Improvements to NDArray (#258)
All checks were successful
Build on RHEL9 / build (push) Successful in 3m11s
Build on RHEL8 / build (push) Successful in 3m25s

- Removed redundant arr.value(ix,iy...) on NDArray use arr(ix,iy...)
- Removed Print/Print_some/Print_all form NDArray (operator << still
works)
- Added const* version of .data()
- Comment for documentation
- Some extra tests
This commit is contained in:
Erik Fröjdh
2025-12-19 14:49:41 +01:00
committed by GitHub
parent dfb29b719f
commit c0357e2020
4 changed files with 509 additions and 279 deletions

View File

@@ -9,6 +9,9 @@
- added ``transform_eta_values``. Function transforms :math:`\eta` to uniform spatial coordinates. Should only be used for easier debugging. - added ``transform_eta_values``. Function transforms :math:`\eta` to uniform spatial coordinates. Should only be used for easier debugging.
- New to_string, string_to for aare - New to_string, string_to for aare
- Added exptime and period members to RawMasterFile including decoding - Added exptime and period members to RawMasterFile including decoding
- Removed redundant arr.value(ix,iy...) on NDArray use arr(ix,iy...)
- Removed Print/Print_some/Print_all form NDArray (operator << still works)
- Added const* version of .data()
### 2025.11.21 ### 2025.11.21

View File

@@ -1,13 +1,10 @@
// SPDX-License-Identifier: MPL-2.0 // SPDX-License-Identifier: MPL-2.0
//
// Container holding image data, or a time series of image data in contigious
// memory. Used for all data processing in Aare.
//
#pragma once #pragma once
/*
Container holding image data, or a time series of image data in contigious
memory.
TODO! Add expression templates for operators
*/
#include "aare/ArrayExpr.hpp" #include "aare/ArrayExpr.hpp"
#include "aare/NDView.hpp" #include "aare/NDView.hpp"
@@ -30,8 +27,13 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
T *data_; T *data_;
public: public:
///////////////////////////////////////////////////////////////////////////////
// Constructors
//
///////////////////////////////////////////////////////////////////////////////
/** /**
* @brief Default constructor. Will construct an empty NDArray. * @brief Default constructor. Constructs an empty NDArray.
* *
*/ */
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr) {}; NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr) {};
@@ -44,8 +46,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
*/ */
explicit NDArray(std::array<ssize_t, Ndim> shape) explicit NDArray(std::array<ssize_t, Ndim> shape)
: shape_(shape), strides_(c_strides<Ndim>(shape_)), : shape_(shape), strides_(c_strides<Ndim>(shape_)),
size_(num_elements(shape_)), size_(num_elements(shape_)), data_(new T[size_]) {}
data_(new T[size_]) {}
/** /**
* @brief Construct a new NDArray object with a shape and value. * @brief Construct a new NDArray object with a shape and value.
@@ -57,6 +58,10 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
this->operator=(value); this->operator=(value);
} }
// Allow NDArray of different type and dimension to be friend classes
// This is needed for the move constructor from NDArray<T,Ndim+1>
template <typename U, ssize_t Dim> friend class NDArray;
/** /**
* @brief Construct a new NDArray object from a NDView. * @brief Construct a new NDArray object from a NDView.
* @note The data is copied from the view to the NDArray. * @note The data is copied from the view to the NDArray.
@@ -67,44 +72,67 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
std::copy(v.begin(), v.end(), begin()); std::copy(v.begin(), v.end(), begin());
} }
/**
* @brief Construct a new NDArray object from an std::array.
*/
template <size_t Size> template <size_t Size>
NDArray(const std::array<T, Size> &arr) : NDArray<T, 1>({Size}) { NDArray(const std::array<T, Size> &arr) : NDArray<T, 1>({Size}) {
std::copy(arr.begin(), arr.end(), begin()); std::copy(arr.begin(), arr.end(), begin());
} }
// Move constructor /**
* @brief Move construct a new NDArray object. Cheap since it just
* reassigns the pointer and copy size/strides.
