mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-04-19 13:20:03 +02:00
mod pedestal
This commit is contained in:
parent
b3a9e9576b
commit
a0f481c0ee
@ -40,7 +40,7 @@ option(AARE_DOCS "Build documentation" OFF)
|
||||
option(AARE_VERBOSE "Verbose output" OFF)
|
||||
option(AARE_CUSTOM_ASSERT "Use custom assert" OFF)
|
||||
option(AARE_INSTALL_PYTHONEXT "Install the python extension in the install tree under CMAKE_INSTALL_PREFIX/aare/" OFF)
|
||||
|
||||
option(AARE_ASAN "Enable AddressSanitizer" OFF)
|
||||
|
||||
# Configure which of the dependencies to use FetchContent for
|
||||
option(AARE_FETCH_FMT "Use FetchContent to download fmt" ON)
|
||||
@ -225,13 +225,6 @@ if(CMAKE_BUILD_TYPE STREQUAL "Release")
|
||||
target_compile_options(aare_compiler_flags INTERFACE -O3)
|
||||
else()
|
||||
message(STATUS "Debug build")
|
||||
target_compile_options(
|
||||
aare_compiler_flags
|
||||
INTERFACE
|
||||
-Og
|
||||
-ggdb3
|
||||
)
|
||||
|
||||
endif()
|
||||
|
||||
# Common flags for GCC and Clang
|
||||
@ -256,7 +249,21 @@ target_compile_options(
|
||||
endif() #GCC/Clang specific
|
||||
|
||||
|
||||
|
||||
if(AARE_ASAN)
|
||||
message(STATUS "AddressSanitizer enabled")
|
||||
target_compile_options(
|
||||
aare_compiler_flags
|
||||
INTERFACE
|
||||
-fsanitize=address,undefined,pointer-compare
|
||||
-fno-omit-frame-pointer
|
||||
)
|
||||
target_link_libraries(
|
||||
aare_compiler_flags
|
||||
INTERFACE
|
||||
-fsanitize=address,undefined,pointer-compare
|
||||
-fno-omit-frame-pointer
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
@ -316,6 +323,8 @@ target_include_directories(aare_core PUBLIC
|
||||
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
|
||||
)
|
||||
|
||||
|
||||
|
||||
target_link_libraries(
|
||||
aare_core
|
||||
PUBLIC
|
||||
|
@ -82,8 +82,8 @@ class ClusterFinder {
|
||||
// // TODO! deal with even size clusters
|
||||
// // currently 3,3 -> +/- 1
|
||||
// // 4,4 -> +/- 2
|
||||
short dy = m_cluster_sizeY / 2;
|
||||
short dx = m_cluster_sizeX / 2;
|
||||
int dy = m_cluster_sizeY / 2;
|
||||
int dx = m_cluster_sizeX / 2;
|
||||
|
||||
std::vector<CT> cluster_data(m_cluster_sizeX * m_cluster_sizeY);
|
||||
for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
@ -100,8 +100,8 @@ class ClusterFinder {
|
||||
continue; // NEGATIVE_PEDESTAL go to next pixel
|
||||
// TODO! No pedestal update???
|
||||
|
||||
for (short ir = -dy; ir < dy + 1; ir++) {
|
||||
for (short ic = -dx; ic < dx + 1; ic++) {
|
||||
for (int ir = -dy; ir < dy + 1; ir++) {
|
||||
for (int ic = -dx; ic < dx + 1; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
PEDESTAL_TYPE val =
|
||||
|
@ -13,12 +13,12 @@ namespace aare {
|
||||
* contiguous memory buffer to store the clusters.
