Merge branch 'developer' into fit_scurve

This commit is contained in:
froejdh_e
2025-04-25 12:33:14 +02:00
37 changed files with 2613 additions and 1444 deletions

127
src/CalculateEta.test.cpp Normal file
View File

@@ -0,0 +1,127 @@
/************************************************
* @file CalculateEta.test.cpp
* @short test case to calculate_eta2
***********************************************/
#include "aare/CalculateEta.hpp"
#include "aare/Cluster.hpp"
#include "aare/ClusterFile.hpp"
// #include "catch.hpp"
#include <array>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
using namespace aare;
using ClusterTypes =
std::variant<Cluster<int, 2, 2>, Cluster<int, 3, 3>, Cluster<int, 5, 5>,
Cluster<int, 4, 2>, Cluster<int, 2, 3>>;
auto get_test_parameters() {
return GENERATE(
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 3, 1}}},
Eta2<int>{2. / 3, 3. / 4,
static_cast<int>(corner::cBottomLeft), 7}),
std::make_tuple(
ClusterTypes{Cluster<int, 3, 3>{0, 0, {1, 2, 3, 4, 5, 6, 1, 2, 7}}},
Eta2<int>{6. / 11, 2. / 7, static_cast<int>(corner::cTopRight),
20}),
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
0, 0, {1, 6, 7, 6, 5, 4, 3, 2, 1, 2, 8, 9, 8,
1, 4, 5, 6, 7, 8, 4, 1, 1, 1, 1, 1}}},
Eta2<int>{8. / 17, 7. / 15, 9, 30}),
std::make_tuple(
ClusterTypes{Cluster<int, 4, 2>{0, 0, {1, 4, 7, 2, 5, 6, 4, 3}}},
Eta2<int>{4. / 10, 4. / 11, 1, 21}),
std::make_tuple(
ClusterTypes{Cluster<int, 2, 3>{0, 0, {1, 3, 2, 3, 4, 2}}},
Eta2<int>{3. / 5, 2. / 5, 1, 11}));
}
TEST_CASE("compute_largest_2x2_subcluster", "[eta_calculation]") {
auto [cluster, expected_eta] = get_test_parameters();
auto [sum, index] = std::visit(
[](const auto &clustertype) { return clustertype.max_sum_2x2(); },
cluster);
CHECK(expected_eta.c == index);
CHECK(expected_eta.sum == sum);
}
TEST_CASE("calculate_eta2", "[eta_calculation]") {
auto [cluster, expected_eta] = get_test_parameters();
auto eta = std::visit(
[](const auto &clustertype) { return calculate_eta2(clustertype); },
cluster);
CHECK(eta.x == expected_eta.x);
CHECK(eta.y == expected_eta.y);
CHECK(eta.c == expected_eta.c);
CHECK(eta.sum == expected_eta.sum);
}
// 3x3 cluster layout (rotated to match the cBottomLeft enum):
// 6, 7, 8
// 3, 4, 5
// 0, 1, 2
TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
"the bottom left",
"[eta_calculation]") {
// Create a 3x3 cluster
Cluster<int32_t, 3, 3> cl;
cl.x = 0;
cl.y = 0;
cl.data[0] = 30;
cl.data[1] = 23;
cl.data[2] = 5;
cl.data[3] = 20;
cl.data[4] = 50;
cl.data[5] = 3;
cl.data[6] = 8;
cl.data[7] = 2;
cl.data[8] = 3;
// 8, 2, 3
// 20, 50, 3
// 30, 23, 5
auto eta = calculate_eta2(cl);
CHECK(eta.c == static_cast<int>(corner::cBottomLeft));
CHECK(eta.x == 50.0 / (20 + 50)); // 4/(3+4)
CHECK(eta.y == 50.0 / (23 + 50)); // 4/(1+4)
CHECK(eta.sum == 30 + 23 + 20 + 50);
}
TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
"the top left",
"[eta_calculation]") {
// Create a 3x3 cluster
Cluster<int32_t, 3, 3> cl;
cl.x = 0;
cl.y = 0;
cl.data[0] = 8;
cl.data[1] = 12;
cl.data[2] = 5;
cl.data[3] = 77;
cl.data[4] = 80;
cl.data[5] = 3;
cl.data[6] = 82;
cl.data[7] = 91;
cl.data[8] = 3;
// 82, 91, 3
// 77, 80, 3
// 8, 12, 5
auto eta = calculate_eta2(cl);
CHECK(eta.c == static_cast<int>(corner::cTopLeft));
CHECK(eta.x == 80. / (77 + 80)); // 4/(3+4)
CHECK(eta.y == 91.0 / (91 + 80)); // 7/(7+4)
CHECK(eta.sum == 77 + 80 + 82 + 91);
}

21
src/Cluster.test.cpp Normal file
View File

@@ -0,0 +1,21 @@
/************************************************
* @file test-Cluster.cpp
* @short test case for generic Cluster, ClusterVector, and calculate_eta2
***********************************************/
#include "aare/Cluster.hpp"
#include "aare/CalculateEta.hpp"
#include "aare/ClusterFile.hpp"
// #include "catch.hpp"
#include <array>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
using namespace aare;
TEST_CASE("Test sum of Cluster", "[.cluster]") {
Cluster<int, 2, 2> cluster{0, 0, {1, 2, 3, 4}};
CHECK(cluster.sum() == 10);
}