*
* @param other
*/
NDArray(NDArray &&other) noexcept NDArray(NDArray &&other) noexcept
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)), : shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
size_(other.size_), data_(other.data_) { size_(other.size_), data_(other.data_) {
other.reset(); // TODO! is this necessary? other.reset(); // Needed to avoid double free
} }
/**
//Move constructor from an an array with Ndim + 1 * @brief Move construct a new NDArray object from an array with Ndim + 1.
* Can be used to drop a dimension cheaply.
* @param other
*/
template <ssize_t M, typename = std::enable_if_t<(M == Ndim + 1)>> template <ssize_t M, typename = std::enable_if_t<(M == Ndim + 1)>>
NDArray(NDArray<T, M> &&other) NDArray(NDArray<T, M> &&other)
: shape_(drop_first_dim(other.shape())), : shape_(drop_first_dim(other.shape())),
strides_(c_strides<Ndim>(shape_)), size_(num_elements(shape_)), strides_(c_strides<Ndim>(shape_)), size_(num_elements(shape_)),
data_(other.data()) { data_(other.data()) {
// For now only allow move if the size matches, to avoid unreachable data // For now only allow move if the size matches, to avoid unreachable
// if the use case arises we can remove this check // data if the use case arises we can remove this check
if (size() != other.size()) { if (size() != other.size()) {
data_ = nullptr; // avoid double free, other will clean up the memory in it's destructor data_ = nullptr; // avoid double free, other will clean up the
throw std::runtime_error(LOCATION + // memory in it's destructor
throw std::runtime_error(
LOCATION +
"Size mismatch in move constructor of NDArray<T, Ndim-1>"); "Size mismatch in move constructor of NDArray<T, Ndim-1>");
} }
other.reset(); other.reset();
} }
// Copy constructor /**
* @brief Copy construct a new NDArray object from another NDArray.
*
* @param other
*/
NDArray(const NDArray &other) NDArray(const NDArray &other)
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)), : shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
size_(other.size_), data_(new T[size_]) { size_(other.size_), data_(new T[size_]) {
std::copy(other.data_, other.data_ + size_, data_); std::copy(other.data_, other.data_ + size_, data_);
} }
// Conversion operator from array expression to array /**
* @brief Conversion from a ArrayExpr to an actual NDArray. Used when
* the expression is evaluated and data needed.
*
* @tparam E
* @param expr
*/
template <typename E> template <typename E>
NDArray(ArrayExpr<E, Ndim> &&expr) : NDArray(expr.shape()) { NDArray(ArrayExpr<E, Ndim> &&expr) : NDArray(expr.shape()) {
for (size_t i = 0; i < size_; ++i) { for (size_t i = 0; i < size_; ++i) {
@@ -112,23 +140,129 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
} }
} }
/**
* @brief Destroy the NDArray object. Frees the allocated memory.
*
*/
~NDArray() { delete[] data_; } ~NDArray() { delete[] data_; }
auto begin() { return data_; } ///////////////////////////////////////////////////////////////////////////////
auto end() { return data_ + size_; } // Iterators and indexing
//
///////////////////////////////////////////////////////////////////////////////
auto begin() const { return data_; } auto *begin() { return data_; }
auto end() const { return data_ + size_; } const auto *begin() const { return data_; }
auto *end() { return data_ + size_; }
const auto *end() const { return data_ + size_; }
/*
* @brief Access element at given multi-dimensional index.
* i.e. arr(i,j,k,...)
*
* @note The fast index is the last index. Please take care when iterating
* through the array.
*/
template <typename... Ix>
std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) {
return data_[element_offset(strides_, index...)];
}
/*
* @brief Access element at given multi-dimensional index (const version).
* i.e. arr(i,j,k,...)
