This commit is contained in:
Erik Fröjdh
2024-10-25 10:23:34 +02:00
parent ae71e23dd2
commit b1b020ad60
20 changed files with 2417 additions and 0 deletions

83
include/aare/Dtype.hpp Normal file
View File

@ -0,0 +1,83 @@
#pragma once
#include <cstdint>
#include <map>
#include <string>
#include <typeinfo>
namespace aare {
// The format descriptor is a single character that specifies the type of the data
// - python documentation: https://docs.python.org/3/c-api/arg.html#numbers
// - py::format_descriptor<T>::format() (in pybind11) does not return the same format as
// written in python.org documentation.
// - numpy also doesn't use the same format. and also numpy associates the format
// with variable bitdepth types. (e.g. long is int64 on linux64 and int32 on win64)
// https://numpy.org/doc/stable/reference/arrays.scalars.html
//
// github issue discussing this:
// https://github.com/pybind/pybind11/issues/1908#issuecomment-658358767
//
// [IN LINUX] the difference is for int64 (long) and uint64 (unsigned long). The format
// descriptor is 'q' and 'Q' respectively and in the documentation it is 'l' and 'k'.
// in practice numpy doesn't seem to care when reading buffer info: the library
// interprets 'q' or 'l' as int64 and 'Q' or 'L' as uint64.
// for this reason we decided to use the same format descriptor as pybind to avoid
// any further discrepancies.
// in the following order:
// int8, uint8, int16, uint16, int32, uint32, int64, uint64, float, double
const char DTYPE_FORMAT_DSC[] = {'b', 'B', 'h', 'H', 'i', 'I', 'q', 'Q', 'f', 'd'};
// on linux64 & apple
const char NUMPY_FORMAT_DSC[] = {'b', 'B', 'h', 'H', 'i', 'I', 'l', 'L', 'f', 'd'};
/**
* @brief enum class to define the endianess of the system
*/
enum class endian {
#ifdef _WIN32
little = 0,
big = 1,
native = little
#else
little = __ORDER_LITTLE_ENDIAN__,
big = __ORDER_BIG_ENDIAN__,
native = __BYTE_ORDER__
#endif
};
/**
* @brief class to define the data type of the pixels
* @note only native endianess is supported
*/
class Dtype {
public:
enum TypeIndex { INT8, UINT8, INT16, UINT16, INT32, UINT32, INT64, UINT64, FLOAT, DOUBLE, ERROR, NONE };
uint8_t bitdepth() const;
size_t bytes() const;
std::string format_descr() const { return std::string(1, DTYPE_FORMAT_DSC[static_cast<int>(m_type)]); }
std::string numpy_descr() const { return std::string(1, NUMPY_FORMAT_DSC[static_cast<int>(m_type)]); }
explicit Dtype(const std::type_info &t);
explicit Dtype(std::string_view sv);
static Dtype from_bitdepth(uint8_t bitdepth);
// not explicit to allow conversions form enum to DType
Dtype(Dtype::TypeIndex ti); // NOLINT
bool operator==(const Dtype &other) const noexcept;
bool operator!=(const Dtype &other) const noexcept;
bool operator==(const std::type_info &t) const;
bool operator!=(const std::type_info &t) const;
// bool operator==(DType::TypeIndex ti) const;
// bool operator!=(DType::TypeIndex ti) const;
std::string to_string() const;
void set_type(Dtype::TypeIndex ti) { m_type = ti; }
private:
TypeIndex m_type{TypeIndex::ERROR};
};
} // namespace aare

76
include/aare/Frame.hpp Normal file
View File

@ -0,0 +1,76 @@
#pragma once
#include "aare/Dtype.hpp"
#include "aare/NDArray.hpp"
#include "aare/defs.hpp"
#include <cstddef>
#include <cstdint>
#include <memory>
#include <vector>
namespace aare {
/**
* @brief Frame class to represent a single frame of data
* model class
* should be able to work with streams coming from files or network
*/
class Frame {
uint32_t m_rows;
uint32_t m_cols;
Dtype m_dtype;
std::byte *m_data;
public:
Frame(uint32_t rows, uint32_t cols, Dtype dtype);
Frame(const std::byte *bytes, uint32_t rows, uint32_t cols, Dtype dtype);
~Frame() noexcept;
// disable copy and assignment
Frame &operator=(const Frame &other)=delete;
Frame(const Frame &other)=delete;
// enable move
Frame &operator=(Frame &&other) noexcept;
Frame(Frame &&other) noexcept;
// explicit copy
Frame copy() const;
uint32_t rows() const;
uint32_t cols() const;
size_t bitdepth() const;
Dtype dtype() const;
uint64_t size() const;
size_t bytes() const;
std::byte *data() const;
std::byte *get(uint32_t row, uint32_t col);
// TODO! can we, or even want to remove the template?