View File

@@ -1,402 +0,0 @@
#include "aare/ClusterFile.hpp"
#include <algorithm>
namespace aare {
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
const std::string &mode)
: m_chunk_size(chunk_size), m_mode(mode) {
if (mode == "r") {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file for reading: " +
fname.string());
}
} else if (mode == "w") {
fp = fopen(fname.c_str(), "wb");
if (!fp) {
throw std::runtime_error("Could not open file for writing: " +
fname.string());
}
} else if (mode == "a") {
fp = fopen(fname.c_str(), "ab");
if (!fp) {
throw std::runtime_error("Could not open file for appending: " +
fname.string());
}
} else {
throw std::runtime_error("Unsupported mode: " + mode);
}
}
void ClusterFile::set_roi(ROI roi){
m_roi = roi;
}
void ClusterFile::set_noise_map(const NDView<int32_t, 2> noise_map){
m_noise_map = NDArray<int32_t, 2>(noise_map);
}
void ClusterFile::set_gain_map(const NDView<double, 2> gain_map){
m_gain_map = NDArray<double, 2>(gain_map);
// Gain map is passed as ADU/keV to avoid dividing in when applying the gain
// map we invert it here
for (auto &item : m_gain_map->view()) {
item = 1.0 / item;
}
}
ClusterFile::~ClusterFile() { close(); }
void ClusterFile::close() {
if (fp) {
fclose(fp);
fp = nullptr;
}
}
void ClusterFile::write_frame(const ClusterVector<int32_t> &clusters) {
if (m_mode != "w" && m_mode != "a") {
throw std::runtime_error("File not opened for writing");
}
if (!(clusters.cluster_size_x() == 3) &&
!(clusters.cluster_size_y() == 3)) {
throw std::runtime_error("Only 3x3 clusters are supported");
}
//First write the frame number - 4 bytes
int32_t frame_number = clusters.frame_number();
if(fwrite(&frame_number, sizeof(frame_number), 1, fp)!=1){
throw std::runtime_error(LOCATION + "Could not write frame number");
}
//Then write the number of clusters - 4 bytes
uint32_t n_clusters = clusters.size();
if(fwrite(&n_clusters, sizeof(n_clusters), 1, fp)!=1){
throw std::runtime_error(LOCATION + "Could not write number of clusters");
}
//Now write the clusters in the frame
if(fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp)!=clusters.size()){
throw std::runtime_error(LOCATION + "Could not write clusters");
}
}
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters){
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_noise_map || m_roi){
return read_clusters_with_cut(n_clusters);
}else{
return read_clusters_without_cut(n_clusters);
}
}
ClusterVector<int32_t> ClusterFile::read_clusters_without_cut(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<int32_t> clusters(3,3, n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
auto buf = clusters.data();
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
nph_read += fread((buf + nph_read*clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
clusters.set_frame_number(iframe);
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
nph_read += fread((buf + nph_read*clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
break;
}
}
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
if(m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_clusters_with_cut(size_t n_clusters) {
ClusterVector<int32_t> clusters(3,3);
clusters.reserve(n_clusters);
// if there are photons left from previous frame read them first
if (m_num_left) {
while(m_num_left && clusters.size() < n_clusters){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
}
// we did not have enough clusters left in the previous frame
// keep on reading frames until reaching n_clusters
if (clusters.size() < n_clusters) {
// sanity check
if (m_num_left) {
throw std::runtime_error(LOCATION + "Entered second loop with clusters left\n");
}
int32_t frame_number = 0; // frame number needs to be 4 bytes!
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
clusters.set_frame_number(frame_number); //cluster vector will hold the last frame number
while(m_num_left && clusters.size() < n_clusters){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
}
// we have enough clusters, break out of the outer while loop
if (clusters.size() >= n_clusters)
break;
}
}
if(m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
Cluster3x3 ClusterFile::read_one_cluster(){
Cluster3x3 c;
auto rc = fread(&c, sizeof(c), 1, fp);
if (rc != 1) {
throw std::runtime_error(LOCATION + "Could not read cluster");
}
--m_num_left;
return c;
}
ClusterVector<int32_t> ClusterFile::read_frame(){
if (m_mode != "r") {
throw std::runtime_error(LOCATION + "File not opened for reading");
}
if (m_noise_map || m_roi){
return read_frame_with_cut();
}else{
return read_frame_without_cut();
}
}
ClusterVector<int32_t> ClusterFile::read_frame_without_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read number of clusters");
}
ClusterVector<int32_t> clusters(3, 3, n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error(LOCATION + "Could not read clusters");
}
clusters.resize(n_clusters);
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_frame_with_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
}
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
ClusterVector<int32_t> clusters(3, 3);
clusters.reserve(m_num_left);
clusters.set_frame_number(frame_number);
while(m_num_left){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
bool ClusterFile::is_selected(Cluster3x3 &cl) {
//Should fail fast
if (m_roi) {
if (!(m_roi->contains(cl.x, cl.y))) {
return false;
}
}
if (m_noise_map){
int32_t sum_1x1 = cl.data[4]; // central pixel
int32_t sum_2x2 = cl.sum_2x2(); // highest sum of 2x2 subclusters
int32_t sum_3x3 = cl.sum(); // sum of all pixels
auto noise = (*m_noise_map)(cl.y, cl.x); //TODO! check if this is correct
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise || sum_3x3 <= 3 * noise) {
return false;
}
}
//we passed all checks
return true;
}
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters) {
//TOTO! make work with 2x2 clusters
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster3x3>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster2x2>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
}else{
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported");
}
return eta2;
}
/**
* @brief Calculate the eta2 values for a 3x3 cluster and return them in a Eta2 struct
* containing etay, etax and the corner of the cluster.
*/
Eta2 calculate_eta2(Cluster3x3 &cl) {
Eta2 eta{};
std::array<int32_t, 4> tot2;
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
eta.sum = tot2[c];
switch (c) {
case cBottomLeft:
if ((cl.data[3] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomLeft;
break;
case cBottomRight:
if ((cl.data[2] + cl.data[5]) != 0)
eta.x =
static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomRight;
break;
case cTopLeft:
if ((cl.data[7] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopLeft;
break;
case cTopRight:
if ((cl.data[5] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopRight;
break;
// no default to allow compiler to warn about missing cases
}
return eta;
}
Eta2 calculate_eta2(Cluster2x2 &cl) {
Eta2 eta{};
if ((cl.data[0] + cl.data[1]) != 0)
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
if ((cl.data[0] + cl.data[2]) != 0)
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
eta.sum = cl.data[0] + cl.data[1] + cl.data[2]+ cl.data[3];
eta.c = cBottomLeft; //TODO! This is not correct, but need to put something
return eta;
}
} // namespace aare

