
|
||||
|
||||
namespace func {
|
||||
@ -34,8 +33,10 @@ NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
return y;
|
||||
}
|
||||
|
||||
double scurve(const double x, const double * par) {
|
||||
return (par[0] + par[1] * x) + 0.5 * (1 + erf((x - par[2]) / (sqrt(2) * par[3]))) * (par[4] + par[5] * (x - par[2]));
|
||||
double scurve(const double x, const double *par) {
|
||||
return (par[0] + par[1] * x) +
|
||||
0.5 * (1 + erf((x - par[2]) / (sqrt(2) * par[3]))) *
|
||||
(par[4] + par[5] * (x - par[2]));
|
||||
}
|
||||
|
||||
NDArray<double, 1> scurve(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
@ -46,8 +47,10 @@ NDArray<double, 1> scurve(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
return y;
|
||||
}
|
||||
|
||||
double scurve2(const double x, const double * par) {
|
||||
return (par[0] + par[1] * x) + 0.5 * (1 - erf((x - par[2]) / (sqrt(2) * par[3]))) * (par[4] + par[5] * (x - par[2]));
|
||||
double scurve2(const double x, const double *par) {
|
||||
return (par[0] + par[1] * x) +
|
||||
0.5 * (1 - erf((x - par[2]) / (sqrt(2) * par[3]))) *
|
||||
(par[4] + par[5] * (x - par[2]));
|
||||
}
|
||||
|
||||
NDArray<double, 1> scurve2(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
@ -91,7 +94,8 @@ NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
|
||||
return result;
|
||||
}
|
||||
|
||||
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y) {
|
||||
std::array<double, 3> gaus_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y) {
|
||||
std::array<double, 3> start_par{0, 0, 0};
|
||||
auto e = std::max_element(y.begin(), y.end());
|
||||
auto idx = std::distance(y.begin(), e);
|
||||
@ -103,31 +107,29 @@ std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<doub
|
||||
// For sigma we estimate the fwhm and divide by 2.35
|
||||
// assuming equally spaced x values
|
||||
auto delta = x[1] - x[0];
|
||||
start_par[2] =
|
||||
std::count_if(y.begin(), y.end(),
|
||||
[e](double val) { return val > *e / 2; }) *
|
||||
delta / 2.35;
|
||||
start_par[2] = std::count_if(y.begin(), y.end(),
|
||||
[e](double val) { return val > *e / 2; }) *
|
||||
delta / 2.35;
|
||||
|
||||
return start_par;
|
||||
}
|
||||
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y) {
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 2> start_par{0, 0};
|
||||
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 2> start_par{0, 0};
|
||||
auto y2 = std::max_element(y.begin(), y.end());
|
||||
auto x2 = x[std::distance(y.begin(), y2)];
|
||||
auto y1 = std::min_element(y.begin(), y.end());
|
||||
auto x1 = x[std::distance(y.begin(), y1)];
|
||||
|
||||
|
||||
auto y2 = std::max_element(y.begin(), y.end());
|
||||
auto x2 = x[std::distance(y.begin(), y2)];
|
||||
auto y1 = std::min_element(y.begin(), y.end());
|
||||
auto x1 = x[std::distance(y.begin(), y1)];
|
||||
|
||||
start_par[0] =
|
||||
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
|
||||
start_par[1] =
|
||||
*y1 - ((*y2 - *y1) / (x2 - x1)) *
|
||||
x1; // For the mean we use the x value of the maximum value
|
||||
return start_par;
|
||||
start_par[0] =
|
||||
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
|
||||
start_par[1] =
|
||||
*y1 - ((*y2 - *y1) / (x2 - x1)) *
|
||||
x1; // For the mean we use the x value of the maximum value
|
||||
return start_par;
|
||||
}
|
||||
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
@ -141,7 +143,6 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
"and par_out, par_err_out must have size 3");
|
||||
}
|
||||
|
||||
|
||||
// /* Collection of output parameters for status info. */
|
||||
// typedef struct {
|
||||
// double fnorm; /* norm of the residue vector fvec. */
|
||||
@ -153,23 +154,32 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
// */
|
||||
// } lm_status_struct;
|
||||
|
||||
|
||||
lm_status_struct status;
|
||||
par_out = gaus_init_par(x, y);
|
||||
std::array<double, 9> cov{0, 0, 0, 0, 0, 0, 0 , 0 , 0};
|
||||
std::array<double, 9> cov{0, 0, 0, 0, 0, 0, 0, 0, 0};
|
||||
|
||||
// void lmcurve2( const int n_par, double *par, double *parerr, double *covar, const int m_dat, const double *t, const double *y, const double *dy, double (*f)( const double ti, const double *par ), const lm_control_struct *control, lm_status_struct *status);
|
||||
// n_par - Number of free variables. Length of parameter vector par.
|
||||
// par - Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||r||.
|
||||
// parerr - Parameter uncertainties vector. Array of length n_par or NULL. On output, unless it or covar is NULL, it contains the weighted parameter uncertainties for the found parameters.
