mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-05 12:30:39 +02:00
Merge branch 'developer' into feature/remove-templates
This commit is contained in:
commit
c1ddb84bc0
@ -18,6 +18,8 @@ endif()
|
||||
if(AARE_TESTS)
|
||||
set(TestSources
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ProducerConsumerQueue.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/CircularFifo.test.cpp
|
||||
)
|
||||
target_sources(tests PRIVATE ${TestSources} )
|
||||
target_link_libraries(tests PRIVATE core)
|
||||
|
112
core/include/aare/CircularFifo.hpp
Normal file
112
core/include/aare/CircularFifo.hpp
Normal file
@ -0,0 +1,112 @@
|
||||
#pragma once
|
||||
|
||||
#include <chrono>
|
||||
#include <fmt/color.h>
|
||||
#include <fmt/format.h>
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <class ItemType> class CircularFifo {
|
||||
uint32_t fifo_size;
|
||||
folly::ProducerConsumerQueue<ItemType> free_slots;
|
||||
folly::ProducerConsumerQueue<ItemType> filled_slots;
|
||||
|
||||
public:
|
||||
CircularFifo() : CircularFifo(100){};
|
||||
CircularFifo(uint32_t size)
|
||||
: fifo_size(size), free_slots(size+1), filled_slots(size+1) {
|
||||
|
||||
// TODO! how do we deal with alignment for writing? alignas???
|
||||
// Do we give the user a chance to provide memory locations?
|
||||
// Templated allocator?
|
||||
for (size_t i = 0; i < fifo_size; ++i) {
|
||||
free_slots.write(ItemType{});
|
||||
}
|
||||
}
|
||||
|
||||
bool next(){
|
||||
//TODO! avoid default constructing ItemType
|
||||
ItemType it;
|
||||
if(!filled_slots.read(it))
|
||||
return false;
|
||||
if(!free_slots.write(std::move(it)))
|
||||
return false;
|
||||
return true;
|
||||
|
||||
}
|
||||
|
||||
~CircularFifo() {}
|
||||
|
||||
using value_type = ItemType;
|
||||
|
||||
auto numFilledSlots() const noexcept { return filled_slots.sizeGuess(); }
|
||||
auto numFreeSlots() const noexcept { return free_slots.sizeGuess(); }
|
||||
auto isFull() const noexcept { return filled_slots.isFull(); }
|
||||
|
||||
ItemType pop_free() {
|
||||
ItemType v;
|
||||
while (!free_slots.read(v))
|
||||
;
|
||||
return std::move(v);
|
||||
// return v;
|
||||
}
|
||||
|
||||
bool try_pop_free(ItemType& v){
|
||||
return free_slots.read(v);
|
||||
}
|
||||
|
||||
ItemType pop_value(std::chrono::nanoseconds wait,
|
||||
std::atomic<bool> &stopped) {
|
||||
ItemType v;
|
||||
while (!filled_slots.read(v) && !stopped) {
|
||||
std::this_thread::sleep_for(wait);
|
||||
}
|
||||
return std::move(v);
|
||||
}
|
||||
|
||||
ItemType pop_value() {
|
||||
ItemType v;
|
||||
while (!filled_slots.read(v))
|
||||
;
|
||||
return std::move(v);
|
||||
}
|
||||
|
||||
ItemType* frontPtr(){
|
||||
return filled_slots.frontPtr();
|
||||
}
|
||||
|
||||
// TODO! Add function to move item from filled to free to be used
|
||||
// with the frontPtr function
|
||||
|
||||
|
||||
template <class... Args>
|
||||
void push_value(Args&&... recordArgs) {
|
||||
while (!filled_slots.write(std::forward<Args>(recordArgs)...))
|
||||
;
|
||||
}
|
||||
|
||||
template <class... Args>
|
||||
bool try_push_value(Args&&... recordArgs) {
|
||||
return filled_slots.write(std::forward<Args>(recordArgs)...);
|
||||
|
||||
}
|
||||
|
||||
template <class... Args>
|
||||
void push_free(Args&&... recordArgs) {
|
||||
while (!free_slots.write(std::forward<Args>(recordArgs)...))