View File

@@ -1,35 +1,39 @@
#include "aare/ClusterFile.hpp"
#include "test_config.hpp"
#include "aare/defs.hpp"
#include <algorithm>
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
using aare::Cluster;
using aare::ClusterFile;
using aare::ClusterVector;
TEST_CASE("Read one frame from a a cluster file", "[.files]") {
TEST_CASE("Read one frame from a cluster file", "[.files]") {
//We know that the frame has 97 clusters
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile f(fpath);
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_frame();
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
CHECK(clusters.size() == 97);
CHECK(clusters.frame_number() == 135);
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
TEST_CASE("Read one frame using ROI", "[.files]") {
//We know that the frame has 97 clusters
// We know that the frame has 97 clusters
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile f(fpath);
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 50;
@@ -40,45 +44,308 @@ TEST_CASE("Read one frame using ROI", "[.files]") {
REQUIRE(clusters.size() == 49);
REQUIRE(clusters.frame_number() == 135);
//Check that all clusters are within the ROI
// Check that all clusters are within the ROI
for (size_t i = 0; i < clusters.size(); i++) {
auto c = clusters.at<aare::Cluster3x3>(i);
auto c = clusters[i];
REQUIRE(c.x >= roi.xmin);
REQUIRE(c.x <= roi.xmax);
REQUIRE(c.y >= roi.ymin);
REQUIRE(c.y <= roi.ymax);
}
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
TEST_CASE("Read clusters from single frame file", "[.files]") {
// frame_number, num_clusters [135] 97
// [ 1 200] [0 1 2 3 4 5 6 7 8]
// [ 2 201] [ 9 10 11 12 13 14 15 16 17]
// [ 3 202] [18 19 20 21 22 23 24 25 26]
// [ 4 203] [27 28 29 30 31 32 33 34 35]
// [ 5 204] [36 37 38 39 40 41 42 43 44]
// [ 6 205] [45 46 47 48 49 50 51 52 53]
// [ 7 206] [54 55 56 57 58 59 60 61 62]
// [ 8 207] [63 64 65 66 67 68 69 70 71]
// [ 9 208] [72 73 74 75 76 77 78 79 80]
// [ 10 209] [81 82 83 84 85 86 87 88 89]
// [ 11 210] [90 91 92 93 94 95 96 97 98]
// [ 12 211] [ 99 100 101 102 103 104 105 106 107]
// [ 13 212] [108 109 110 111 112 113 114 115 116]
// [ 14 213] [117 118 119 120 121 122 123 124 125]
// [ 15 214] [126 127 128 129 130 131 132 133 134]
// [ 16 215] [135 136 137 138 139 140 141 142 143]
// [ 17 216] [144 145 146 147 148 149 150 151 152]
// [ 18 217] [153 154 155 156 157 158 159 160 161]
// [ 19 218] [162 163 164 165 166 167 168 169 170]
// [ 20 219] [171 172 173 174 175 176 177 178 179]
// [ 21 220] [180 181 182 183 184 185 186 187 188]
// [ 22 221] [189 190 191 192 193 194 195 196 197]
// [ 23 222] [198 199 200 201 202 203 204 205 206]
// [ 24 223] [207 208 209 210 211 212 213 214 215]
// [ 25 224] [216 217 218 219 220 221 222 223 224]
// [ 26 225] [225 226 227 228 229 230 231 232 233]
// [ 27 226] [234 235 236 237 238 239 240 241 242]
// [ 28 227] [243 244 245 246 247 248 249 250 251]
// [ 29 228] [252 253 254 255 256 257 258 259 260]
// [ 30 229] [261 262 263 264 265 266 267 268 269]
// [ 31 230] [270 271 272 273 274 275 276 277 278]
// [ 32 231] [279 280 281 282 283 284 285 286 287]
// [ 33 232] [288 289 290 291 292 293 294 295 296]
// [ 34 233] [297 298 299 300 301 302 303 304 305]
// [ 35 234] [306 307 308 309 310 311 312 313 314]
// [ 36 235] [315 316 317 318 319 320 321 322 323]
// [ 37 236] [324 325 326 327 328 329 330 331 332]
// [ 38 237] [333 334 335 336 337 338 339 340 341]
// [ 39 238] [342 343 344 345 346 347 348 349 350]
// [ 40 239] [351 352 353 354 355 356 357 358 359]
// [ 41 240] [360 361 362 363 364 365 366 367 368]
// [ 42 241] [369 370 371 372 373 374 375 376 377]
// [ 43 242] [378 379 380 381 382 383 384 385 386]
// [ 44 243] [387 388 389 390 391 392 393 394 395]
// [ 45 244] [396 397 398 399 400 401 402 403 404]
// [ 46 245] [405 406 407 408 409 410 411 412 413]
// [ 47 246] [414 415 416 417 418 419 420 421 422]
// [ 48 247] [423 424 425 426 427 428 429 430 431]
// [ 49 248] [432 433 434 435 436 437 438 439 440]
// [ 50 249] [441 442 443 444 445 446 447 448 449]
// [ 51 250] [450 451 452 453 454 455 456 457 458]
// [ 52 251] [459 460 461 462 463 464 465 466 467]
// [ 53 252] [468 469 470 471 472 473 474 475 476]
// [ 54 253] [477 478 479 480 481 482 483 484 485]
// [ 55 254] [486 487 488 489 490 491 492 493 494]
// [ 56 255] [495 496 497 498 499 500 501 502 503]
// [ 57 256] [504 505 506 507 508 509 510 511 512]
// [ 58 257] [513 514 515 516 517 518 519 520 521]
// [ 59 258] [522 523 524 525 526 527 528 529 530]
// [ 60 259] [531 532 533 534 535 536 537 538 539]
// [ 61 260] [540 541 542 543 544 545 546 547 548]
// [ 62 261] [549 550 551 552 553 554 555 556 557]
// [ 63 262] [558 559 560 561 562 563 564 565 566]
// [ 64 263] [567 568 569 570 571 572 573 574 575]
// [ 65 264] [576 577 578 579 580 581 582 583 584]
// [ 66 265] [585 586 587 588 589 590 591 592 593]
// [ 67 266] [594 595 596 597 598 599 600 601 602]
// [ 68 267] [603 604 605 606 607 608 609 610 611]
// [ 69 268] [612 613 614 615 616 617 618 619 620]
// [ 70 269] [621 622 623 624 625 626 627 628 629]
// [ 71 270] [630 631 632 633 634 635 636 637 638]
// [ 72 271] [639 640 641 642 643 644 645 646 647]
// [ 73 272] [648 649 650 651 652 653 654 655 656]
// [ 74 273] [657 658 659 660 661 662 663 664 665]
// [ 75 274] [666 667 668 669 670 671 672 673 674]
// [ 76 275] [675 676 677 678 679 680 681 682 683]
// [ 77 276] [684 685 686 687 688 689 690 691 692]
// [ 78 277] [693 694 695 696 697 698 699 700 701]
// [ 79 278] [702 703 704 705 706 707 708 709 710]
// [ 80 279] [711 712 713 714 715 716 717 718 719]