*
* @note The fast index is the last index. Please take care when iterating
* through the array.
*/
template <typename... Ix>
std::enable_if_t<sizeof...(Ix) == Ndim, const T &>
operator()(Ix... index) const {
return data_[element_offset(strides_, index...)];
}
/*
@brief Index the array as it would be a 1D array. To get a certain
pixel in a multidimensional array use the (i,j,k,...) operator instead.
*/
T &operator()(ssize_t i) { return data_[i]; }
/*
@brief Index the array as it would be a 1D array. To get a certain
pixel in a multidimensional array use the (i,j,k,...) operator instead.
*/
const T &operator()(ssize_t i) const { return data_[i]; }
/*
@brief Index the array as it would be a 1D array. To get a certain
pixel in a multidimensional array use the (i,j,k,...) operator instead.
*/
T &operator[](ssize_t i) { return data_[i]; }
/*
@brief Index the array as it would be a 1D array. To get a certain
pixel in a multidimensional array use the (i,j,k,...) operator instead.
*/
const T &operator[](ssize_t i) const { return data_[i]; }
/* @brief Return a raw pointer to the data */
T *data() { return data_; }
/* @brief Return a const raw pointer to the data */
const T *data() const { return data_; }
/* @brief Return a byte pointer to the data. Useful for memcpy like
* operations */
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
/**
* @brief Return the total number of elements in the array as a signed
* integer
*/
ssize_t size() const { return static_cast<ssize_t>(size_); }
/** @brief Return the total number of bytes in the array */
size_t total_bytes() const { return size_ * sizeof(T); }
/** @brief Return the shape of the array */
Shape<Ndim> shape() const noexcept { return shape_; }
/** @brief Return the size of dimension i */
ssize_t shape(ssize_t i) const noexcept { return shape_[i]; }
/** @brief Return the strides of the array */
std::array<ssize_t, Ndim> strides() const noexcept { return strides_; }
/**
* @brief Return the bitdepth of the array. Useful for checking that
* detector data can fit in the array type.
*/
size_t bitdepth() const noexcept { return sizeof(T) * 8; }
/**
* @brief Return the number of bytes to step in each dimension when
* traversing the array.
*/
std::array<ssize_t, Ndim> byte_strides() const noexcept {
auto byte_strides = strides_;
for (auto &val : byte_strides)
val *= sizeof(T);
return byte_strides;
}
using value_type = T; using value_type = T;
NDArray &operator=(NDArray &&other) noexcept; // Move assign ///////////////////////////////////////////////////////////////////////////////
NDArray &operator=(const NDArray &other); // Copy assign // Assignments
NDArray &operator+=(const NDArray &other); //
NDArray &operator-=(const NDArray &other); ///////////////////////////////////////////////////////////////////////////////
NDArray &operator*=(const NDArray &other);
// Write directly to the data array, or create a new one /**
* @brief Copy to the NDArray from an std::array. If the size of the array
* is different we reallocate the data.