|
||||
;
|
||||
}
|
||||
|
||||
template <class... Args>
|
||||
bool try_push_free(Args&&... recordArgs) {
|
||||
return free_slots.write(std::forward<Args>(recordArgs)...);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // namespace aare
|
188
core/include/aare/ProducerConsumerQueue.hpp
Normal file
188
core/include/aare/ProducerConsumerQueue.hpp
Normal file
@ -0,0 +1,188 @@
|
||||
/*
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
// @author Bo Hu (bhu@fb.com)
|
||||
// @author Jordan DeLong (delong.j@fb.com)
|
||||
|
||||
// Changes made by PSD Detector Group:
|
||||
// Copied: Line 34 constexpr std::size_t hardware_destructive_interference_size = 128; from folly/lang/Align.h
|
||||
// Changed extension to .hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <cassert>
|
||||
#include <cstdlib>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
constexpr std::size_t hardware_destructive_interference_size = 128;
|
||||
namespace folly {
|
||||
|
||||
/*
|
||||
* ProducerConsumerQueue is a one producer and one consumer queue
|
||||
* without locks.
|
||||
*/
|
||||
template <class T>
|
||||
struct ProducerConsumerQueue {
|
||||
typedef T value_type;
|
||||
|
||||
ProducerConsumerQueue(const ProducerConsumerQueue&) = delete;
|
||||
ProducerConsumerQueue& operator=(const ProducerConsumerQueue&) = delete;
|
||||
|
||||
// size must be >= 2.
|
||||
//
|
||||
// Also, note that the number of usable slots in the queue at any
|
||||
// given time is actually (size-1), so if you start with an empty queue,
|
||||
// isFull() will return true after size-1 insertions.
|
||||
explicit ProducerConsumerQueue(uint32_t size)
|
||||
: size_(size),
|
||||
records_(static_cast<T*>(std::malloc(sizeof(T) * size))),
|
||||
readIndex_(0),
|
||||
writeIndex_(0) {
|
||||
assert(size >= 2);
|
||||
if (!records_) {
|
||||
throw std::bad_alloc();
|
||||
}
|
||||
}
|
||||
|
||||
~ProducerConsumerQueue() {
|
||||
// We need to destruct anything that may still exist in our queue.
|
||||
// (No real synchronization needed at destructor time: only one
|
||||
// thread can be doing this.)
|
||||
if (!std::is_trivially_destructible<T>::value) {
|
||||
size_t readIndex = readIndex_;
|
||||
size_t endIndex = writeIndex_;
|
||||
while (readIndex != endIndex) {
|
||||
records_[readIndex].~T();
|
||||
if (++readIndex == size_) {
|
||||
readIndex = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::free(records_);
|
||||
}
|
||||
|
||||
template <class... Args>
|
||||
bool write(Args&&... recordArgs) {
|
||||
auto const currentWrite = writeIndex_.load(std::memory_order_relaxed);
|
||||
auto nextRecord = currentWrite + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
|
||||
new (&records_[currentWrite]) T(std::forward<Args>(recordArgs)...);
|
||||
writeIndex_.store(nextRecord, std::memory_order_release);
|
||||
return true;
|
||||
}
|
||||
|
||||
// queue is full
|
||||
return false;
|
||||
}
|
||||
|
||||
// move (or copy) the value at the front of the queue to given variable
|
||||
bool read(T& record) {
|
||||
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
|
||||
if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
|
||||
// queue is empty
|
||||
return false;
|
||||
}
|
||||
|
||||
auto nextRecord = currentRead + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
record = std::move(records_[currentRead]);
|
||||
records_[currentRead].~T();
|
||||
readIndex_.store(nextRecord, std::memory_order_release);
|
||||
return true;
|
||||
}
|
||||
|
||||
// pointer to the value at the front of the queue (for use in-place) or
|
||||
// nullptr if empty.
|
||||
T* frontPtr() {
|
||||
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
|
||||
if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
|
||||
// queue is empty
|
||||
return nullptr;
|
||||
}
|
||||
return &records_[currentRead];
|
||||
}
|
||||
|
||||
// queue must not be empty
|
||||
void popFront() {
|
||||
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
|
||||
assert(currentRead != writeIndex_.load(std::memory_order_acquire));
|
||||
|
||||
auto nextRecord = currentRead + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
records_[currentRead].~T();
|
||||
readIndex_.store(nextRecord, std::memory_order_release);
|
||||
}
|
||||
|
||||
bool isEmpty() const {
|
||||
return readIndex_.load(std::memory_order_acquire) ==
|
||||
writeIndex_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
bool isFull() const {
|
||||
auto nextRecord = writeIndex_.load(std::memory_order_acquire) + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
|
||||
return false;
|
||||
}
|
||||
// queue is full
|
||||
return true;
|
||||
}
|
||||
|
||||
// * If called by consumer, then true size may be more (because producer may
|
||||
// be adding items concurrently).