// [ 81 280] [720 721 722 723 724 725 726 727 728]
// [ 82 281] [729 730 731 732 733 734 735 736 737]
// [ 83 282] [738 739 740 741 742 743 744 745 746]
// [ 84 283] [747 748 749 750 751 752 753 754 755]
// [ 85 284] [756 757 758 759 760 761 762 763 764]
// [ 86 285] [765 766 767 768 769 770 771 772 773]
// [ 87 286] [774 775 776 777 778 779 780 781 782]
// [ 88 287] [783 784 785 786 787 788 789 790 791]
// [ 89 288] [792 793 794 795 796 797 798 799 800]
// [ 90 289] [801 802 803 804 805 806 807 808 809]
// [ 91 290] [810 811 812 813 814 815 816 817 818]
// [ 92 291] [819 820 821 822 823 824 825 826 827]
// [ 93 292] [828 829 830 831 832 833 834 835 836]
// [ 94 293] [837 838 839 840 841 842 843 844 845]
// [ 95 294] [846 847 848 849 850 851 852 853 854]
// [ 96 295] [855 856 857 858 859 860 861 862 863]
// [ 97 296] [864 865 866 867 868 869 870 871 872]
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
SECTION("Read fewer clusters than available") {
ClusterFile f(fpath);
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_clusters(50);
REQUIRE(clusters.size() == 50);
REQUIRE(clusters.frame_number() == 135);
REQUIRE(clusters.frame_number() == 135);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
REQUIRE(clusters[0].x == 1);
REQUIRE(clusters[0].y == 200);
CHECK(std::equal(std::begin(clusters[0].data),
std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
SECTION("Read more clusters than available") {
ClusterFile f(fpath);
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
// 100 is the maximum number of clusters read
auto clusters = f.read_clusters(100);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
REQUIRE(clusters[0].x == 1);
REQUIRE(clusters[0].y == 200);
CHECK(std::equal(std::begin(clusters[0].data),
std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
SECTION("Read all clusters") {
ClusterFile f(fpath);
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_clusters(97);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
REQUIRE(clusters[0].x == 1);
REQUIRE(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data),
std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
}
TEST_CASE("Read clusters from single frame file with ROI", "[.files]") {
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 50;
roi.ymin = 200;
roi.ymax = 249;
f.set_roi(roi);
auto clusters = f.read_clusters(10);
CHECK(clusters.size() == 10);
CHECK(clusters.frame_number() == 135);
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
TEST_CASE("Read cluster from multiple frame file", "[.files]") {
using ClusterType = Cluster<double, 2, 2>;
auto fpath =
test_data_path() / "clust" / "Two_frames_2x2double_test_clusters.clust";
REQUIRE(std::filesystem::exists(fpath));
// Two_frames_2x2double_test_clusters.clust
// frame number, num_clusters 0, 4
//[10, 20], {0. ,0., 0., 0.}
//[11, 30], {1., 1., 1., 1.}
//[12, 40], {2., 2., 2., 2.}
//[13, 50], {3., 3., 3., 3.}
// 1,4
//[10, 20], {4., 4., 4., 4.}
//[11, 30], {5., 5., 5., 5.}
//[12, 40], {6., 6., 6., 6.}
//[13, 50], {7., 7., 7., 7.}
SECTION("Read clusters from both frames") {
ClusterFile<ClusterType> f(fpath);
auto clusters = f.read_clusters(2);
REQUIRE(clusters.size() == 2);
REQUIRE(clusters.frame_number() == 0);
auto clusters1 = f.read_clusters(3);
REQUIRE(clusters1.size() == 3);
REQUIRE(clusters1.frame_number() == 1);
}
SECTION("Read all clusters") {
ClusterFile<ClusterType> f(fpath);
auto clusters = f.read_clusters(8);
REQUIRE(clusters.size() == 8);
REQUIRE(clusters.frame_number() == 1);
}
SECTION("Read clusters from one frame") {
ClusterFile<ClusterType> f(fpath);
auto clusters = f.read_clusters(2);
REQUIRE(clusters.size() == 2);
REQUIRE(clusters.frame_number() == 0);
auto clusters1 = f.read_clusters(1);
REQUIRE(clusters1.size() == 1);
REQUIRE(clusters1.frame_number() == 0);
}
}
TEST_CASE("Write cluster with potential padding", "[.files][.ClusterFile]") {
using ClusterType = Cluster<double, 3, 3>;
REQUIRE(std::filesystem::exists(test_data_path() / "clust"));
auto fpath = test_data_path() / "clust" / "single_frame_2_clusters.clust";
ClusterFile<ClusterType> file(fpath, 1000, "w");
ClusterVector<ClusterType> clustervec(2);
int16_t coordinate = 5;
clustervec.push_back(ClusterType{
coordinate, coordinate, {0., 0., 0., 0., 0., 0., 0., 0., 0.}});
clustervec.push_back(ClusterType{
coordinate, coordinate, {0., 0., 0., 0., 0., 0., 0., 0., 0.}});
file.write_frame(clustervec);
file.close();
file.open("r");
auto read_cluster_vector = file.read_frame();
CHECK(read_cluster_vector.size() == 2);
CHECK(read_cluster_vector.frame_number() == 0);
CHECK(read_cluster_vector[0].x == clustervec[0].x);
CHECK(read_cluster_vector[0].y == clustervec[0].y);
CHECK(std::equal(
clustervec[0].data.begin(), clustervec[0].data.end(),
read_cluster_vector[0].data.begin(), [](double a, double b) {
return std::abs(a - b) < std::numeric_limits<double>::epsilon();
}));
CHECK(read_cluster_vector[1].x == clustervec[1].x);
CHECK(read_cluster_vector[1].y == clustervec[1].y);
CHECK(std::equal(
clustervec[1].data.begin(), clustervec[1].data.end(),
read_cluster_vector[1].data.begin(), [](double a, double b) {
return std::abs(a - b) < std::numeric_limits<double>::epsilon();
}));
}
TEST_CASE("Read frame and modify cluster data", "[.files][.ClusterFile]") {
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_frame();
CHECK(clusters.size() == 97);
CHECK(clusters.frame_number() == 135);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
clusters.push_back(
Cluster<int32_t, 3, 3>{0, 0, {0, 1, 2, 3, 4, 5, 6, 7, 8}});
CHECK(clusters.size() == 98);
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}

