mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-04-20 05:40:03 +02:00
removed cluster_2x2 and cluster3x3 specializations
All checks were successful
Build on RHEL9 / buildh (push) Successful in 1m58s
All checks were successful
Build on RHEL9 / buildh (push) Successful in 1m58s
This commit is contained in:
parent
14211047ff
commit
c49a2fdf8e
@ -16,33 +16,43 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = int16_t>
|
||||
constexpr bool is_valid_cluster =
|
||||
std::is_arithmetic_v<T> && std::is_integral_v<CoordType> &&
|
||||
(ClusterSizeX > 0) && (ClusterSizeY > 0);
|
||||
|
||||
// requires clause c++20 maybe update
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = int16_t,
|
||||
typename Enable = std::enable_if_t<
|
||||
is_valid_cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>>
|
||||
typename CoordType = int16_t>
|
||||
struct Cluster {
|
||||
|
||||
static_assert(std::is_arithmetic_v<T>, "T needs to be an arithmetic type");
|
||||
static_assert(std::is_integral_v<CoordType>,
|
||||
"CoordType needs to be an integral type");
|
||||
static_assert(ClusterSizeX > 0 && ClusterSizeY > 0,
|
||||
"Cluster sizes must be bigger than zero");
|
||||
|
||||
CoordType x;
|
||||
CoordType y;
|
||||
T data[ClusterSizeX * ClusterSizeY];
|
||||
std::array<T, ClusterSizeX * ClusterSizeY> data;
|
||||
|
||||
static constexpr uint8_t cluster_size_x = ClusterSizeX;
|
||||
static constexpr uint8_t cluster_size_y = ClusterSizeY;
|
||||
using value_type = T;
|
||||
using coord_type = CoordType;
|
||||
|
||||
T sum() const {
|
||||
return std::accumulate(data, data + ClusterSizeX * ClusterSizeY, 0);
|
||||
}
|
||||
T sum() const { return std::accumulate(data.begin(), data.end(), T{}); }
|
||||
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
|
||||
if constexpr (cluster_size_x == 3 && cluster_size_y == 3) {
|
||||
std::array<T, 4> sum_2x2_subclusters;
|
||||
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
|
||||
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
|
||||
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
|
||||
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
|
||||
int index = std::max_element(sum_2x2_subclusters.begin(),
|
||||
sum_2x2_subclusters.end()) -
|
||||
sum_2x2_subclusters.begin();
|
||||
return std::make_pair(sum_2x2_subclusters[index], index);
|
||||
} else if constexpr (cluster_size_x == 2 && cluster_size_y == 2) {
|
||||
return std::make_pair(data[0] + data[1] + data[2] + data[3], 0);
|
||||
} else {
|
||||
constexpr size_t num_2x2_subclusters =
|
||||
(ClusterSizeX - 1) * (ClusterSizeY - 1);
|
||||
|
||||
@ -61,49 +71,6 @@ struct Cluster {
|
||||
sum_2x2_subcluster.begin();
|
||||
return std::make_pair(sum_2x2_subcluster[index], index);
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization for 2x2 clusters (only one sum exists)
|
||||
template <typename T> struct Cluster<T, 2, 2, int16_t> {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
T data[4];
|
||||
|
||||
static constexpr uint8_t cluster_size_x = 2;
|
||||
static constexpr uint8_t cluster_size_y = 2;
|
||||
using value_type = T;
|
||||
using coord_type = int16_t;
|
||||
|
||||
T sum() const { return std::accumulate(data, data + 4, 0); }
|
||||
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
return std::make_pair(data[0] + data[1] + data[2] + data[3],
|
||||
0); // Only one possible 2x2 sum
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization for 3x3 clusters
|
||||
template <typename T> struct Cluster<T, 3, 3, int16_t> {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
T data[9];
|
||||
static constexpr uint8_t cluster_size_x = 3;
|
||||
static constexpr uint8_t cluster_size_y = 3;
|
||||
using value_type = T;
|
||||
