formatted main branch

This commit is contained in:
2025-06-10 16:09:06 +02:00
parent efd2338f54
commit f9751902a2
87 changed files with 1710 additions and 1639 deletions

View File

@ -6,8 +6,8 @@
#include "aare/RawMasterFile.hpp"
#include "aare/RawSubFile.hpp"
#include "aare/defs.hpp"
#include "aare/decode.hpp"
#include "aare/defs.hpp"
// #include "aare/fClusterFileV2.hpp"
#include "np_helper.hpp"
@ -26,95 +26,103 @@ using namespace ::aare;
void define_ctb_raw_file_io_bindings(py::module &m) {
m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
if (input.ndim() != 2) {
throw std::runtime_error(
"Only 2D arrays are supported at this moment");
}
if(input.ndim() != 2){
throw std::runtime_error("Only 2D arrays are supported at this moment");
}
// Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0),
input.shape(1) /
static_cast<ssize_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
//Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<ssize_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
// Create a view of the input and output arrays
NDView<uint64_t, 2> input_view(
reinterpret_cast<uint64_t *>(input.mutable_data()),
{output.shape(0), output.shape(1)});
NDView<uint16_t, 2> output_view(output.mutable_data(),
{output.shape(0), output.shape(1)});
//Create a view of the input and output arrays
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
adc_sar_05_decode64to16(input_view, output_view);
adc_sar_05_decode64to16(input_view, output_view);
return output;
});
m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
if(input.ndim() != 2){
throw std::runtime_error("Only 2D arrays are supported at this moment");
}
//Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<ssize_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
//Create a view of the input and output arrays
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
adc_sar_04_decode64to16(input_view, output_view);
return output;
});
m.def(
"apply_custom_weights",
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast> &input,
py::array_t<double, py::array::c_style | py::array::forcecast>
&weights) {
// Create new array with same shape as the input array (uninitialized values)
py::buffer_info buf = input.request();
py::array_t<double> output(buf.shape);
// Use NDViews to call into the C++ library
auto weights_view = make_view_1d(weights);
NDView<uint16_t, 1> input_view(input.mutable_data(), {input.size()});
NDView<double, 1> output_view(output.mutable_data(), {output.size()});
apply_custom_weights(input_view, output_view, weights_view);
return output;
});
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](CtbRawFile &self) {
size_t image_size = self.image_size_in_bytes();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(1);
shape.push_back(image_size);
m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
if (input.ndim() != 2) {
throw std::runtime_error(
"Only 2D arrays are supported at this moment");
}
py::array_t<DetectorHeader> header(1);
// Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0),
input.shape(1) /
static_cast<ssize_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
// always read bytes
image = py::array_t<uint8_t>(shape);
// Create a view of the input and output arrays
NDView<uint64_t, 2> input_view(
reinterpret_cast<uint64_t *>(input.mutable_data()),
{output.shape(0), output.shape(1)});
NDView<uint16_t, 2> output_view(output.mutable_data(),
{output.shape(0), output.shape(1)});
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
adc_sar_04_decode64to16(input_view, output_view);
return py::make_tuple(header, image);
})
.def("seek", &CtbRawFile::seek)
.def("tell", &CtbRawFile::tell)
.def("master", &CtbRawFile::master)
return output;
});
.def_property_readonly("image_size_in_bytes",
&CtbRawFile::image_size_in_bytes)
m.def("apply_custom_weights",
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast>
&input,
py::array_t<double, py::array::c_style | py::array::forcecast>
&weights) {
// Create new array with same shape as the input array
// (uninitialized values)
py::buffer_info buf = input.request();
py::array_t<double> output(buf.shape);
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
// Use NDViews to call into the C++ library
auto weights_view = make_view_1d(weights);
NDView<uint16_t, 1> input_view(input.mutable_data(),
{input.size()});
NDView<double, 1> output_view(output.mutable_data(),
{output.size()});
apply_custom_weights(input_view, output_view, weights_view);
return output;
});
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](CtbRawFile &self) {
size_t image_size = self.image_size_in_bytes();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(1);
shape.push_back(image_size);
py::array_t<DetectorHeader> header(1);
// always read bytes
image = py::array_t<uint8_t>(shape);
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
})
.def("seek", &CtbRawFile::seek)
.def("tell", &CtbRawFile::tell)
.def("master", &CtbRawFile::master)
.def_property_readonly("image_size_in_bytes",
&CtbRawFile::image_size_in_bytes)
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
}