View File

@@ -1,19 +1,18 @@
#include "aare/ClusterFinder.hpp"
#include "aare/Pedestal.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <chrono>
#include <random>
using namespace aare;
//TODO! Find a way to test the cluster finder
// TODO! Find a way to test the cluster finder
// class ClusterFinderUnitTest : public ClusterFinder {
// public:
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma = 5.0, double threshold = 0.0)
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma
// = 5.0, double threshold = 0.0)
// : ClusterFinder(cluster_sizeX, cluster_sizeY, nSigma, threshold) {}
// double get_c2() { return c2; }
// double get_c3() { return c3; }
@@ -37,8 +36,8 @@ using namespace aare;
// REQUIRE_THAT(cf.get_c3(), Catch::Matchers::WithinRel(c3, 1e-9));
// }
TEST_CASE("Construct a cluster finder"){
ClusterFinder clusterFinder({400,400}, {3,3});
TEST_CASE("Construct a cluster finder") {
ClusterFinder clusterFinder({400, 400});
// REQUIRE(clusterFinder.get_cluster_sizeX() == 3);
// REQUIRE(clusterFinder.get_cluster_sizeY() == 3);
// REQUIRE(clusterFinder.get_threshold() == 1);
@@ -49,16 +48,17 @@ TEST_CASE("Construct a cluster finder"){
// aare::Pedestal pedestal(10, 10, 5);
// NDArray<double, 2> frame({10, 10});
// frame = 0;
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1 threshold
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1
// threshold
// auto clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// auto clusters =
// clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// REQUIRE(clusters.size() == 0);
// frame(5, 5) = 10;
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// REQUIRE(clusters.size() == 1);
// REQUIRE(clusters[0].x == 5);
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(),
// pedestal); REQUIRE(clusters.size() == 1); REQUIRE(clusters[0].x == 5);
// REQUIRE(clusters[0].y == 5);
// for (int i = 0; i < 3; i++) {
// for (int j = 0; j < 3; j++) {

View File

@@ -0,0 +1,99 @@
#include "aare/ClusterFinderMT.hpp"
#include "aare/Cluster.hpp"
#include "aare/ClusterCollector.hpp"
#include "aare/File.hpp"
#include "test_config.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
#include <memory>
using namespace aare;
// wrapper function to access private member variables for testing
template <typename ClusterType, typename FRAME_TYPE = uint16_t,
typename PEDESTAL_TYPE = double>
class ClusterFinderMTWrapper
: public ClusterFinderMT<ClusterType, FRAME_TYPE, PEDESTAL_TYPE> {
public:
ClusterFinderMTWrapper(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 2000, size_t n_threads = 3)
: ClusterFinderMT<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>(
image_size, nSigma, capacity, n_threads) {}
size_t get_m_input_queues_size() const {
return this->m_input_queues.size();
}
size_t get_m_output_queues_size() const {
return this->m_output_queues.size();
}
size_t get_m_cluster_finders_size() const {
return this->m_cluster_finders.size();
}
bool m_output_queues_are_empty() const {
for (auto &queue : this->m_output_queues) {
if (!queue->isEmpty())
return false;
}
return true;
}
bool m_input_queues_are_empty() const {
for (auto &queue : this->m_input_queues) {
if (!queue->isEmpty())
return false;
}
return true;
}
bool m_sink_is_empty() const { return this->m_sink.isEmpty(); }
size_t m_sink_size() const { return this->m_sink.sizeGuess(); }
};
TEST_CASE("multithreaded cluster finder", "[.files][.ClusterFinder]") {
auto fpath = "/mnt/sls_det_storage/matterhorn_data/aare_test_data/"
"Moench03new/cu_half_speed_master_4.json";
File file(fpath);
size_t n_threads = 2;
size_t n_frames_pd = 10;
using ClusterType = Cluster<int32_t, 3, 3>;
ClusterFinderMTWrapper<ClusterType> cf(
{static_cast<int64_t>(file.rows()), static_cast<int64_t>(file.cols())},
5, 2000, n_threads); // no idea what frame type is!!! default uint16_t
CHECK(cf.get_m_input_queues_size() == n_threads);
CHECK(cf.get_m_output_queues_size() == n_threads);
CHECK(cf.get_m_cluster_finders_size() == n_threads);
CHECK(cf.m_output_queues_are_empty() == true);
CHECK(cf.m_input_queues_are_empty() == true);
for (size_t i = 0; i < n_frames_pd; ++i) {
cf.find_clusters(file.read_frame().view<uint16_t>());
}
cf.stop();
CHECK(cf.m_output_queues_are_empty() == true);
CHECK(cf.m_input_queues_are_empty() == true);
CHECK(cf.m_sink_size() == n_frames_pd);
ClusterCollector<ClusterType> clustercollector(&cf);
clustercollector.stop();
CHECK(cf.m_sink_size() == 0);
auto clustervec = clustercollector.steal_clusters();
// CHECK(clustervec.size() == ) //dont know how many clusters to expect
}