*
*/
template <size_t Size> template <size_t Size>
NDArray<T, 1> &operator=(const std::array<T, Size> &other) { NDArray<T, 1> &operator=(const std::array<T, Size> &other) {
if (Size != size_) { if (Size != size_) {
@@ -142,105 +276,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
return *this; return *this;
} }
// NDArray& operator/=(const NDArray& other);
template <typename V> NDArray &operator/=(const NDArray<V, Ndim> &other) {
// check shape
if (shape_ == other.shape()) {
for (uint32_t i = 0; i < size_; ++i) {
data_[i] /= other(i);
}
return *this;
}
throw(std::runtime_error("Shape of NDArray must match"));
}
NDArray<bool, Ndim> operator>(const NDArray &other);
bool operator==(const NDArray &other) const;
bool operator!=(const NDArray &other) const;
NDArray &operator=(const T & /*value*/);
NDArray &operator+=(const T & /*value*/);
NDArray operator+(const T & /*value*/);
NDArray &operator-=(const T & /*value*/);
NDArray operator-(const T & /*value*/);
NDArray &operator*=(const T & /*value*/);
NDArray operator*(const T & /*value*/);
NDArray &operator/=(const T & /*value*/);
NDArray operator/(const T & /*value*/);
NDArray &operator&=(const T & /*mask*/);
void sqrt() {
for (int i = 0; i < size_; ++i) {
data_[i] = std::sqrt(data_[i]);
}
}
NDArray &operator++(); // pre inc
template <typename... Ix>
std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) {
return data_[element_offset(strides_, index...)];
}
template <typename... Ix>
std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) const {
return data_[element_offset(strides_, index...)];
}
template <typename... Ix>
std::enable_if_t<sizeof...(Ix) == Ndim, T> value(Ix... index) {
return data_[element_offset(strides_, index...)];
}
// TODO! is int the right type for index?
T &operator()(ssize_t i) { return data_[i]; }
const T &operator()(ssize_t i) const { return data_[i]; }
T &operator[](ssize_t i) { return data_[i]; }
const T &operator[](ssize_t i) const { return data_[i]; }
T *data() { return data_; }
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
ssize_t size() const { return static_cast<ssize_t>(size_); }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<ssize_t, Ndim> shape() const noexcept { return shape_; }
ssize_t shape(ssize_t i) const noexcept { return shape_[i]; }
std::array<ssize_t, Ndim> strides() const noexcept { return strides_; }
size_t bitdepth() const noexcept { return sizeof(T) * 8; }
std::array<ssize_t, Ndim> byte_strides() const noexcept {
auto byte_strides = strides_;
for (auto &val : byte_strides)
val *= sizeof(T);
return byte_strides;
}
/** /**
* @brief Create a view of the NDArray. * @brief Move assignment operator.
*
* @return NDView<T, Ndim>
*/ */
NDView<T, Ndim> view() const { return NDView<T, Ndim>{data_, shape_}; } NDArray &operator=(NDArray &&other) noexcept {
// TODO! Should we use swap?
void Print();
void Print_all();
void Print_some();
void reset() {
data_ = nullptr;
size_ = 0;
std::fill(shape_.begin(), shape_.end(), 0);
std::fill(strides_.begin(), strides_.end(), 0);
}
};
// Move assign
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> &
NDArray<T, Ndim>::operator=(NDArray<T, Ndim> &&other) noexcept {
if (this != &other) { if (this != &other) {
delete[] data_; delete[] data_;
data_ = other.data_; data_ = other.data_;
@@ -252,63 +292,10 @@ NDArray<T, Ndim>::operator=(NDArray<T, Ndim> &&other) noexcept {
return *this; return *this;
} }
template <typename T, ssize_t Ndim> /**
NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const NDArray<T, Ndim> &other) { * @brief Copy assignment operator.