using coord_type = int16_t;
|
||||
|
||||
T sum() const { return std::accumulate(data, data + 9, 0); }
|
||||
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
std::array<T, 4> sum_2x2_subclusters;
|
||||
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
|
||||
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
|
||||
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
|
||||
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
|
||||
int index = std::max_element(sum_2x2_subclusters.begin(),
|
||||
sum_2x2_subclusters.end()) -
|
||||
sum_2x2_subclusters.begin();
|
||||
return std::make_pair(sum_2x2_subclusters[index], index);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -77,7 +77,6 @@ class ClusterFinder {
|
||||
int has_center_pixel_y = ClusterSizeY % 2;
|
||||
|
||||
m_clusters.set_frame_number(frame_number);
|
||||
std::vector<CT> cluster_data(ClusterSizeX * ClusterSizeY);
|
||||
for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
|
||||
@ -124,8 +123,9 @@ class ClusterFinder {
|
||||
|
||||
// Store cluster
|
||||
if (value == max) {
|
||||
// Zero out the cluster data
|
||||
std::fill(cluster_data.begin(), cluster_data.end(), 0);
|
||||
ClusterType cluster{};
|
||||
cluster.x = ix;
|
||||
cluster.y = iy;
|
||||
|
||||
// Fill the cluster data since we have a photon to store
|
||||
// It's worth redoing the look since most of the time we
|
||||
@ -139,20 +139,15 @@ class ClusterFinder {
|
||||
static_cast<CT>(frame(iy + ir, ix + ic)) -
|
||||
static_cast<CT>(
|
||||
m_pedestal.mean(iy + ir, ix + ic));
|
||||
cluster_data[i] =
|
||||
cluster.data[i] =
|
||||
tmp; // Watch for out of bounds access
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ClusterType new_cluster{};
|
||||
new_cluster.x = ix;
|
||||
new_cluster.y = iy;
|
||||
std::copy(cluster_data.begin(), cluster_data.end(),
|
||||
new_cluster.data);
|
||||
// Add the cluster to the output ClusterVector
|
||||
m_clusters.push_back(new_cluster);
|
||||
m_clusters.push_back(cluster);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -44,9 +44,8 @@ class GainMap {
|
||||
cl.data[j] = cl.data[j] * static_cast<T>(m_gain_map(y, x));
|
||||
}
|
||||
} else {
|
||||
memset(cl.data, 0,
|
||||
ClusterSizeX * ClusterSizeY *
|
||||
sizeof(T)); // clear edge clusters
|
||||
// clear edge clusters
|
||||
cl.data.fill(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -21,16 +21,14 @@ using namespace aare;
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterVector(py::module &m, const std::string &typestr) {
|
||||
using ClusterType =
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>;
|
||||
using ClusterType = Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
auto class_name = fmt::format("ClusterVector_{}", typestr);
|
||||
|
||||
py::class_<ClusterVector<
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>, void>>(
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>, void>>(
|
||||
m, class_name.c_str(),
|
||||
py::buffer_protocol())
|
||||
|
||||
@ -41,7 +39,8 @@ void define_ClusterVector(py::module &m, const std::string &typestr) {
|
||||
self.push_back(cluster);
|
||||
})
|
||||
|
||||
.def("sum", [](ClusterVector<ClusterType> &self) {
|
||||
.def("sum",
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<Type>(self.sum());
|
||||
return return_vector(vec);
|
||||
})
|
||||
@ -75,7 +74,6 @@ void define_ClusterVector(py::module &m, const std::string &typestr) {
|
||||
// Free functions using ClusterVector
|
||||
m.def("hitmap",
|
||||
[](std::array<size_t, 2> image_size, ClusterVector<ClusterType> &cv) {
|
||||
|
||||
// Create a numpy array to hold the hitmap
|
||||
// The shape of the array is (image_size[0], image_size[1])
|
||||
// note that the python array is passed as [row, col] which