View File

@@ -1,21 +1,52 @@
#include <cstdint>
#include "aare/ClusterVector.hpp"
#include <cstdint>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
using aare::Cluster;
using aare::ClusterVector;
struct Cluster_i2x2 {
int16_t x;
int16_t y;
int32_t data[4];
};
TEST_CASE("item_size return the size of the cluster stored") {
using C1 = Cluster<int32_t, 2, 2>;
ClusterVector<C1> cv(4);
CHECK(cv.item_size() == sizeof(C1));
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read") {
// Sanity check
// 2*2*4 = 16 bytes of data for the cluster
// 2*2 = 4 bytes for the x and y coordinates
REQUIRE(cv.item_size() == 20);
ClusterVector<int32_t> cv(2, 2, 4);
using C2 = Cluster<int32_t, 3, 3>;
ClusterVector<C2> cv2(4);
CHECK(cv2.item_size() == sizeof(C2));
using C3 = Cluster<double, 2, 3>;
ClusterVector<C3> cv3(4);
CHECK(cv3.item_size() == sizeof(C3));
using C4 = Cluster<char, 10, 5>;
ClusterVector<C4> cv4(4);
CHECK(cv4.item_size() == sizeof(C4));
using C5 = Cluster<int32_t, 2, 3>;
ClusterVector<C5> cv5(4);
CHECK(cv5.item_size() == sizeof(C5));
using C6 = Cluster<double, 5, 5>;
ClusterVector<C6> cv6(4);
CHECK(cv6.item_size() == sizeof(C6));
using C7 = Cluster<double, 3, 3>;
ClusterVector<C7> cv7(4);
CHECK(cv7.item_size() == sizeof(C7));
}
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv(4);
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
@@ -23,112 +54,102 @@ TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read") {
// int16_t, int16_t, 2x2 int32_t = 20 bytes
REQUIRE(cv.item_size() == 20);
//Create a cluster and push back into the vector
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
// Create a cluster and push back into the vector
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1);
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 4);
//Read the cluster back out using copy. TODO! Can we improve the API?
Cluster_i2x2 c2;
std::byte *ptr = cv.element_ptr(0);
std::copy(ptr, ptr + cv.item_size(), reinterpret_cast<std::byte*>(&c2));
auto c2 = cv[0];
//Check that the data is the same
// Check that the data is the same
REQUIRE(c1.x == c2.x);
REQUIRE(c1.y == c2.y);
for(size_t i = 0; i < 4; i++) {
for (size_t i = 0; i < 4; i++) {
REQUIRE(c1.data[i] == c2.data[i]);
}
}
TEST_CASE("Summing 3x1 clusters of int64"){
struct Cluster_l3x1{
int16_t x;
int16_t y;
int32_t data[3];
};
ClusterVector<int32_t> cv(3, 1, 2);
TEST_CASE("Summing 3x1 clusters of int64", "[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 3, 1>> cv(2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 3);
REQUIRE(cv.cluster_size_y() == 1);
//Create a cluster and push back into the vector
Cluster_l3x1 c1 = {1, 2, {3, 4, 5}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
// Create a cluster and push back into the vector
Cluster<int32_t, 3, 1> c1 = {1, 2, {3, 4, 5}};
cv.push_back(c1);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 1);
Cluster_l3x1 c2 = {6, 7, {8, 9, 10}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
Cluster<int32_t, 3, 1> c2 = {6, 7, {8, 9, 10}};
cv.push_back(c2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 2);
Cluster_l3x1 c3 = {11, 12, {13, 14, 15}};
cv.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
Cluster<int32_t, 3, 1> c3 = {11, 12, {13, 14, 15}};
cv.push_back(c3);
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 3);
/*
auto sums = cv.sum();
REQUIRE(sums.size() == 3);
REQUIRE(sums[0] == 12);
REQUIRE(sums[1] == 27);
REQUIRE(sums[2] == 42);
*/
}
TEST_CASE("Storing floats"){
struct Cluster_f4x2{
int16_t x;
int16_t y;
float data[8];
};
ClusterVector<float> cv(2, 4, 10);
TEST_CASE("Storing floats", "[.ClusterVector]") {
ClusterVector<Cluster<float, 2, 4>> cv(10);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
REQUIRE(cv.cluster_size_y() == 4);
//Create a cluster and push back into the vector
Cluster_f4x2 c1 = {1, 2, {3.0, 4.0, 5.0, 6.0,3.0, 4.0, 5.0, 6.0}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
// Create a cluster and push back into the vector
Cluster<float, 2, 4> c1 = {1, 2, {3.0, 4.0, 5.0, 6.0, 3.0, 4.0, 5.0, 6.0}};
cv.push_back(c1);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 1);
Cluster_f4x2 c2 = {6, 7, {8.0, 9.0, 10.0, 11.0,8.0, 9.0, 10.0, 11.0}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
Cluster<float, 2, 4> c2 = {
6, 7, {8.0, 9.0, 10.0, 11.0, 8.0, 9.0, 10.0, 11.0}};
cv.push_back(c2);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 2);
/*
auto sums = cv.sum();
REQUIRE(sums.size() == 2);
REQUIRE_THAT(sums[0], Catch::Matchers::WithinAbs(36.0, 1e-6));
REQUIRE_THAT(sums[1], Catch::Matchers::WithinAbs(76.0, 1e-6));
*/
}
TEST_CASE("Push back more than initial capacity"){
ClusterVector<int32_t> cv(2, 2, 2);
TEST_CASE("Push back more than initial capacity", "[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv(2);
auto initial_data = cv.data();
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1);
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 2);
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv.push_back(c2);
REQUIRE(cv.size() == 2);
REQUIRE(cv.capacity() == 2);
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
cv.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
REQUIRE(cv.size() == 3);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv.push_back(c3);
REQUIRE(cv.size() == 3);
REQUIRE(cv.capacity() == 4);
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv.data());
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
@@ -136,29 +157,31 @@ TEST_CASE("Push back more than initial capacity"){
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
//We should have allocated a new buffer, since we outgrew the initial capacity
// We should have allocated a new buffer, since we outgrew the initial
// capacity
REQUIRE(initial_data != cv.data());
}
TEST_CASE("Concatenate two cluster vectors where the first has enough capacity"){
ClusterVector<int32_t> cv1(2, 2, 12);
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
TEST_CASE("Concatenate two cluster vectors where the first has enough capacity",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv1(12);
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1);
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2);
ClusterVector<int32_t> cv2(2, 2, 2);
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
Cluster_i2x2 c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4.x, c4.y, reinterpret_cast<std::byte*>(&c4.data[0]));
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3);
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4);
cv1 += cv2;
REQUIRE(cv1.size() == 4);
REQUIRE(cv1.capacity() == 12);
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv1.data());
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
@@ -169,24 +192,26 @@ TEST_CASE("Concatenate two cluster vectors where the first has enough capacity")
REQUIRE(ptr[3].y == 17);
}
TEST_CASE("Concatenate two cluster vectors where we need to allocate"){
ClusterVector<int32_t> cv1(2, 2, 2);
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
TEST_CASE("Concatenate two cluster vectors where we need to allocate",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv1(2);
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1);
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2);
ClusterVector<int32_t> cv2(2, 2, 2);
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
Cluster_i2x2 c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4.x, c4.y, reinterpret_cast<std::byte*>(&c4.data[0]));
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3);
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4);
cv1 += cv2;
REQUIRE(cv1.size() == 4);
REQUIRE(cv1.capacity() == 4);
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv1.data());
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
@@ -195,4 +220,49 @@ TEST_CASE("Concatenate two cluster vectors where we need to allocate"){
REQUIRE(ptr[2].y == 12);
REQUIRE(ptr[3].x == 16);
REQUIRE(ptr[3].y == 17);
}
struct ClusterTestData {
uint8_t ClusterSizeX;
uint8_t ClusterSizeY;
std::vector<int64_t> index_map_x;
std::vector<int64_t> index_map_y;
};
TEST_CASE("Gain Map Calculation Index Map", "[.ClusterVector][.gain_map]") {
auto clustertestdata = GENERATE(
ClusterTestData{3,
3,
{-1, 0, 1, -1, 0, 1, -1, 0, 1},
{-1, -1, -1, 0, 0, 0, 1, 1, 1}},
ClusterTestData{
4,
4,
{-2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1},
{-2, -2, -2, -2, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1}},
ClusterTestData{2, 2, {-1, 0, -1, 0}, {-1, -1, 0, 0}},
ClusterTestData{5,
5,
{-2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0,
1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2},
{-2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2}});
uint8_t ClusterSizeX = clustertestdata.ClusterSizeX;
uint8_t ClusterSizeY = clustertestdata.ClusterSizeY;
std::vector<int64_t> index_map_x(ClusterSizeX * ClusterSizeY);
std::vector<int64_t> index_map_y(ClusterSizeX * ClusterSizeY);
int64_t index_cluster_center_x = ClusterSizeX / 2;
int64_t index_cluster_center_y = ClusterSizeY / 2;
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
index_map_x[j] = j % ClusterSizeX - index_cluster_center_x;
index_map_y[j] = j / ClusterSizeX - index_cluster_center_y;
}
CHECK(index_map_x == clustertestdata.index_map_x);
CHECK(index_map_y == clustertestdata.index_map_y);
}