|
||||
// * If called by producer, then true size may be less (because consumer may
|
||||
// be removing items concurrently).
|
||||
// * It is undefined to call this from any other thread.
|
||||
size_t sizeGuess() const {
|
||||
int ret = writeIndex_.load(std::memory_order_acquire) -
|
||||
readIndex_.load(std::memory_order_acquire);
|
||||
if (ret < 0) {
|
||||
ret += size_;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// maximum number of items in the queue.
|
||||
size_t capacity() const { return size_ - 1; }
|
||||
|
||||
private:
|
||||
using AtomicIndex = std::atomic<unsigned int>;
|
||||
|
||||
char pad0_[hardware_destructive_interference_size];
|
||||
const uint32_t size_;
|
||||
T* const records_;
|
||||
|
||||
alignas(hardware_destructive_interference_size) AtomicIndex readIndex_;
|
||||
alignas(hardware_destructive_interference_size) AtomicIndex writeIndex_;
|
||||
|
||||
char pad1_[hardware_destructive_interference_size - sizeof(AtomicIndex)];
|
||||
};
|
||||
|
||||
} // namespace folly
|
310
core/include/aare/VariableSizeClusterFinder.hpp
Normal file
310
core/include/aare/VariableSizeClusterFinder.hpp
Normal file
@ -0,0 +1,310 @@
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
|
||||
#include "aare/ImageData.hpp"
|
||||
|
||||
const int MAX_CLUSTER_SIZE = 200;
|
||||
namespace pl {
|
||||
|
||||
template <typename T> class ClusterFinder {
|
||||
public:
|
||||
struct Hit {
|
||||
int16_t size{};
|
||||
int16_t row{};
|
||||
int16_t col{};
|
||||
uint16_t reserved{}; // for alignment
|
||||
T energy{};
|
||||
T max{};
|
||||
|
||||
// std::vector<int16_t> rows{};
|
||||
// std::vector<int16_t> cols{};
|
||||
int16_t rows[MAX_CLUSTER_SIZE]={0};
|
||||
int16_t cols[MAX_CLUSTER_SIZE]={0};
|
||||
double enes[MAX_CLUSTER_SIZE]={0};
|
||||
};
|
||||
|
||||
private:
|
||||
const std::array<ssize_t, 2> shape_;
|
||||
DataSpan<T, 2> original_;
|
||||
ImageData<int, 2> labeled_;
|
||||
ImageData<int, 2> peripheral_labeled_;
|
||||
ImageData<bool, 2> binary_; // over threshold flag
|
||||
T threshold_;
|
||||
DataSpan<T, 2> noiseMap;
|
||||
bool use_noise_map = false;
|
||||
int peripheralThresholdFactor_ = 5;
|
||||
int current_label;
|
||||
const std::array<int, 4> di{{0, -1, -1, -1}}; // row ### 8-neighbour by scaning from left to right
|
||||
const std::array<int, 4> dj{{-1, -1, 0, 1}}; // col ### 8-neighbour by scaning from top to bottom
|
||||
const std::array<int, 8> di_{{0, 0, -1, 1, -1, 1, -1, 1}}; // row
|
||||
const std::array<int, 8> dj_{{-1, 1, 0, 0, 1, -1, -1, 1}}; // col
|
||||
std::map<int, int> child; // heirachy: key: child; val: parent
|
||||
std::unordered_map<int, Hit> h_size;
|
||||
std::vector<Hit> hits;
|
||||
// std::vector<std::vector<int16_t>> row
|
||||
int check_neighbours(int i, int j);
|
||||
|
||||
public:
|
||||
ClusterFinder(image_shape shape, T threshold)
|
||||
: shape_(shape), labeled_(shape, 0), peripheral_labeled_(shape, 0), binary_(shape),
|
||||
threshold_(threshold) {
|
||||
hits.reserve(2000);
|
||||
}
|
||||
|
||||
ImageData<int, 2> labeled() { return labeled_; }
|
||||
|
||||
void set_noiseMap(DataSpan<T, 2> noise_map) { noiseMap = noise_map; use_noise_map = true; }
|
||||
void set_peripheralThresholdFactor(int factor) { peripheralThresholdFactor_ = factor; }