|
||||
* @note push_back can invalidate pointers to elements in the container
|
||||
* @tparam T data type of the pixels in the cluster
|
||||
* @tparam CoordType data type of the x and y coordinates of the cluster (normally int16_t)
|
||||
*/
|
||||
template <typename T> class ClusterVector {
|
||||
template <typename T, typename CoordType=int16_t> class ClusterVector {
|
||||
using value_type = T;
|
||||
using coord_t = int16_t;
|
||||
coord_t m_cluster_size_x;
|
||||
coord_t m_cluster_size_y;
|
||||
size_t m_cluster_size_x;
|
||||
size_t m_cluster_size_y;
|
||||
std::byte *m_data{};
|
||||
size_t m_size{0};
|
||||
size_t m_capacity;
|
||||
@ -39,7 +39,7 @@ template <typename T> class ClusterVector {
|
||||
* @param cluster_size_y size of the cluster in y direction
|
||||
* @param capacity initial capacity of the buffer in number of clusters
|
||||
*/
|
||||
ClusterVector(coord_t cluster_size_x, coord_t cluster_size_y,
|
||||
ClusterVector(size_t cluster_size_x, size_t cluster_size_y,
|
||||
size_t capacity = 1024)
|
||||
: m_cluster_size_x(cluster_size_x), m_cluster_size_y(cluster_size_y),
|
||||
m_capacity(capacity) {
|
||||
@ -94,21 +94,22 @@ template <typename T> class ClusterVector {
|
||||
* @param data pointer to the data of the cluster
|
||||
* @warning The data pointer must point to a buffer of size cluster_size_x * cluster_size_y * sizeof(T)
|
||||
*/
|
||||
void push_back(coord_t x, coord_t y, const std::byte *data) {
|
||||
void push_back(CoordType x, CoordType y, const std::byte *data) {
|
||||
if (m_size == m_capacity) {
|
||||
allocate_buffer(m_capacity * 2);
|
||||
}
|
||||
std::byte *ptr = element_ptr(m_size);
|
||||
*reinterpret_cast<coord_t *>(ptr) = x;
|
||||
ptr += sizeof(coord_t);
|
||||
*reinterpret_cast<coord_t *>(ptr) = y;
|
||||
ptr += sizeof(coord_t);
|
||||
*reinterpret_cast<CoordType *>(ptr) = x;
|
||||
ptr += sizeof(CoordType);
|
||||
*reinterpret_cast<CoordType *>(ptr) = y;
|
||||
ptr += sizeof(CoordType);
|
||||
|
||||
std::copy(data, data + m_cluster_size_x * m_cluster_size_y * sizeof(T),
|
||||
ptr);
|
||||
m_size++;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Sum the pixels in each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
@ -117,7 +118,7 @@ template <typename T> class ClusterVector {
|
||||
std::vector<T> sums(m_size);
|
||||
const size_t stride = element_offset();
|
||||
const size_t n_pixels = m_cluster_size_x * m_cluster_size_y;
|
||||
std::byte *ptr = m_data + 2 * sizeof(coord_t); // skip x and y
|
||||
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
|
||||
|
||||
for (size_t i = 0; i < m_size; i++) {
|
||||
sums[i] =
|
||||
@ -135,7 +136,7 @@ template <typename T> class ClusterVector {
|
||||
* @brief Return the offset in bytes for a single cluster
|
||||
*/
|
||||
size_t element_offset() const {
|
||||
return sizeof(m_cluster_size_x) + sizeof(m_cluster_size_y) +
|
||||
return 2*sizeof(CoordType) +
|
||||
m_cluster_size_x * m_cluster_size_y * sizeof(T);
|
||||
}
|
||||
/**
|
||||
@ -148,8 +149,8 @@ template <typename T> class ClusterVector {
|
||||
*/
|
||||
std::byte *element_ptr(size_t i) { return m_data + element_offset(i); }
|
||||
|
||||
int16_t cluster_size_x() const { return m_cluster_size_x; }
|
||||
int16_t cluster_size_y() const { return m_cluster_size_y; }
|
||||
size_t cluster_size_x() const { return m_cluster_size_x; }
|
||||
size_t cluster_size_y() const { return m_cluster_size_y; }
|
||||
|
||||
std::byte *data() { return m_data; }
|
||||
const std::byte *data() const { return m_data; }
|
||||
|
@ -87,7 +87,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
// Conversion operator from array expression to array
|
||||
template <typename E>
|
||||
NDArray(ArrayExpr<E, Ndim> &&expr) : NDArray(expr.shape()) {
|
||||
for (int i = 0; i < size_; ++i) {
|
||||
for (size_t i = 0; i < size_; ++i) {
|
||||
data_[i] = expr[i];
|
||||
}
|
||||
}
|
||||
@ -159,11 +159,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
}
|
||||
|
||||
// TODO! is int the right type for index?