View File

@@ -1,11 +1,11 @@
#include "aare/Interpolator.hpp"
#include "aare/algorithm.hpp"
namespace aare {
Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins)
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins), m_energy_bins(ebins) {
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins),
m_energy_bins(ebins) {
if (etacube.shape(0) != xbins.size() || etacube.shape(1) != ybins.size() ||
etacube.shape(2) != ebins.size()) {
throw std::invalid_argument(
@@ -53,87 +53,4 @@ Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
}
}
std::vector<Photon> Interpolator::interpolate(const ClusterVector<int32_t>& clusters) {
std::vector<Photon> photons;
photons.reserve(clusters.size());
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (size_t i = 0; i<clusters.size(); i++){
auto cluster = clusters.at<Cluster3x3>(i);
Eta2 eta= calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
//Finding the index of the last element that is smaller
//should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
double dX{}, dY{};
// cBottomLeft = 0,
// cBottomRight = 1,
// cTopLeft = 2,
// cTopRight = 3
switch (eta.c) {
case cTopLeft:
dX = -1.;
dY = 0.;
break;
case cTopRight:;
dX = 0.;
dY = 0.;
break;
case cBottomLeft:
dX = -1.;
dY = -1.;
break;
case cBottomRight:
dX = 0.;
dY = -1.;
break;
}
photon.x += m_ietax(ix, iy, ie)*2 + dX;
photon.y += m_ietay(ix, iy, ie)*2 + dY;
photons.push_back(photon);
}
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
for (size_t i = 0; i<clusters.size(); i++){
auto cluster = clusters.at<Cluster2x2>(i);
Eta2 eta= calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
//Now do some actual interpolation.
//Find which energy bin the cluster is in
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
//Finding the index of the last element that is smaller
//should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
photon.x += m_ietax(ix, iy, ie)*2; //eta goes between 0 and 1 but we could move the hit anywhere in the 2x2
photon.y += m_ietay(ix, iy, ie)*2;
photons.push_back(photon);
}
}else{
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported for interpolation");
}
return photons;
}
} // namespace aare