template <typename T> void set(uint32_t row, uint32_t col, T data) {
assert(sizeof(T) == m_dtype.bytes());
if (row >= m_rows || col >= m_cols) {
throw std::out_of_range("Invalid row or column index");
}
std::memcpy(m_data + (row * m_cols + col) * m_dtype.bytes(), &data, m_dtype.bytes());
}
template <typename T> T get_t(uint32_t row, uint32_t col) {
assert(sizeof(T) == m_dtype.bytes());
if (row >= m_rows || col >= m_cols) {
throw std::out_of_range("Invalid row or column index");
}
T data;
std::memcpy(&data, m_data + (row * m_cols + col) * m_dtype.bytes(), m_dtype.bytes());
return data;
}
template <typename T> NDView<T, 2> view() {
std::array<int64_t, 2> shape = {static_cast<int64_t>(m_rows), static_cast<int64_t>(m_cols)};
T *data = reinterpret_cast<T *>(m_data);
return NDView<T, 2>(data, shape);
}
template <typename T> NDArray<T> image() { return NDArray<T>(this->view<T>()); }
};
} // namespace aare

380
include/aare/NDArray.hpp Normal file
View File

@ -0,0 +1,380 @@
#pragma once
/*
Container holding image data, or a time series of image data in contigious
memory.
TODO! Add expression templates for operators
*/
#include "aare/NDView.hpp"
#include <algorithm>
#include <array>
#include <cmath>
#include <fmt/format.h>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <numeric>
namespace aare {
template <typename T, int64_t Ndim = 2> class NDArray {
public:
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr){};
explicit NDArray(std::array<int64_t, Ndim> shape)
: shape_(shape), strides_(c_strides<Ndim>(shape_)),
size_(std::accumulate(shape_.begin(), shape_.end(), 1, std::multiplies<>())), data_(new T[size_]){};
NDArray(std::array<int64_t, Ndim> shape, T value) : NDArray(shape) { this->operator=(value); }
/* When constructing from a NDView we need to copy the data since
NDArray expect to own its data, and span is just a view*/
explicit NDArray(NDView<T, Ndim> span) : NDArray(span.shape()) {
std::copy(span.begin(), span.end(), begin());
// fmt::print("NDArray(NDView<T, Ndim> span)\n");
}
// Move constructor
NDArray(NDArray &&other) noexcept
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)), size_(other.size_), data_(other.data_) {
other.reset();
// fmt::print("NDArray(NDArray &&other)\n");
}
// Copy constructor
NDArray(const NDArray &other)
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)), size_(other.size_), data_(new T[size_]) {
std::copy(other.data_, other.data_ + size_, data_);
// fmt::print("NDArray(const NDArray &other)\n");
}
~NDArray() { delete[] data_; }
auto begin() { return data_; }
auto end() { return data_ + size_; }
using value_type = T;
NDArray &operator=(NDArray &&other) noexcept; // Move assign
NDArray &operator=(const NDArray &other); // Copy assign
NDArray operator+(const NDArray &other);
NDArray &operator+=(const NDArray &other);
NDArray operator-(const NDArray &other);
NDArray &operator-=(const NDArray &other);
NDArray operator*(const NDArray &other);
NDArray &operator*=(const NDArray &other);
NDArray operator/(const NDArray &other);
// NDArray& operator/=(const NDArray& other);
template <typename V> NDArray &operator/=(const NDArray<V, Ndim> &other) {
// check shape
if (shape_ == other.shape()) {
for (uint32_t i = 0; i < size_; ++i) {
data_[i] /= other(i);
}
return *this;
}
throw(std::runtime_error("Shape of NDArray must match"));
}
NDArray<bool, Ndim> operator>(const NDArray &other);
bool operator==(const NDArray &other) const;
bool operator!=(const NDArray &other) const;