|
||||
T &operator()(int i) { return data_[i]; }
|
||||
const T &operator()(int i) const { return data_[i]; }
|
||||
T &operator()(int64_t i) { return data_[i]; }
|
||||
const T &operator()(int64_t i) const { return data_[i]; }
|
||||
|
||||
T &operator[](int i) { return data_[i]; }
|
||||
const T &operator[](int i) const { return data_[i]; }
|
||||
T &operator[](int64_t i) { return data_[i]; }
|
||||
const T &operator[](int64_t i) const { return data_[i]; }
|
||||
|
||||
T *data() { return data_; }
|
||||
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
|
||||
|
@ -23,31 +23,43 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
NDArray<SUM_TYPE, 2> m_sum;
|
||||
NDArray<SUM_TYPE, 2> m_sum2;
|
||||
|
||||
//Cache mean since it is used over and over in the ClusterFinder
|
||||
//This optimization is related to the access pattern of the ClusterFinder
|
||||
//Relies on having more reads than pushes to the pedestal
|
||||
NDArray<SUM_TYPE, 2> m_mean;
|
||||
|
||||
public:
|
||||
Pedestal(uint32_t rows, uint32_t cols, uint32_t n_samples = 1000)
|
||||
: m_rows(rows), m_cols(cols), m_samples(n_samples),
|
||||
m_cur_samples(NDArray<uint32_t, 2>({rows, cols}, 0)),
|
||||
m_sum(NDArray<SUM_TYPE, 2>({rows, cols})),
|
||||
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})) {
|
||||
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})),
|
||||
m_mean(NDArray<SUM_TYPE, 2>({rows, cols})) {
|
||||
assert(rows > 0 && cols > 0 && n_samples > 0);
|
||||
m_sum = 0;
|
||||
m_sum2 = 0;
|
||||
m_mean = 0;
|
||||
}
|
||||
~Pedestal() = default;
|
||||
|
||||
NDArray<SUM_TYPE, 2> mean() {
|
||||
NDArray<SUM_TYPE, 2> mean_array({m_rows, m_cols});
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
mean_array(i / m_cols, i % m_cols) = mean(i / m_cols, i % m_cols);
|
||||
}
|
||||
return mean_array;
|
||||
return m_mean;
|
||||
}
|
||||
|
||||
SUM_TYPE mean(const uint32_t row, const uint32_t col) const {
|
||||
return m_mean(row, col);
|
||||
}
|
||||
|
||||
SUM_TYPE std(const uint32_t row, const uint32_t col) const {
|
||||
return std::sqrt(variance(row, col));
|
||||
}
|
||||
|
||||
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
|
||||
if (m_cur_samples(row, col) == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
return m_sum(row, col) / m_cur_samples(row, col);
|
||||
return m_sum2(row, col) / m_cur_samples(row, col) -
|
||||
mean(row, col) * mean(row, col);
|
||||
}
|
||||
|
||||
NDArray<SUM_TYPE, 2> variance() {
|
||||
@ -59,13 +71,7 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
return variance_array;
|
||||
}
|
||||
|
||||
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
|
||||
if (m_cur_samples(row, col) == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
return m_sum2(row, col) / m_cur_samples(row, col) -
|
||||
mean(row, col) * mean(row, col);
|
||||
}
|
||||
|
||||
|
||||
NDArray<SUM_TYPE, 2> std() {
|
||||
NDArray<SUM_TYPE, 2> standard_deviation_array({m_rows, m_cols});
|
||||
@ -77,14 +83,12 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
return standard_deviation_array;
|
||||
}
|
||||
|
||||
SUM_TYPE std(const uint32_t row, const uint32_t col) const {
|
||||
return std::sqrt(variance(row, col));
|
||||
}
|
||||
|
||||
|
||||
void clear() {
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
clear(i / m_cols, i % m_cols);
|
||||
}
|
||||
m_sum = 0;
|
||||
m_sum2 = 0;
|
||||
m_cur_samples = 0;
|