// check shape */
if (shape_ == other.shape_) { NDArray &operator=(const NDArray &other) {
for (size_t i = 0; i < size_; ++i) {
data_[i] += other.data_[i];
}
return *this;
}
throw(std::runtime_error("Shape of ImageDatas must match"));
}
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> &NDArray<T, Ndim>::operator-=(const NDArray<T, Ndim> &other) {
// check shape
if (shape_ == other.shape_) {
for (uint32_t i = 0; i < size_; ++i) {
data_[i] -= other.data_[i];
}
return *this;
}
throw(std::runtime_error("Shape of ImageDatas must match"));
}
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> &NDArray<T, Ndim>::operator*=(const NDArray<T, Ndim> &other) {
// check shape
if (shape_ == other.shape_) {
for (uint32_t i = 0; i < size_; ++i) {
data_[i] *= other.data_[i];
}
return *this;
}
throw(std::runtime_error("Shape of ImageDatas must match"));
}
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> &NDArray<T, Ndim>::operator&=(const T &mask) {
for (auto it = begin(); it != end(); ++it)
*it &= mask;
return *this;
}
template <typename T, ssize_t Ndim>
NDArray<bool, Ndim> NDArray<T, Ndim>::operator>(const NDArray &other) {
if (shape_ == other.shape_) {
NDArray<bool, Ndim> result{shape_};
for (int i = 0; i < size_; ++i) {
result(i) = (data_[i] > other.data_[i]);
}
return result;
}
throw(std::runtime_error("Shape of ImageDatas must match"));
}
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const NDArray<T, Ndim> &other) {
if (this != &other) { if (this != &other) {
delete[] data_; delete[] data_;
shape_ = other.shape_; shape_ = other.shape_;
@@ -320,84 +307,230 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const NDArray<T, Ndim> &other) {
return *this; return *this;
} }
template <typename T, ssize_t Ndim> ///////////////////////////////////////////////////////////////////////////////
bool NDArray<T, Ndim>::operator==(const NDArray<T, Ndim> &other) const { // Math operators
//
///////////////////////////////////////////////////////////////////////////////
/**
* @brief Add elementwise from another NDArray.
*/
NDArray &operator+=(const NDArray &other) {
if (shape_ != other.shape_)
throw(std::runtime_error(
"Shape of NDArray must match for operator +="));
for (size_t i = 0; i < size_; ++i) {
data_[i] += other.data_[i];
}
return *this;
}
/**
* @brief Subtract elementwise with another NDArray.
*/
NDArray &operator-=(const NDArray &other) {
if (shape_ != other.shape_)
throw(std::runtime_error(
"Shape of NDArray must match for operator -="));
for (size_t i = 0; i < size_; ++i) {
data_[i] -= other.data_[i];
}
return *this;
}
/**
* @brief Multiply elementwise with another NDArray.
*/
NDArray &operator*=(const NDArray &other) {
if (shape_ != other.shape_)
throw(std::runtime_error(
"Shape of NDArray must match for operator *="));
for (size_t i = 0; i < size_; ++i) {
data_[i] *= other.data_[i];
}
return *this;
}
/**
* @brief Divide elementwise by another NDArray. Templated to allow division
* with different types.
*
* TODO! Why is this templated when the others are not?
*/
template <typename V> NDArray &operator/=(const NDArray<V, Ndim> &other) {
// check shape
if (shape_ == other.shape()) {
for (size_t i = 0; i < size_; ++i) {
data_[i] /= other(i);
}
return *this;
}
throw(std::runtime_error("Shape of NDArray must match"));
}
/**
* @brief Assign a scalar value to all elements in the NDArray.
*/
NDArray &operator=(const T &value) {
std::fill_n(data_, size_, value);
return *this;
}
/**
* @brief Add a scalar value to all elements in the NDArray.
*/
NDArray &operator+=(const T &value) {
for (size_t i = 0; i < size_; ++i)
data_[i] += value;
return *this;
}
/**
* @brief Subtract a scalar value to all elements in the NDArray.
*/
NDArray &operator-=(const T &value) {
for (size_t i = 0; i < size_; ++i)
data_[i] -= value;
return *this;
}
/**
* @brief Multiply all elements in the NDArray with a scalar value
*/
NDArray &operator*=(const T &value) {
for (size_t i = 0; i < size_; ++i)
data_[i] *= value;
return *this;
}
/**
* @brief Divide all elements in the NDArray with a scalar value
*/
NDArray &operator/=(const T &value) {
for (size_t i = 0; i < size_; ++i)
data_[i] /= value;
return *this;
}
/**
* @brief Bitwise AND all elements in the NDArray with a scalar mask.
* Used for example to mask out gain bits for Jungfrau detectors.
*/
NDArray &operator&=(const T &mask) {
for (auto it = begin(); it != end(); ++it)
*it &= mask;
return *this;
}
/**
* @brief Operator + with a scalar value. Returns a new NDArray.