NDArray &operator=(const T & /*value*/);
NDArray &operator+=(const T & /*value*/);
NDArray operator+(const T & /*value*/);
NDArray &operator-=(const T & /*value*/);
NDArray operator-(const T & /*value*/);
NDArray &operator*=(const T & /*value*/);
NDArray operator*(const T & /*value*/);
NDArray &operator/=(const T & /*value*/);
NDArray operator/(const T & /*value*/);
NDArray &operator&=(const T & /*mask*/);
void sqrt() {
for (int i = 0; i < size_; ++i) {
data_[i] = std::sqrt(data_[i]);
}
}
NDArray &operator++(); // pre inc
template <typename... Ix> std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) {
return data_[element_offset(strides_, index...)];
}
template <typename... Ix> std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) const {
return data_[element_offset(strides_, index...)];
}
template <typename... Ix> std::enable_if_t<sizeof...(Ix) == Ndim, T> value(Ix... index) {
return data_[element_offset(strides_, index...)];
}
T &operator()(int i) { return data_[i]; }
const T &operator()(int i) const { return data_[i]; }
T *data() { return data_; }
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
uint64_t size() const { return size_; }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<int64_t, Ndim> shape() const noexcept { return shape_; }
int64_t shape(int64_t i) const noexcept { return shape_[i]; }
std::array<int64_t, Ndim> strides() const noexcept { return strides_; }
size_t bitdepth() const noexcept { return sizeof(T) * 8; }
std::array<int64_t, Ndim> byte_strides() const noexcept {
auto byte_strides = strides_;
for (auto &val : byte_strides)
val *= sizeof(T);
return byte_strides;
// return strides_;
}
NDView<T, Ndim> span() const { return NDView<T, Ndim>{data_, shape_}; }
void Print();
void Print_all();
void Print_some();
void reset() {
data_ = nullptr;
size_ = 0;
std::fill(shape_.begin(), shape_.end(), 0);
std::fill(strides_.begin(), strides_.end(), 0);
}
private:
std::array<int64_t, Ndim> shape_;
std::array<int64_t, Ndim> strides_;
uint64_t size_{};
T *data_;
};
// Move assign
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(NDArray<T, Ndim> &&other) noexcept {
if (this != &other) {
delete[] data_;
data_ = other.data_;
shape_ = other.shape_;
size_ = other.size_;
strides_ = other.strides_;
other.reset();
}
return *this;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> NDArray<T, Ndim>::operator+(const NDArray &other) {
NDArray result(*this);
result += other;
return result;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const NDArray<T, Ndim> &other) {
// check shape
if (shape_ == other.shape_) {
for (uint32_t i = 0; i < size_; ++i) {
data_[i] += other.data_[i];
}
return *this;
}
throw(std::runtime_error("Shape of ImageDatas must match"));
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> NDArray<T, Ndim>::operator-(const NDArray &other) {
NDArray result{*this};
result -= other;
return result;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator-=(const NDArray<T, Ndim> &other) {
// check shape
if (shape_ == other.shape_) {
for (uint32_t i = 0; i < size_; ++i) {
data_[i] -= other.data_[i];
}
return *this;
}
throw(std::runtime_error("Shape of ImageDatas must match"));
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const NDArray &other) {
NDArray result = *this;
result *= other;
return result;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator*=(const NDArray<T, Ndim> &other) {
// check shape
if (shape_ == other.shape_) {
for (uint32_t i = 0; i < size_; ++i) {