|
||||
void find_clusters(DataSpan<T, 2> img);
|
||||
void find_clusters_X(DataSpan<T, 2> img);
|
||||
void rec_FillHit(int clusterIndex, int i, int j);
|
||||
void single_pass(DataSpan<T, 2> img);
|
||||
void first_pass();
|
||||
void second_pass();
|
||||
void store_clusters();
|
||||
|
||||
std::vector<Hit> steal_hits() {
|
||||
std::vector<Hit> tmp;
|
||||
std::swap(tmp, hits);
|
||||
return tmp;
|
||||
};
|
||||
void clear_hits() { hits.clear(); };
|
||||
|
||||
void print_connections() {
|
||||
fmt::print("Connections:\n");
|
||||
for (auto it = child.begin(); it != child.end(); ++it) {
|
||||
fmt::print("{} -> {}\n", it->first, it->second);
|
||||
}
|
||||
}
|
||||
size_t total_clusters() const{
|
||||
//TODO! fix for stealing
|
||||
return hits.size();
|
||||
}
|
||||
|
||||
private:
|
||||
void add_link(int from, int to) {
|
||||
// we want to add key from -> value to
|
||||
// fmt::print("add_link({},{})\n", from, to);
|
||||
auto it = child.find(from);
|
||||
if (it == child.end()) {
|
||||
child[from] = to;
|
||||
} else {
|
||||
// found need to disambiguate
|
||||
if (it->second == to)
|
||||
return;
|
||||
else {
|
||||
if (it->second > to) {
|
||||
// child[from] = to;
|
||||
auto old = it->second;
|
||||
it->second = to;
|
||||
add_link(old, to);
|
||||
}else{
|
||||
//found value is smaller than what we want to link
|
||||
add_link(to, it->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
template <typename T> int ClusterFinder<T>::check_neighbours(int i, int j) {
|
||||
std::vector<int> neighbour_labels;
|
||||
|
||||
for (int k = 0; k < 4; ++k) {
|
||||
const auto row = i + di[k];
|
||||
const auto col = j + dj[k];
|
||||
if (row >= 0 && col >= 0 && row<shape_[0] && col < shape_[1]) {
|
||||
auto tmp = labeled_.value(i + di[k], j + dj[k]);
|
||||
if (tmp != 0)
|
||||
neighbour_labels.push_back(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
if (neighbour_labels.size() == 0) {
|
||||
return 0;
|
||||
} else {
|
||||
|
||||
// need to sort and add to union field
|
||||
std::sort(neighbour_labels.rbegin(), neighbour_labels.rend());
|
||||
auto first = neighbour_labels.begin();
|
||||
auto last = std::unique(first, neighbour_labels.end());
|
||||
if (last - first == 1)
|
||||
return *neighbour_labels.begin();
|
||||
|
||||
for (auto current = first; current != last - 1; ++current) {
|
||||
auto next = current + 1;
|
||||
add_link(*current, *next);
|
||||
}
|
||||
return neighbour_labels.back(); //already sorted
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T> void ClusterFinder<T>::find_clusters(DataSpan<T, 2> img) {
|
||||
original_ = img;
|
||||
labeled_ = 0;
|
||||
peripheral_labeled_ = 0;
|
||||
current_label = 0;
|
||||
child.clear();
|
||||
first_pass();
|
||||
// print_connections();
|
||||
second_pass();
|
||||
store_clusters();
|
||||
}
|
||||
|
||||
template <typename T> void ClusterFinder<T>::find_clusters_X(DataSpan<T, 2> img) {
|
||||
original_ = img;
|
||||
int clusterIndex = 0;
|
||||
for (int i = 0; i < shape_[0]; ++i) {
|
||||
for (int j = 0; j < shape_[1]; ++j) {
|
||||
if (use_noise_map)
|
||||
threshold_ = 5*noiseMap(i, j);
|
||||
if (original_(i, j) > threshold_) {
|
||||
// printf("========== Cluster index: %d\n", clusterIndex);
|
||||
