mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-12-21 12:31:25 +01:00
Apply calibration to Jungfrau raw data (#216)
- Added function to read calibration file - Multi threaded pedestal subtraction and application of the calibration
This commit is contained in:
43
python/tests/test_calibration.py
Normal file
43
python/tests/test_calibration.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from aare import apply_calibration
|
||||
|
||||
def test_apply_calibration_small_data():
|
||||
# The raw data consists of 10 4x5 images
|
||||
raw = np.zeros((10, 4, 5), dtype=np.uint16)
|
||||
|
||||
# We need a pedestal for each gain, so 3
|
||||
pedestal = np.zeros((3, 4, 5), dtype=np.float32)
|
||||
|
||||
# And the same for calibration
|
||||
calibration = np.ones((3, 4, 5), dtype=np.float32)
|
||||
|
||||
# Set the known values, probing one pixel in each gain
|
||||
raw[0, 0, 0] = 100 #ADC value of 100, gain 0
|
||||
pedestal[0, 0, 0] = 10
|
||||
calibration[0, 0, 0] = 43.7
|
||||
|
||||
raw[2, 3, 3] = (1<<14) + 1000 #ADC value of 1000, gain 1
|
||||
pedestal[1, 3, 3] = 500
|
||||
calibration[1, 3, 3] = 2.0
|
||||
|
||||
raw[1,1,4] = (3<<14) + 857 #ADC value of 857, gain 2
|
||||
pedestal[2,1,4] = 100
|
||||
calibration[2,1,4] = 3.0
|
||||
|
||||
|
||||
|
||||
data = apply_calibration(raw, pd = pedestal, cal = calibration)
|
||||
|
||||
|
||||
# The formula that is applied is:
|
||||
# calibrated = (raw - pedestal) / calibration
|
||||
assert data.shape == (10, 4, 5)
|
||||
assert data[0, 0, 0] == (100 - 10) / 43.7
|
||||
assert data[2, 3, 3] == (1000 - 500) / 2.0
|
||||
assert data[1, 1, 4] == (857 - 100) / 3.0
|
||||
|
||||
# Other pixels should be zero
|
||||
assert data[2,2,2] == 0
|
||||
assert data[0,1,1] == 0
|
||||
assert data[1,3,0] == 0
|
||||
Reference in New Issue
Block a user