||||
}
|
||||
|
||||
|
||||
@ -104,8 +108,8 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
"Frame shape does not match pedestal shape");
|
||||
}
|
||||
|
||||
for (uint32_t row = 0; row < m_rows; row++) {
|
||||
for (uint32_t col = 0; col < m_cols; col++) {
|
||||
for (size_t row = 0; row < m_rows; row++) {
|
||||
for (size_t col = 0; col < m_cols; col++) {
|
||||
push<T>(row, col, frame(row, col));
|
||||
}
|
||||
}
|
||||
@ -134,18 +138,17 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
template <typename T>
|
||||
void push(const uint32_t row, const uint32_t col, const T val_) {
|
||||
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
|
||||
const uint32_t idx = index(row, col);
|
||||
if (m_cur_samples(idx) < m_samples) {
|
||||
m_sum(idx) += val;
|
||||
m_sum2(idx) += val * val;
|
||||
m_cur_samples(idx)++;
|
||||
if (m_cur_samples(row, col) < m_samples) {
|
||||
m_sum(row, col) += val;
|
||||
m_sum2(row, col) += val * val;
|
||||
m_cur_samples(row, col)++;
|
||||
} else {
|
||||
m_sum(idx) += val - m_sum(idx) / m_cur_samples(idx);
|
||||
m_sum2(idx) += val * val - m_sum2(idx) / m_cur_samples(idx);
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_cur_samples(row, col);
|
||||
m_sum2(row, col) += val * val - m_sum2(row, col) / m_cur_samples(row, col);
|
||||
}
|
||||
//Since we just did a push we know that m_cur_samples(row, col) is at least 1
|
||||
m_mean(row, col) = m_sum(row, col) / m_cur_samples(row, col);
|
||||
}
|
||||
uint32_t index(const uint32_t row, const uint32_t col) const {
|
||||
return row * m_cols + col;
|
||||
};
|
||||
|
||||
};
|
||||
} // namespace aare
|
@ -3,9 +3,10 @@ from . import _aare
|
||||
|
||||
|
||||
from ._aare import File, RawMasterFile, RawSubFile
|
||||
from ._aare import Pedestal, ClusterFinder, VarClusterFinder
|
||||
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
|
||||
from ._aare import DetectorType
|
||||
from ._aare import ClusterFile
|
||||
from ._aare import hitmap
|
||||
|
||||
from .CtbRawFile import CtbRawFile
|
||||
from .RawFile import RawFile
|
||||
|
@ -80,7 +80,26 @@ void define_cluster_finder_bindings(py::module &m) {
|
||||
return;
|
||||
});
|
||||
|
||||
|
||||
m.def("hitmap", [](std::array<size_t, 2> image_size, ClusterVector<int32_t>& cv){
|
||||
|
||||
py::array_t<int32_t> hitmap(image_size);
|
||||
auto r = hitmap.mutable_unchecked<2>();
|
||||
|
||||
// Initialize hitmap to 0
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
r(i, j) = 0;
|
||||
|
||||
size_t stride = cv.element_offset();
|
||||
auto ptr = cv.data();
|
||||
for(size_t i=0; i<cv.size(); i++){
|
||||
auto x = *reinterpret_cast<int16_t*>(ptr);
|
||||
auto y = *reinterpret_cast<int16_t*>(ptr+sizeof(int16_t));
|
||||
r(y, x) += 1;
|
||||
ptr += stride;
|
||||
}
|
||||
return hitmap;
|
||||
});
|
||||
define_cluster_vector<int>(m, "i");
|
||||
define_cluster_vector<double>(m, "d");
|
||||
define_cluster_vector<float>(m, "f");
|
||||
|
@ -10,6 +10,12 @@
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
//Disable warnings for unused parameters, as we ignore some
|
||||
//in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
@ -60,4 +66,6 @@ void define_cluster_file_io_bindings(py::module &m) {
|
||||
}
|
||||
return return_vector(vec);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -22,8 +22,8 @@ PYBIND11_MODULE(_aare, m) {
|
||||
define_raw_master_file_bindings(m);
|