data_[i] *= other.data_[i];
}
return *this;
}
throw(std::runtime_error("Shape of ImageDatas must match"));
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> NDArray<T, Ndim>::operator/(const NDArray &other) {
NDArray result = *this;
result /= other;
return result;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator&=(const T &mask) {
for (auto it = begin(); it != end(); ++it)
*it &= mask;
return *this;
}
// template <typename T, int64_t Ndim>
// NDArray<T, Ndim>& NDArray<T, Ndim>::operator/=(const NDArray<T, Ndim>&
// other)
// {
// //check shape
// if (shape_ == other.shape_) {
// for (int i = 0; i < size_; ++i) {
// data_[i] /= other.data_[i];
// }
// return *this;
// } else {
// throw(std::runtime_error("Shape of ImageDatas must match"));
// }
// }
template <typename T, int64_t Ndim> NDArray<bool, Ndim> NDArray<T, Ndim>::operator>(const NDArray &other) {
if (shape_ == other.shape_) {
NDArray<bool> result{shape_};
for (int i = 0; i < size_; ++i) {
result(i) = (data_[i] > other.data_[i]);
}
return result;
}
throw(std::runtime_error("Shape of ImageDatas must match"));
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const NDArray<T, Ndim> &other) {
if (this != &other) {
delete[] data_;
shape_ = other.shape_;
strides_ = other.strides_;
size_ = other.size_;
data_ = new T[size_];
std::copy(other.data_, other.data_ + size_, data_);
}
return *this;
}
template <typename T, int64_t Ndim> bool NDArray<T, Ndim>::operator==(const NDArray<T, Ndim> &other) const {
if (shape_ != other.shape_)
return false;
for (uint32_t i = 0; i != size_; ++i)
if (data_[i] != other.data_[i])
return false;
return true;
}
template <typename T, int64_t Ndim> bool NDArray<T, Ndim>::operator!=(const NDArray<T, Ndim> &other) const {
return !((*this) == other);
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator++() {
for (uint32_t i = 0; i < size_; ++i)
data_[i] += 1;
return *this;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const T &value) {
std::fill_n(data_, size_, value);
return *this;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const T &value) {
for (uint32_t i = 0; i < size_; ++i)
data_[i] += value;
return *this;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> NDArray<T, Ndim>::operator+(const T &value) {
NDArray result = *this;
result += value;
return result;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator-=(const T &value) {
for (uint32_t i = 0; i < size_; ++i)
data_[i] -= value;
return *this;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> NDArray<T, Ndim>::operator-(const T &value) {
NDArray result = *this;
result -= value;
return result;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator/=(const T &value) {
for (uint32_t i = 0; i < size_; ++i)
data_[i] /= value;
return *this;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> NDArray<T, Ndim>::operator/(const T &value) {
NDArray result = *this;
result /= value;
return result;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> &NDArray<T, Ndim>::operator*=(const T &value) {
for (uint32_t i = 0; i < size_; ++i)
data_[i] *= value;
return *this;
}
template <typename T, int64_t Ndim> NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
NDArray result = *this;
result *= value;
return result;
}
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
if (shape_[0] < 20 && shape_[1] < 20)
Print_all();
else
Print_some();
}
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print_all() {
for (auto row = 0; row < shape_[0]; ++row) {