|
||||
// covar - Covariance matrix. Array of length n_par * n_par or NULL. On output, unless it is NULL, it contains the covariance matrix.
|
||||
// m_dat - Number of data points. Length of vectors t, y, dy. Must statisfy n_par <= m_dat.
|
||||
// t - Array of length m_dat. Contains the abcissae (time, or "x") for which function f will be evaluated.
|
||||
// y - Array of length m_dat. Contains the ordinate values that shall be fitted.
|
||||
// dy - Array of length m_dat. Contains the standard deviations of the values y.
|
||||
// f - A user-supplied parametric function f(ti;par).
|
||||
// control - Parameter collection for tuning the fit procedure. In most cases, the default &lm_control_double is adequate. If f is only computed with single-precision accuracy, &lm_control_float should be used. Parameters are explained in lmmin2(3).
|
||||
// status - A record used to return information about the minimization process: For details, see lmmin2(3).
|
||||
// void lmcurve2( const int n_par, double *par, double *parerr, double
|
||||
// *covar, const int m_dat, const double *t, const double *y, const double
|
||||
// *dy, double (*f)( const double ti, const double *par ), const
|
||||
// lm_control_struct *control, lm_status_struct *status); n_par - Number of
|
||||
// free variables. Length of parameter vector par. par - Parameter vector.
|
||||
// On input, it must contain a reasonable guess. On output, it contains the
|
||||
// solution found to minimize ||r||. parerr - Parameter uncertainties
|
||||
// vector. Array of length n_par or NULL. On output, unless it or covar is
|
||||
// NULL, it contains the weighted parameter uncertainties for the found
|
||||
// parameters. covar - Covariance matrix. Array of length n_par * n_par or
|
||||
// NULL. On output, unless it is NULL, it contains the covariance matrix.
|
||||
// m_dat - Number of data points. Length of vectors t, y, dy. Must statisfy
|
||||
// n_par <= m_dat. t - Array of length m_dat. Contains the abcissae (time,
|
||||
// or "x") for which function f will be evaluated. y - Array of length
|
||||
// m_dat. Contains the ordinate values that shall be fitted. dy - Array of
|
||||
// length m_dat. Contains the standard deviations of the values y. f - A
|
||||
// user-supplied parametric function f(ti;par). control - Parameter
|
||||
// collection for tuning the fit procedure. In most cases, the default
|
||||
// &lm_control_double is adequate. If f is only computed with
|
||||
// single-precision accuracy, &lm_control_float should be used. Parameters
|
||||
// are explained in lmmin2(3). status - A record used to return information
|
||||
// about the minimization process: For details, see lmmin2(3).
|
||||
|
||||
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
|
||||
x.size(), x.data(), y.data(), y_err.data(), aare::func::gaus,
|
||||
@ -178,12 +188,14 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
chi2 += std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
|
||||
chi2 +=
|
||||
std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
|
||||
NDView<double, 2> chi2_out,
|
||||
|
||||
int n_threads) {
|
||||
|
||||
@ -197,10 +209,9 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
{par_out.shape(2)});
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
|
||||
fit_gaus(x, y_view, y_err_view, par_out_view, par_err_out_view,
|
||||
chi2_out(row, col));
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -210,7 +221,8 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
}
|
||||
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
|
||||
double &chi2) {
|
||||
|
||||
// Check that we have the correct sizes
|
||||
if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
@ -230,13 +242,14 @@ void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
chi2 +=
|
||||
std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
|
||||
NDView<double, 2> chi2_out, int n_threads) {
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
@ -249,15 +262,14 @@ void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
|
||||
|
||||
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view,
|
||||
chi2_out(row, col));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
|
||||
}
|
||||
|
||||
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
@ -300,27 +312,29 @@ NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
|
||||
// ~~ S-CURVES ~~
|
||||
|
||||
// SCURVE --
|
||||
std::array<double, 6> scurve_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
|
||||
std::array<double, 6> scurve_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y) {
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
|
||||
|
||||
auto ymax = std::max_element(y.begin(), y.end());
|
||||
auto ymin = std::min_element(y.begin(), y.end());
|
||||
start_par[4] = *ymin + (*ymax - *ymin) / 2;
|
||||
|
||||
// Find the first x where the corresponding y value is above the threshold (start_par[4])
|
||||
for (ssize_t i = 0; i < y.size(); ++i) {
|
||||
if (y[i] >= start_par[4]) {
|
||||
start_par[2] = x[i];
|
||||
break; // Exit the loop after finding the first valid x
|
||||
}
|
||||
auto ymax = std::max_element(y.begin(), y.end());
|
||||
auto ymin = std::min_element(y.begin(), y.end());
|
||||
start_par[4] = *ymin + (*ymax - *ymin) / 2;
|
||||
|
||||