rec_FillHit(clusterIndex, i, j);
|
||||
clusterIndex++;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (const auto &h : h_size)
|
||||
hits.push_back(h.second);
|
||||
h_size.clear();
|
||||
}
|
||||
|
||||
template <typename T> void ClusterFinder<T>::rec_FillHit(int clusterIndex, int i, int j) {
|
||||
// printf("original_(%d, %d)=%f\n", i, j, original_(i,j));
|
||||
// printf("h_size[%d].size=%d\n", clusterIndex, h_size[clusterIndex].size);
|
||||
if (h_size[clusterIndex].size < MAX_CLUSTER_SIZE){
|
||||
h_size[clusterIndex].rows[h_size[clusterIndex].size] = i;
|
||||
h_size[clusterIndex].cols[h_size[clusterIndex].size] = j;
|
||||
h_size[clusterIndex].enes[h_size[clusterIndex].size] = original_(i, j);
|
||||
}
|
||||
h_size[clusterIndex].size += 1;
|
||||
h_size[clusterIndex].energy += original_(i, j);
|
||||
if (h_size[clusterIndex].max < original_(i, j)) {
|
||||
h_size[clusterIndex].row = i;
|
||||
h_size[clusterIndex].col = j;
|
||||
h_size[clusterIndex].max = original_(i, j);
|
||||
}
|
||||
original_(i, j) = 0;
|
||||
|
||||
for (int k = 0; k < 8; ++k) { // 8 for 8-neighbour
|
||||
const auto row = i + di_[k];
|
||||
const auto col = j + dj_[k];
|
||||
if (row >= 0 && col >= 0 && row < shape_[0] && col < shape_[1]) {
|
||||
if (use_noise_map)
|
||||
threshold_ = peripheralThresholdFactor_*noiseMap(row, col);
|
||||
if (original_(row, col) > threshold_){
|
||||
rec_FillHit(clusterIndex, row, col);
|
||||
}
|
||||
else{
|
||||
// if (h_size[clusterIndex].size < MAX_CLUSTER_SIZE){
|
||||
// h_size[clusterIndex].size += 1;
|
||||
// h_size[clusterIndex].rows[h_size[clusterIndex].size] = row;
|
||||
// h_size[clusterIndex].cols[h_size[clusterIndex].size] = col;
|
||||
// h_size[clusterIndex].enes[h_size[clusterIndex].size] = original_(row, col);
|
||||
// }// ? weather to include peripheral pixels
|
||||
original_(row, col) = 0; // remove peripheral pixels, to avoid potential influence for pedestal updating
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T> void ClusterFinder<T>::single_pass(DataSpan<T, 2> img) {
|
||||
original_ = img;
|
||||
labeled_ = 0;
|
||||
current_label = 0;
|
||||
child.clear();
|
||||
first_pass();
|
||||
// print_connections();
|
||||
// second_pass();
|
||||
// store_clusters();
|
||||
}
|
||||
|
||||
template <typename T> void ClusterFinder<T>::first_pass() {
|
||||
|
||||
for (int i = 0; i < original_.size(); ++i) {
|
||||
if (use_noise_map)
|
||||
threshold_ = 5*noiseMap(i);
|
||||
binary_(i) = (original_(i) > threshold_);
|
||||
}
|
||||
|
||||
for (int i = 0; i < shape_[0]; ++i) {
|
||||
for (int j = 0; j < shape_[1]; ++j) {
|
||||
|
||||
// do we have someting to process?
|
||||
if (binary_(i, j)) {
|
||||
auto tmp = check_neighbours(i, j);
|
||||
if (tmp != 0) {
|
||||
labeled_(i, j) = tmp;
|
||||
} else {
|
||||
labeled_(i, j) = ++current_label;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T> void ClusterFinder<T>::second_pass() {
|
||||
|
||||
for (ssize_t i = 0; i != labeled_.size(); ++i) {
|
||||
auto current_label = labeled_(i);
|
||||
if (current_label != 0) {
|
||||
auto it = child.find(current_label);
|
||||
while (it != child.end()) {
|
||||
current_label = it->second;
|
||||
it = child.find(current_label);
|
||||
//do this once before doing the second pass?