*
* TODO! Expression template version of this?
*/
NDArray operator+(const T &value) {
NDArray result = *this;
result += value;
return result;
}
/**
* @brief Operator - with a scalar value. Returns a new NDArray.
*
* TODO! Expression template version of this?
*/
NDArray operator-(const T &value) {
NDArray result = *this;
result -= value;
return result;
}
/**
* @brief Operator * with a scalar value. Returns a new NDArray.
*
* TODO! Expression template version of this?
*/
NDArray operator*(const T &value) {
NDArray result = *this;
result *= value;
return result;
}
/**
* @brief Operator / with a scalar value. Returns a new NDArray.
*
* TODO! Expression template version of this?
*/
NDArray operator/(const T &value) {
NDArray result = *this;
result /= value;
return result;
}
/**
* @brief Compare two NDArrays elementwise for equality.
*/
bool operator==(const NDArray &other) const {
if (shape_ != other.shape_) if (shape_ != other.shape_)
return false; return false;
for (uint32_t i = 0; i != size_; ++i) for (size_t i = 0; i != size_; ++i)
if (data_[i] != other.data_[i]) if (data_[i] != other.data_[i])
return false; return false;
return true; return true;
} }
template <typename T, ssize_t Ndim> /**
bool NDArray<T, Ndim>::operator!=(const NDArray<T, Ndim> &other) const { * @brief Compare two NDArrays elementwise for non-equality.
return !((*this) == other); */
bool operator!=(const NDArray &other) const { return !((*this) == other); }
/**
* @brief Compute the square root of all elements in the NDArray.
*/
void sqrt() {
for (size_t i = 0; i < size_; ++i) {
data_[i] = std::sqrt(data_[i]);
} }
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> &NDArray<T, Ndim>::operator++() {
for (uint32_t i = 0; i < size_; ++i)
data_[i] += 1;
return *this;
} }
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const T &value) { /*
std::fill_n(data_, size_, value); * @brief Prefix increment operator. Increments all elements by 1.
*/
NDArray &operator++() {
for (size_t i = 0; i < size_; ++i)
data_[i] += T{1};
return *this; return *this;
} }
template <typename T, ssize_t Ndim> /**
NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const T &value) { * @brief Create a view of the NDArray.
for (uint32_t i = 0; i < size_; ++i) *
data_[i] += value; * @return NDView<T, Ndim>
return *this; */
} NDView<T, Ndim> view() const { return NDView<T, Ndim>{data_, shape_}; }
template <typename T, ssize_t Ndim> private:
NDArray<T, Ndim> NDArray<T, Ndim>::operator+(const T &value) { /**
NDArray result = *this; * @brief Reset the NDArray to an empty state. Dropping the ownership of
result += value; * the data. Used internally for move operations to avoid double free or
return result; * dangling pointers.