for (auto col = 0; col < shape_[1]; ++col) {
std::cout << std::setw(3);
std::cout << (*this)(row, col) << " ";
}
std::cout << "\n";
}
}
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print_some() {
for (auto row = 0; row < 5; ++row) {
for (auto col = 0; col < 5; ++col) {
std::cout << std::setw(7);
std::cout << (*this)(row, col) << " ";
}
std::cout << "\n";
}
}
template <typename T, int64_t Ndim> void save(NDArray<T, Ndim> &img, std::string &pathname) {
std::ofstream f;
f.open(pathname, std::ios::binary);
f.write(img.buffer(), img.size() * sizeof(T));
f.close();
}
template <typename T, int64_t Ndim>
NDArray<T, Ndim> load(const std::string &pathname, std::array<int64_t, Ndim> shape) {
NDArray<T, Ndim> img{shape};
std::ifstream f;
f.open(pathname, std::ios::binary);
f.read(img.buffer(), img.size() * sizeof(T));
f.close();
return img;
}
} // namespace aare

159
include/aare/NDView.hpp Normal file
View File

@ -0,0 +1,159 @@
#pragma once
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <functional>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <stdexcept>
#include <vector>
namespace aare {
template <int64_t Ndim> using Shape = std::array<int64_t, Ndim>;
// TODO! fix mismatch between signed and unsigned
template <int64_t Ndim> Shape<Ndim> make_shape(const std::vector<size_t> &shape) {
if (shape.size() != Ndim)
throw std::runtime_error("Shape size mismatch");
Shape<Ndim> arr;
std::copy_n(shape.begin(), Ndim, arr.begin());
return arr;
}
template <int64_t Dim = 0, typename Strides> int64_t element_offset(const Strides & /*unused*/) { return 0; }
template <int64_t Dim = 0, typename Strides, typename... Ix>
int64_t element_offset(const Strides &strides, int64_t i, Ix... index) {
return i * strides[Dim] + element_offset<Dim + 1>(strides, index...);
}
template <int64_t Ndim> std::array<int64_t, Ndim> c_strides(const std::array<int64_t, Ndim> &shape) {
std::array<int64_t, Ndim> strides{};
std::fill(strides.begin(), strides.end(), 1);
for (int64_t i = Ndim - 1; i > 0; --i) {
strides[i - 1] = strides[i] * shape[i];
}
return strides;
}
template <int64_t Ndim> std::array<int64_t, Ndim> make_array(const std::vector<int64_t> &vec) {
assert(vec.size() == Ndim);
std::array<int64_t, Ndim> arr{};
std::copy_n(vec.begin(), Ndim, arr.begin());
return arr;
}
template <typename T, int64_t Ndim = 2> class NDView {
public:
NDView() = default;
~NDView() = default;
NDView(const NDView &) = default;
NDView(NDView &&) = default;
NDView(T *buffer, std::array<int64_t, Ndim> shape)
: buffer_(buffer), strides_(c_strides<Ndim>(shape)), shape_(shape),
size_(std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<>())) {}
// NDView(T *buffer, const std::vector<int64_t> &shape)
// : buffer_(buffer), strides_(c_strides<Ndim>(make_array<Ndim>(shape))), shape_(make_array<Ndim>(shape)),
// size_(std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<>())) {}
template <typename... Ix> std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) {
return buffer_[element_offset(strides_, index...)];
}
template <typename... Ix> std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) const {
return buffer_[element_offset(strides_, index...)];
}
uint64_t size() const { return size_; }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<int64_t, Ndim> strides() const noexcept { return strides_; }
T *begin() { return buffer_; }
T *end() { return buffer_ + size_; }
T &operator()(int64_t i) const { return buffer_[i]; }
T &operator[](int64_t i) const { return buffer_[i]; }