|
||||
//all values point to the final one...
|
||||
}
|
||||
labeled_(i) = current_label;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T> void ClusterFinder<T>::store_clusters() {
|
||||
|
||||
// Accumulate hit information in a map
|
||||
// Do we always have monotonic increasing
|
||||
// labels? Then vector?
|
||||
// here the translation is label -> Hit
|
||||
std::unordered_map<int, Hit> h_size;
|
||||
for (int i = 0; i < shape_[0]; ++i) {
|
||||
for (int j = 0; j < shape_[1]; ++j) {
|
||||
if (labeled_(i, j) != 0 or false
|
||||
// (i-1 >= 0 and labeled_(i-1, j) != 0) or // another circle of peripheral pixels
|
||||
// (j-1 >= 0 and labeled_(i, j-1) != 0) or
|
||||
// (i+1 < shape_[0] and labeled_(i+1, j) != 0) or
|
||||
// (j+1 < shape_[1] and labeled_(i, j+1) != 0)
|
||||
){
|
||||
Hit &record = h_size[labeled_(i, j)];
|
||||
if (record.size < MAX_CLUSTER_SIZE){
|
||||
record.rows[record.size] = i;
|
||||
record.cols[record.size] = j;
|
||||
record.enes[record.size] = original_(i, j);
|
||||
}
|
||||
else{
|
||||
continue;
|
||||
}
|
||||
record.size += 1;
|
||||
record.energy += original_(i, j);
|
||||
|
||||
if (record.max < original_(i, j)) {
|
||||
record.row = i;
|
||||
record.col = j;
|
||||
record.max = original_(i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto &h : h_size)
|
||||
hits.push_back(h.second);
|
||||
|
||||
}
|
||||
|
||||
} // namespace pl
|
116
core/src/CircularFifo.test.cpp
Normal file
116
core/src/CircularFifo.test.cpp
Normal file
@ -0,0 +1,116 @@
|
||||
#include <catch2/catch_all.hpp>
|
||||
|
||||
#include "aare/CircularFifo.hpp"
|
||||
|
||||
using aare::CircularFifo;
|
||||
|
||||
// Only for testing. To make sure we can avoid copy constructor
|
||||
// and copy assignment
|
||||
|
||||
struct MoveOnlyInt {
|
||||
int value{};
|
||||
|
||||
MoveOnlyInt() = default;
|
||||
MoveOnlyInt(int i) : value(i){};
|
||||
MoveOnlyInt(const MoveOnlyInt &) = delete;
|
||||
MoveOnlyInt &operator=(const MoveOnlyInt &) = delete;
|
||||
MoveOnlyInt(MoveOnlyInt &&other) { std::swap(value, other.value); }
|
||||
MoveOnlyInt &operator=(MoveOnlyInt &&other) {
|
||||
std::swap(value, other.value);
|
||||
return *this;
|
||||
}
|
||||
bool operator==(int other) const { return value == other; }
|
||||
};
|
||||
|
||||
TEST_CASE("CircularFifo can be default constructed") { CircularFifo<MoveOnlyInt> f; }
|
||||
|
||||
TEST_CASE("Newly constructed fifo has the right size") {
|
||||
size_t size = 17;
|
||||
CircularFifo<MoveOnlyInt> f(size);
|
||||
CHECK(f.numFreeSlots() == size);
|
||||
CHECK(f.numFilledSlots() == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("Can fit size number of objects") {
|
||||
size_t size = 8;
|
||||
size_t numPushedItems = 0;
|
||||
CircularFifo<MoveOnlyInt> f(size);
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
MoveOnlyInt a;
|
||||
bool popped = f.try_pop_free(a);
|
||||
CHECK(popped);
|
||||
if (popped) {
|
||||
a.value = i;
|
||||
bool pushed = f.try_push_value(std::move(a));
|
||||
CHECK(pushed);
|
||||
if (pushed)
|
||||
numPushedItems++;
|
||||
}
|
||||
}
|
||||