} */
template <typename T, ssize_t Ndim> void reset() {
NDArray<T, Ndim> &NDArray<T, Ndim>::operator-=(const T &value) { data_ = nullptr;
for (uint32_t i = 0; i < size_; ++i) size_ = 0;
data_[i] -= value; std::fill(shape_.begin(), shape_.end(), 0);
return *this; std::fill(strides_.begin(), strides_.end(), 0);
}
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> NDArray<T, Ndim>::operator-(const T &value) {
NDArray result = *this;
result -= value;
return result;
} }
};
template <typename T, ssize_t Ndim> ///////////////////////////////////////////////////////////////////////////////
NDArray<T, Ndim> &NDArray<T, Ndim>::operator/=(const T &value) { // Free functions closely related to NDArray
for (uint32_t i = 0; i < size_; ++i) //
data_[i] /= value; ///////////////////////////////////////////////////////////////////////////////
return *this;
}
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> NDArray<T, Ndim>::operator/(const T &value) {
NDArray result = *this;
result /= value;
return result;
}
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> &NDArray<T, Ndim>::operator*=(const T &value) {
for (uint32_t i = 0; i < size_; ++i)
data_[i] *= value;
return *this;
}
template <typename T, ssize_t Ndim>
NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
NDArray result = *this;
result *= value;
return result;
}
template <typename T, ssize_t Ndim> template <typename T, ssize_t Ndim>
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) { std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
@@ -411,27 +544,9 @@ std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
return os; return os;
} }
template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print_all() {
for (auto row = 0; row < shape_[0]; ++row) {
for (auto col = 0; col < shape_[1]; ++col) {
std::cout << std::setw(3);
std::cout << (*this)(row, col) << " ";
}
std::cout << "\n";
}
}
template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print_some() {
for (auto row = 0; row < 5; ++row) {
for (auto col = 0; col < 5; ++col) {
std::cout << std::setw(7);
std::cout << (*this)(row, col) << " ";
}
std::cout << "\n";
}
}
template <typename T, ssize_t Ndim> template <typename T, ssize_t Ndim>
void save(NDArray<T, Ndim> &img, std::string &pathname) { [[deprecated("Saving of raw arrays without metadata is deprecated")]] void
save(NDArray<T, Ndim> &img, std::string &pathname) {
std::ofstream f; std::ofstream f;
f.open(pathname, std::ios::binary); f.open(pathname, std::ios::binary);
f.write(img.buffer(), img.size() * sizeof(T)); f.write(img.buffer(), img.size() * sizeof(T));
@@ -439,8 +554,9 @@ void save(NDArray<T, Ndim> &img, std::string &pathname) {
} }
template <typename T, ssize_t Ndim> template <typename T, ssize_t Ndim>
NDArray<T, Ndim> load(const std::string &pathname, [[deprecated(
std::array<ssize_t, Ndim> shape) { "Loading of raw arrays without metadata is deprecated")]] NDArray<T, Ndim>
load(const std::string &pathname, std::array<ssize_t, Ndim> shape) {
NDArray<T, Ndim> img{shape}; NDArray<T, Ndim> img{shape};
std::ifstream f; std::ifstream f;
f.open(pathname, std::ios::binary); f.open(pathname, std::ios::binary);
@@ -449,6 +565,20 @@ NDArray<T, Ndim> load(const std::string &pathname,
return img; return img;
} }
/**
* @brief Free function to safely divide two NDArrays elementwise, handling
* division by zero. Uses static_cast to convert types as needed.
*
* @tparam RT Result type
* @tparam NT Numerator type
* @tparam DT Denominator type
* @tparam Ndim Number of dimensions
* @param numerator The numerator NDArray
* @param denominator The denominator NDArray
* @return NDArray<RT, Ndim> Resulting NDArray after safe division