// Find the first x where the corresponding y value is above the threshold
|
||||
// (start_par[4])
|
||||
for (ssize_t i = 0; i < y.size(); ++i) {
|
||||
if (y[i] >= start_par[4]) {
|
||||
start_par[2] = x[i];
|
||||
break; // Exit the loop after finding the first valid x
|
||||
}
|
||||
}
|
||||
|
||||
start_par[3] = 2 * sqrt(start_par[2]);
|
||||
start_par[0] = 100;
|
||||
start_par[1] = 0.25;
|
||||
start_par[5] = 1;
|
||||
return start_par;
|
||||
start_par[3] = 2 * sqrt(start_par[2]);
|
||||
start_par[0] = 100;
|
||||
start_par[1] = 0.25;
|
||||
start_par[5] = 1;
|
||||
return start_par;
|
||||
}
|
||||
|
||||
// - No error
|
||||
@ -334,7 +348,8 @@ NDArray<double, 1> fit_scurve(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
return result;
|
||||
}
|
||||
|
||||
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y, int n_threads) {
|
||||
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads) {
|
||||
NDArray<double, 3> result({y.shape(0), y.shape(1), 6}, 0);
|
||||
|
||||
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
|
||||
@ -358,8 +373,9 @@ NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y, int n_th
|
||||
}
|
||||
|
||||
// - Error
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y,
|
||||
NDView<double, 1> y_err, NDView<double, 1> par_out,
|
||||
NDView<double, 1> par_err_out, double &chi2) {
|
||||
|
||||
// Check that we have the correct sizes
|
||||
if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
@ -380,13 +396,15 @@ void fit_scurve(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_er
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
chi2 +=
|
||||
std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y,
|
||||
NDView<double, 3> y_err, NDView<double, 3> par_out,
|
||||
NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
@ -399,40 +417,41 @@ void fit_scurve(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_er
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
fit_scurve(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
|
||||
|
||||
fit_scurve(x, y_view, y_err_view, par_out_view,
|
||||
par_err_out_view, chi2_out(row, col));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
|
||||
}
|
||||
|
||||
// SCURVE2 ---
|
||||
|
||||
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
|
||||
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y) {
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
|
||||
|
||||
auto ymax = std::max_element(y.begin(), y.end());
|
||||
auto ymin = std::min_element(y.begin(), y.end());
|
||||
start_par[4] = *ymin + (*ymax - *ymin) / 2;
|
||||
|
||||
// Find the first x where the corresponding y value is above the threshold (start_par[4])
|
||||
for (ssize_t i = 0; i < y.size(); ++i) {
|
||||
if (y[i] <= start_par[4]) {
|
||||
start_par[2] = x[i];
|
||||
break; // Exit the loop after finding the first valid x
|
||||
}
|
||||
auto ymax = std::max_element(y.begin(), y.end());
|
||||
auto ymin = std::min_element(y.begin(), y.end());
|
||||
start_par[4] = *ymin + (*ymax - *ymin) / 2;
|
||||
|
||||
// Find the first x where the corresponding y value is above the threshold
|
||||
// (start_par[4])
|
||||
for (ssize_t i = 0; i < y.size(); ++i) {
|
||||
if (y[i] <= start_par[4]) {
|
||||
start_par[2] = x[i];
|
||||
break; // Exit the loop after finding the first valid x
|
||||
}
|
||||
}
|
||||
|
||||
start_par[3] = 2 * sqrt(start_par[2]);
|
||||
start_par[0] = 100;
|
||||
start_par[1] = 0.25;
|
||||
start_par[5] = -1;
|
||||
return start_par;
|
||||
start_par[3] = 2 * sqrt(start_par[2]);
|
||||
start_par[0] = 100;
|
||||
start_par[1] = 0.25;
|
||||
start_par[5] = -1;
|
||||
return start_par;
|
||||
}
|
||||
|
||||
// - No error
|
||||
@ -446,7 +465,8 @@ NDArray<double, 1> fit_scurve2(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
return result;
|
||||
}
|
||||
|
||||
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, int n_threads) {
|
||||
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads) {
|
||||
NDArray<double, 3> result({y.shape(0), y.shape(1), 6}, 0);
|
||||
|
||||
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
|
||||
@ -470,8 +490,9 @@ NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, int n_t
|
||||
}
|
||||
|
||||
// - Error
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y,
|
||||
NDView<double, 1> y_err, NDView<double, 1> par_out,
|
||||
NDView<double, 1> par_err_out, double &chi2) {
|
||||
|
||||
// Check that we have the correct sizes
|
||||
if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
@ -492,13 +513,15 @@ void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_e
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
chi2 +=
|
||||
std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y,
|
||||
NDView<double, 3> y_err, NDView<double, 3> par_out,
|
||||
NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
@ -511,15 +534,14 @@ void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_e
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
fit_scurve2(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
|
||||
|
||||
fit_scurve2(x, y_view, y_err_view, par_out_view,
|
||||
par_err_out_view, chi2_out(row, col));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
|
||||
}
|
||||
|
||||
} // namespace aare
|
Reference in New Issue
Block a user