|
||||
@ -88,7 +86,6 @@ void define_ClusterVector(py::module &m, const std::string &typestr) {
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
r(i, j) = 0;
|
||||
|
||||
|
||||
// Loop over the clusters and increment the hitmap
|
||||
// Skip out of bound clusters
|
||||
for (const auto &cluster : cv) {
|
||||
|
@ -26,17 +26,18 @@ template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
void define_cluster(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("Cluster{}", typestr);
|
||||
|
||||
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>>(
|
||||
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>>(
|
||||
m, class_name.c_str(), py::buffer_protocol())
|
||||
|
||||
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
|
||||
py::buffer_info buf_info = data.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void> cluster;
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType> cluster;
|
||||
cluster.x = x;
|
||||
cluster.y = y;
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
|
||||
cluster.data); // Copy array contents
|
||||
auto r = data.template unchecked<1>(); // no bounds checks
|
||||
for (py::ssize_t i = 0; i < data.size(); ++i) {
|
||||
cluster.data[i] = r(i);
|
||||
}
|
||||
return cluster;
|
||||
}));
|
||||
|
||||
@ -64,9 +65,6 @@ void define_cluster(py::module &m, const std::string &typestr) {
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_cluster_finder_mt_bindings(py::module &m,
|
||||
@ -206,6 +204,5 @@ void define_cluster_finder_bindings(py::module &m, const std::string &typestr) {
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0);
|
||||
|
||||
}
|
||||
#pragma GCC diagnostic pop
|
||||
|
@ -14,19 +14,6 @@
|
||||
|
||||
using namespace aare;
|
||||
|
||||
TEST_CASE("Correct Instantiation of Cluster and ClusterVector",
|
||||
"[.cluster][.instantiation]") {
|
||||
|
||||
CHECK(is_valid_cluster<double, 3, 3>);
|
||||
CHECK(is_valid_cluster<double, 3, 2>);
|
||||
CHECK(not is_valid_cluster<int, 0, 0>);
|
||||
CHECK(not is_valid_cluster<std::string, 2, 2>);
|
||||
CHECK(not is_valid_cluster<int, 2, 2, double>);
|
||||
|
||||
CHECK(not is_cluster_v<int>);
|
||||
CHECK(is_cluster_v<Cluster<int, 3, 3>>);
|
||||
}
|
||||
|
||||
TEST_CASE("Test sum of Cluster", "[.cluster]") {
|
||||
Cluster<int, 2, 2> cluster{0, 0, {1, 2, 3, 4}};
|
||||
|
||||
|
@ -311,18 +311,18 @@ TEST_CASE("Write cluster with potential padding", "[.files][.ClusterFile]") {
|
||||
|
||||
CHECK(read_cluster_vector.at(0).x == clustervec.at(0).x);
|
||||
CHECK(read_cluster_vector.at(0).y == clustervec.at(0).y);
|
||||
CHECK(std::equal(clustervec.at(0).data, clustervec.at(0).data + 9,
|
||||
read_cluster_vector.at(0).data, [](double a, double b) {
|
||||
return std::abs(a - b) <
|
||||
std::numeric_limits<double>::epsilon();
|
||||
CHECK(std::equal(
|
||||
clustervec.at(0).data.begin(), clustervec.at(0).data.end(),
|
||||
read_cluster_vector.at(0).data.begin(), [](double a, double b) {
|
||||
return std::abs(a - b) < std::numeric_limits<double>::epsilon();
|
||||
}));
|
||||
|
||||
CHECK(read_cluster_vector.at(1).x == clustervec.at(1).x);
|
||||
CHECK(read_cluster_vector.at(1).y == clustervec.at(1).y);
|
||||
CHECK(std::equal(clustervec.at(1).data, std::end(clustervec.at(1).data),
|
||||
read_cluster_vector.at(1).data, [](double a, double b) {
|
||||
return std::abs(a - b) <
|
||||
std::numeric_limits<double>::epsilon();
|
||||
CHECK(std::equal(
|
||||
clustervec.at(1).data.begin(), clustervec.at(1).data.end(),
|
||||
read_cluster_vector.at(1).data.begin(), [](double a, double b) {
|
||||
return std::abs(a - b) < std::numeric_limits<double>::epsilon();
|
||||
}));
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user