* @throws std::runtime_error if the shapes of the numerator and denominator do
* not match
*/
template <typename RT, typename NT, typename DT, ssize_t Ndim> template <typename RT, typename NT, typename DT, ssize_t Ndim>
NDArray<RT, Ndim> safe_divide(const NDArray<NT, Ndim> &numerator, NDArray<RT, Ndim> safe_divide(const NDArray<NT, Ndim> &numerator,
const NDArray<DT, Ndim> &denominator) { const NDArray<DT, Ndim> &denominator) {

View File

@@ -125,7 +125,7 @@ template <typename T> int VarClusterFinder<T>::check_neighbours(int i, int j) {
const auto row = i + di[k]; const auto row = i + di[k];
const auto col = j + dj[k]; const auto col = j + dj[k];
if (row >= 0 && col >= 0 && row < shape_[0] && col < shape_[1]) { if (row >= 0 && col >= 0 && row < shape_[0] && col < shape_[1]) {
auto tmp = labeled_.value(i + di[k], j + dj[k]); auto tmp = labeled_(i + di[k], j + dj[k]);
if (tmp != 0) if (tmp != 0)
neighbour_labels.push_back(tmp); neighbour_labels.push_back(tmp);
} }

View File

@@ -105,6 +105,67 @@ TEST_CASE("Indexing of a 3D image") {
REQUIRE(img(2, 3, 1) == 23); REQUIRE(img(2, 3, 1) == 23);
} }
TEST_CASE("Access to data using a pointer"){
// This pattern is discouraged but sometimes useful
NDArray<int,2> img{{4,5},0};
int* data_ptr = img.data();
for(int i=0; i < img.size(); ++i){
data_ptr[i] = i*2;
}
// Cross check using operator[]
for(int i=0; i < img.size(); ++i){
REQUIRE(img[i] == i*2);
}
}
TEST_CASE("Access to data using a pointer for a const NDArray"){
// This pattern is discouraged but sometimes useful
// Using a lambda to create a const NDArray with known data
const NDArray<int,2> arr = [](){
NDArray<int,2> img{{4,5},0};
int* data_ptr = img.data();
for(int i=0; i < img.size(); ++i){
data_ptr[i] = i*3;
}
return img;
}();
// Cross check using data() pointer, if compiles we can get a const pointer
const int* const_data_ptr = arr.data();
for(int i=0; i < arr.size(); ++i){
REQUIRE(const_data_ptr[i] == i*3);
}
}
TEST_CASE("Use *buffer"){
// Another useful but discouraged pattern. But can be useful when getting data
// from external sources
Shape<2> shape{{4, 5}};
NDArray<int, 2> src(shape);
NDArray<int, 2> dst(shape);
for (uint32_t i = 0; i < src.size(); ++i) {
src(i) = static_cast<int>(i * 7);
}
std::memcpy(dst.buffer(), src.buffer(), src.total_bytes());
REQUIRE(src.data() != dst.data());
for (uint32_t i = 0; i < dst.size(); ++i) {
REQUIRE(dst(i) == src(i));
}
}
TEST_CASE("Increment elements using prefix ++ operator") {
NDArray<int, 1> a{{5}, 0};
++a;
for (const auto it : a) {
REQUIRE(it == 1);
}
}
TEST_CASE("Divide double by int") { TEST_CASE("Divide double by int") {
NDArray<double, 1> a{{5}, 5}; NDArray<double, 1> a{{5}, 5};
NDArray<int, 1> b{{5}, 5}; NDArray<int, 1> b{{5}, 5};
@@ -430,6 +491,42 @@ TEST_CASE("Construct an NDArray from an std::array") {
} }
} }
TEST_CASE("Copy construct an NDArray"){
NDArray<int,2> a({{3,4}},0);
a(1,1) = 42;
a(2,3) = 84;
NDArray<int,2> b(a);
REQUIRE(b.shape() == Shape<2>{3,4});
REQUIRE(b.size() == 12);
REQUIRE(b(1,1) == 42);
REQUIRE(b(2,3) == 84);
// Modifying b should not affect a
b(1,1) = 7;
REQUIRE(a(1,1) == 42);
REQUIRE(a.data() != b.data());
}
TEST_CASE("Move construct an NDArray"){
NDArray<int,2> a({{3,4}},0);
a(1,1) = 42;
a(2,3) = 84;
NDArray<int,2> b(std::move(a));
REQUIRE(b.shape() == Shape<2>{3,4});
REQUIRE(b.size() == 12);
REQUIRE(b(1,1) == 42);
REQUIRE(b(2,3) == 84);
// The moved from object should be in a unspecified but valid state.
// This means original array pointer should be null, and size zero
REQUIRE(a.size() == 0);
REQUIRE(a.shape() == Shape<2>{0,0});
REQUIRE(a.data() == nullptr);
}
TEST_CASE("Move construct from an array with Ndim + 1") { TEST_CASE("Move construct from an array with Ndim + 1") {