bool operator==(const NDView &other) const {
if (size_ != other.size_)
return false;
for (uint64_t i = 0; i != size_; ++i) {
if (buffer_[i] != other.buffer_[i])
return false;
}
return true;
}
NDView &operator+=(const T val) { return elemenwise(val, std::plus<T>()); }
NDView &operator-=(const T val) { return elemenwise(val, std::minus<T>()); }
NDView &operator*=(const T val) { return elemenwise(val, std::multiplies<T>()); }
NDView &operator/=(const T val) { return elemenwise(val, std::divides<T>()); }
NDView &operator/=(const NDView &other) { return elemenwise(other, std::divides<T>()); }
NDView &operator=(const T val) {
for (auto it = begin(); it != end(); ++it)
*it = val;
return *this;
}
NDView &operator=(const NDView &other) {
if (this == &other)
return *this;
shape_ = other.shape_;
strides_ = other.strides_;
size_ = other.size_;
buffer_ = other.buffer_;
return *this;
}
NDView &operator=(NDView &&other) noexcept {
if (this == &other)
return *this;
shape_ = std::move(other.shape_);
strides_ = std::move(other.strides_);
size_ = other.size_;
buffer_ = other.buffer_;
other.buffer_ = nullptr;
return *this;
}
auto &shape() { return shape_; }
auto shape(int64_t i) const { return shape_[i]; }
T *data() { return buffer_; }
void print_all() const;
private:
T *buffer_{nullptr};
std::array<int64_t, Ndim> strides_{};
std::array<int64_t, Ndim> shape_{};
uint64_t size_{};
template <class BinaryOperation> NDView &elemenwise(T val, BinaryOperation op) {
for (uint64_t i = 0; i != size_; ++i) {
buffer_[i] = op(buffer_[i], val);
}
return *this;
}
template <class BinaryOperation> NDView &elemenwise(const NDView &other, BinaryOperation op) {
for (uint64_t i = 0; i != size_; ++i) {
buffer_[i] = op(buffer_[i], other.buffer_[i]);
}
return *this;
}
};
template <typename T, int64_t Ndim> void NDView<T, Ndim>::print_all() const {
for (auto row = 0; row < shape_[0]; ++row) {
for (auto col = 0; col < shape_[1]; ++col) {
std::cout << std::setw(3);
std::cout << (*this)(row, col) << " ";
}
std::cout << "\n";
}
}
} // namespace aare

156
include/aare/defs.hpp Normal file
View File

@ -0,0 +1,156 @@
#pragma once
#include "aare/Dtype.hpp"
// #include "aare/utils/logger.hpp"
#include <array>
#include <stdexcept>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <string>
#include <string_view>
#include <variant>
#include <vector>
/**
* @brief LOCATION macro to get the current location in the code
*/
#define LOCATION std::string(__FILE__) + std::string(":") + std::to_string(__LINE__) + ":" + std::string(__func__) + ":"
namespace aare {
class Cluster {
public:
int cluster_sizeX;
int cluster_sizeY;
int16_t x;
int16_t y;
Dtype dt;
private:
std::byte *m_data;
public:
Cluster(int cluster_sizeX_, int cluster_sizeY_, Dtype dt_ = Dtype(typeid(int32_t)))
: cluster_sizeX(cluster_sizeX_), cluster_sizeY(cluster_sizeY_), dt(dt_) {
m_data = new std::byte[cluster_sizeX * cluster_sizeY * dt.bytes()]{};
}
Cluster() : Cluster(3, 3) {}
Cluster(const Cluster &other) : Cluster(other.cluster_sizeX, other.cluster_sizeY, other.dt) {
if (this == &other)
return;
x = other.x;
y = other.y;
memcpy(m_data, other.m_data, other.bytes());
}
Cluster &operator=(const Cluster &other) {
if (this == &other)
return *this;
this->~Cluster();
new (this) Cluster(other);
return *this;
}
Cluster(Cluster &&other) noexcept
: cluster_sizeX(other.cluster_sizeX), cluster_sizeY(other.cluster_sizeY), x(other.x), y(other.y), dt(other.dt),
m_data(other.m_data) {
other.m_data = nullptr;