View File

@@ -1,8 +1,7 @@
#include <catch2/catch_test_macros.hpp>
#include <aare/algorithm.hpp>
#include <catch2/catch_test_macros.hpp>
TEST_CASE("Find the closed index in a 1D array", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
@@ -17,7 +16,7 @@ TEST_CASE("Find the closed index in a 1D array", "[algorithm]") {
REQUIRE(aare::nearest_index(arr, -1.0) == 0);
}
TEST_CASE("Passing integers to nearest_index works", "[algorithm]"){
TEST_CASE("Passing integers to nearest_index works", "[algorithm]") {
aare::NDArray<int, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
@@ -30,8 +29,7 @@ TEST_CASE("Passing integers to nearest_index works", "[algorithm]"){
REQUIRE(aare::nearest_index(arr, -1) == 0);
}
TEST_CASE("nearest_index works with std::vector", "[algorithm]"){
TEST_CASE("nearest_index works with std::vector", "[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(vec, 2.123) == 2);
REQUIRE(aare::nearest_index(vec, 2.66) == 3);
@@ -40,7 +38,7 @@ TEST_CASE("nearest_index works with std::vector", "[algorithm]"){
REQUIRE(aare::nearest_index(vec, -10.0) == 0);
}
TEST_CASE("nearest index works with std::array", "[algorithm]"){
TEST_CASE("nearest index works with std::array", "[algorithm]") {
std::array<double, 5> arr = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(arr, 2.123) == 2);
REQUIRE(aare::nearest_index(arr, 2.501) == 3);
@@ -49,18 +47,20 @@ TEST_CASE("nearest index works with std::array", "[algorithm]"){
REQUIRE(aare::nearest_index(arr, -10.0) == 0);
}
TEST_CASE("nearest index when there is no different uses the first element", "[algorithm]"){
TEST_CASE("nearest index when there is no different uses the first element",
"[algorithm]") {
std::vector<int> vec = {5, 5, 5, 5, 5};
REQUIRE(aare::nearest_index(vec, 5) == 0);
}
TEST_CASE("nearest index when there is no different uses the first element also when all smaller", "[algorithm]"){
TEST_CASE("nearest index when there is no different uses the first element "
"also when all smaller",
"[algorithm]") {
std::vector<int> vec = {5, 5, 5, 5, 5};
REQUIRE(aare::nearest_index(vec, 10) == 0);
}
TEST_CASE("last smaller", "[algorithm]"){
TEST_CASE("last smaller", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
@@ -72,17 +72,17 @@ TEST_CASE("last smaller", "[algorithm]"){
REQUIRE(aare::last_smaller(arr, 253.) == 4);
}
TEST_CASE("returns last bin strictly smaller", "[algorithm]"){
TEST_CASE("returns last bin strictly smaller", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, 2.0) == 1);
}
TEST_CASE("last_smaller with all elements smaller returns last element", "[algorithm]"){
TEST_CASE("last_smaller with all elements smaller returns last element",
"[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
@@ -91,7 +91,8 @@ TEST_CASE("last_smaller with all elements smaller returns last element", "[algor
REQUIRE(aare::last_smaller(arr, 50.) == 4);
}
TEST_CASE("last_smaller with all elements bigger returns first element", "[algorithm]"){
TEST_CASE("last_smaller with all elements bigger returns first element",
"[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
@@ -100,38 +101,41 @@ TEST_CASE("last_smaller with all elements bigger returns first element", "[algor
REQUIRE(aare::last_smaller(arr, -50.) == 0);
}
TEST_CASE("last smaller with all elements equal returns the first element", "[algorithm]"){
std::vector<int> vec = {5,5,5,5,5,5,5};
TEST_CASE("last smaller with all elements equal returns the first element",
"[algorithm]") {
std::vector<int> vec = {5, 5, 5, 5, 5, 5, 5};
REQUIRE(aare::last_smaller(vec, 5) == 0);
}
TEST_CASE("first_lager with vector", "[algorithm]"){
TEST_CASE("first_lager with vector", "[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, 2.5) == 3);
}
TEST_CASE("first_lager with all elements smaller returns last element", "[algorithm]"){
TEST_CASE("first_lager with all elements smaller returns last element",
"[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, 50.) == 4);
}
TEST_CASE("first_lager with all elements bigger returns first element", "[algorithm]"){
TEST_CASE("first_lager with all elements bigger returns first element",
"[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, -50.) == 0);
}
TEST_CASE("first_lager with all elements the same as the check returns last", "[algorithm]"){
TEST_CASE("first_lager with all elements the same as the check returns last",
"[algorithm]") {
std::vector<int> vec = {14, 14, 14, 14, 14};
REQUIRE(aare::first_larger(vec, 14) == 4);
}
TEST_CASE("first larger with the same element", "[algorithm]"){
std::vector<int> vec = {7,8,9,10,11};
TEST_CASE("first larger with the same element", "[algorithm]") {
std::vector<int> vec = {7, 8, 9, 10, 11};
REQUIRE(aare::first_larger(vec, 9) == 3);
}
TEST_CASE("cumsum works", "[algorithm]"){
TEST_CASE("cumsum works", "[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == vec.size());
@@ -141,12 +145,12 @@ TEST_CASE("cumsum works", "[algorithm]"){
REQUIRE(result[3] == 6);
REQUIRE(result[4] == 10);
}
TEST_CASE("cumsum works with empty vector", "[algorithm]"){
TEST_CASE("cumsum works with empty vector", "[algorithm]") {
std::vector<double> vec = {};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == 0);
}
TEST_CASE("cumsum works with negative numbers", "[algorithm]"){
TEST_CASE("cumsum works with negative numbers", "[algorithm]") {
std::vector<double> vec = {0, -1, -2, -3, -4};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == vec.size());
@@ -156,4 +160,3 @@ TEST_CASE("cumsum works with negative numbers", "[algorithm]"){
REQUIRE(result[3] == -6);
REQUIRE(result[4] == -10);
}