CHECK(f.numFreeSlots() == 0);
|
||||
CHECK(f.numFilledSlots() == size);
|
||||
CHECK(numPushedItems == size);
|
||||
}
|
||||
|
||||
TEST_CASE("Push move only type") {
|
||||
CircularFifo<MoveOnlyInt> f;
|
||||
f.push_value(5);
|
||||
}
|
||||
|
||||
TEST_CASE("Push pop") {
|
||||
CircularFifo<MoveOnlyInt> f;
|
||||
f.push_value(MoveOnlyInt(1));
|
||||
|
||||
auto a = f.pop_value();
|
||||
CHECK(a == 1);
|
||||
}
|
||||
|
||||
TEST_CASE("Pop free and then push") {
|
||||
CircularFifo<MoveOnlyInt> f;
|
||||
|
||||
auto a = f.pop_free();
|
||||
a.value = 5;
|
||||
f.push_value(std::move(a)); // Explicit move since we can't copy
|
||||
auto b = f.pop_value();
|
||||
|
||||
CHECK(a == 0); // Moved from value
|
||||
CHECK(b == 5); // Original value
|
||||
}
|
||||
|
||||
TEST_CASE("Skip the first value") {
|
||||
CircularFifo<MoveOnlyInt> f;
|
||||
|
||||
for (int i = 0; i != 10; ++i) {
|
||||
auto a = f.pop_free();
|
||||
a.value = i + 1;
|
||||
f.push_value(std::move(a)); // Explicit move since we can't copy
|
||||
}
|
||||
|
||||
auto b = f.pop_value();
|
||||
CHECK(b == 1);
|
||||
f.next();
|
||||
auto c = f.pop_value();
|
||||
CHECK(c == 3);
|
||||
}
|
||||
|
||||
TEST_CASE("Use in place and move to free") {
|
||||
size_t size = 18;
|
||||
CircularFifo<MoveOnlyInt> f(size);
|
||||
|
||||
//Push 10 values to the fifo
|
||||
for (int i = 0; i != 10; ++i) {
|
||||
auto a = f.pop_free();
|
||||
a.value = i + 1;
|
||||
f.push_value(std::move(a)); // Explicit move since we can't copy
|
||||
}
|
||||
|
||||
auto b = f.frontPtr();
|
||||
CHECK(*b == 1);
|
||||
CHECK(f.numFilledSlots() == 10);
|
||||
CHECK(f.numFreeSlots() == size-10);
|
||||
f.next();
|
||||
auto c = f.frontPtr();
|
||||
CHECK(*c == 2);
|
||||
CHECK(f.numFilledSlots() == 9);
|
||||
CHECK(f.numFreeSlots() == size-9);
|
||||
}
|
45
core/src/ProducerConsumerQueue.test.cpp
Normal file
45
core/src/ProducerConsumerQueue.test.cpp
Normal file
@ -0,0 +1,45 @@
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
// using arve::SimpleQueue;
|
||||
TEST_CASE("push pop"){
|
||||
|
||||
folly::ProducerConsumerQueue<int> q(5);
|
||||
int a = 3;
|
||||
int b = 8;
|
||||
CHECK(q.sizeGuess() == 0);
|
||||
CHECK(q.write(a));
|
||||
CHECK(q.sizeGuess() == 1);
|
||||
CHECK(q.write(b));
|
||||
CHECK(q.sizeGuess() == 2);
|
||||
int c = 0;
|
||||
|
||||
CHECK(q.read(c));
|
||||
CHECK(c == 3);
|
||||
CHECK(q.sizeGuess() == 1);
|
||||
CHECK(q.read(c));
|
||||
CHECK(c == 8);
|
||||
CHECK(q.sizeGuess() == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("Cannot push to a full queue"){
|
||||
folly::ProducerConsumerQueue<int> q(3);
|
||||
int a = 3;
|
||||
int b = 4;
|
||||
int c = 0;
|
||||
CHECK(q.write(a));
|
||||
CHECK(q.write(b));
|
||||
CHECK_FALSE(q.write(a));
|
||||
|
||||
//values are still ok
|
||||
CHECK(q.read(c));
|
||||
CHECK(c == 3);
|
||||
CHECK(q.read(c));
|
||||
CHECK(c == 4);
|
||||
}
|
||||
|
||||
TEST_CASE("Cannot pop from an empty queue"){
|
||||
folly::ProducerConsumerQueue<int> q(2);
|
||||
int a=0;
|
||||
CHECK_FALSE(q.read(a));
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user