other.dt = Dtype(Dtype::TypeIndex::ERROR);
}
~Cluster() { delete[] m_data; }
template <typename T> T get(int idx) {
(sizeof(T) == dt.bytes()) ? 0 : throw std::invalid_argument("[ERROR] Type size mismatch");
return *reinterpret_cast<T *>(m_data + idx * dt.bytes());
}
template <typename T> auto set(int idx, T val) {
(sizeof(T) == dt.bytes()) ? 0 : throw std::invalid_argument("[ERROR] Type size mismatch");
return memcpy(m_data + idx * dt.bytes(), &val, (size_t)dt.bytes());
}
// auto x() const { return x; }
// auto y() const { return y; }
// auto x(int16_t x_) { return x = x_; }
// auto y(int16_t y_) { return y = y_; }
template <typename T> std::string to_string() const {
(sizeof(T) == dt.bytes()) ? 0 : throw std::invalid_argument("[ERROR] Type size mismatch");
std::string s = "x: " + std::to_string(x) + " y: " + std::to_string(y) + "\nm_data: [";
for (int i = 0; i < cluster_sizeX * cluster_sizeY; i++) {
s += std::to_string(*reinterpret_cast<T *>(m_data + i * dt.bytes())) + " ";
}
s += "]";
return s;
}
/**
* @brief size of the cluster in bytes when saved to a file
*/
size_t size() const { return cluster_sizeX * cluster_sizeY ; }
size_t bytes() const { return cluster_sizeX * cluster_sizeY * dt.bytes(); }
auto begin() const { return m_data; }
auto end() const { return m_data + cluster_sizeX * cluster_sizeY * dt.bytes(); }
std::byte *data() { return m_data; }
};
/**
* @brief header contained in parts of frames
*/
struct sls_detector_header {
uint64_t frameNumber;
uint32_t expLength;
uint32_t packetNumber;
uint64_t bunchId;
uint64_t timestamp;
uint16_t modId;
uint16_t row;
uint16_t column;
uint16_t reserved;
uint32_t debug;
uint16_t roundRNumber;
uint8_t detType;
uint8_t version;
std::array<uint8_t, 64> packetMask;
std::string to_string() {
std::string packetMaskStr = "[";
for (auto &i : packetMask) {
packetMaskStr += std::to_string(i) + ", ";
}
packetMaskStr += "]";
return "frameNumber: " + std::to_string(frameNumber) + "\n" + "expLength: " + std::to_string(expLength) + "\n" +
"packetNumber: " + std::to_string(packetNumber) + "\n" + "bunchId: " + std::to_string(bunchId) + "\n" +
"timestamp: " + std::to_string(timestamp) + "\n" + "modId: " + std::to_string(modId) + "\n" +
"row: " + std::to_string(row) + "\n" + "column: " + std::to_string(column) + "\n" +
"reserved: " + std::to_string(reserved) + "\n" + "debug: " + std::to_string(debug) + "\n" +
"roundRNumber: " + std::to_string(roundRNumber) + "\n" + "detType: " + std::to_string(detType) + "\n" +
"version: " + std::to_string(version) + "\n" + "packetMask: " + packetMaskStr + "\n";
}
};
template <typename T> struct t_xy {
T row;
T col;
bool operator==(const t_xy &other) const { return row == other.row && col == other.col; }
bool operator!=(const t_xy &other) const { return !(*this == other); }
std::string to_string() const { return "{ x: " + std::to_string(row) + " y: " + std::to_string(col) + " }"; }
};
using xy = t_xy<uint32_t>;
using dynamic_shape = std::vector<int64_t>;
enum class DetectorType { Jungfrau, Eiger, Mythen3, Moench, ChipTestBoard, Unknown };
enum class TimingMode { Auto, Trigger };
template <class T> T StringTo(const std::string &arg) { return T(arg); }
template <class T> std::string toString(T arg) { return T(arg); }
template <> DetectorType StringTo(const std::string & /*name*/);
template <> std::string toString(DetectorType arg);
template <> TimingMode StringTo(const std::string & /*mode*/);
using DataTypeVariants = std::variant<uint16_t, uint32_t>;
} // namespace aare