||||
define_var_cluster_finder_bindings(m);
|
||||
define_pixel_map_bindings(m);
|
||||
define_pedestal_bindings<double>(m, "Pedestal");
|
||||
define_pedestal_bindings<float>(m, "Pedestal_float32");
|
||||
define_pedestal_bindings<double>(m, "Pedestal_d");
|
||||
define_pedestal_bindings<float>(m, "Pedestal_f");
|
||||
define_cluster_finder_bindings(m);
|
||||
define_cluster_file_io_bindings(m);
|
||||
}
|
@ -1,7 +1,7 @@
|
||||
#include <cstdint>
|
||||
#include "aare/ClusterVector.hpp"
|
||||
|
||||
// #include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
|
||||
using aare::ClusterVector;
|
||||
@ -44,10 +44,10 @@ TEST_CASE("Summing 3x1 clusters of int64"){
|
||||
struct Cluster_l3x1{
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int64_t data[3];
|
||||
int32_t data[3];
|
||||
};
|
||||
|
||||
ClusterVector<int64_t> cv(3, 1, 2);
|
||||
ClusterVector<int32_t> cv(3, 1, 2);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
REQUIRE(cv.size() == 0);
|
||||
REQUIRE(cv.cluster_size_x() == 3);
|
||||
@ -74,4 +74,35 @@ TEST_CASE("Summing 3x1 clusters of int64"){
|
||||
REQUIRE(sums[0] == 12);
|
||||
REQUIRE(sums[1] == 27);
|
||||
REQUIRE(sums[2] == 42);
|
||||
}
|
||||
|
||||
TEST_CASE("Storing floats"){
|
||||
struct Cluster_f4x2{
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
float data[8];
|
||||
};
|
||||
|
||||
ClusterVector<float> cv(2, 4, 2);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
REQUIRE(cv.size() == 0);
|
||||
REQUIRE(cv.cluster_size_x() == 2);
|
||||
REQUIRE(cv.cluster_size_y() == 4);
|
||||
|
||||
//Create a cluster and push back into the vector
|
||||
Cluster_f4x2 c1 = {1, 2, {3.0, 4.0, 5.0, 6.0,3.0, 4.0, 5.0, 6.0}};
|
||||
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
REQUIRE(cv.size() == 1);
|
||||
|
||||
|
||||
Cluster_f4x2 c2 = {6, 7, {8.0, 9.0, 10.0, 11.0,8.0, 9.0, 10.0, 11.0}};
|
||||
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
REQUIRE(cv.size() == 2);
|
||||
|
||||
auto sums = cv.sum();
|
||||
REQUIRE(sums.size() == 2);
|
||||
REQUIRE_THAT(sums[0], Catch::Matchers::WithinAbs(36.0, 1e-6));
|
||||
REQUIRE_THAT(sums[1], Catch::Matchers::WithinAbs(76.0, 1e-6));
|
||||
}
|
@ -19,7 +19,7 @@ TEST_CASE("Construct a frame") {
|
||||
// data should be initialized to 0
|
||||
for (size_t i = 0; i < rows; i++) {
|
||||
for (size_t j = 0; j < cols; j++) {
|
||||
uint8_t *data = (uint8_t *)frame.pixel_ptr(i, j);
|
||||
uint8_t *data = reinterpret_cast<uint8_t *>(frame.pixel_ptr(i, j));
|
||||
REQUIRE(data != nullptr);
|
||||
REQUIRE(*data == 0);
|
||||
}
|
||||
@ -40,7 +40,7 @@ TEST_CASE("Set a value in a 8 bit frame") {
|
||||
// only the value we did set should be non-zero
|
||||
for (size_t i = 0; i < rows; i++) {
|
||||
for (size_t j = 0; j < cols; j++) {
|
||||
uint8_t *data = (uint8_t *)frame.pixel_ptr(i, j);
|
||||
uint8_t *data = reinterpret_cast<uint8_t *>(frame.pixel_ptr(i, j));
|
||||
REQUIRE(data != nullptr);
|
||||
if (i == 5 && j == 7) {
|
||||
REQUIRE(*data == value);
|
||||
@ -65,7 +65,7 @@ TEST_CASE("Set a value in a 64 bit frame") {
|
||||
// only the value we did set should be non-zero
|
||||
for (size_t i = 0; i < rows; i++) {
|
||||
for (size_t j = 0; j < cols; j++) {
|
||||
uint64_t *data = (uint64_t *)frame.pixel_ptr(i, j);
|
||||
uint64_t *data = reinterpret_cast<uint64_t *>(frame.pixel_ptr(i, j));
|
||||
REQUIRE(data != nullptr);
|
||||
if (i == 5 && j == 7) {
|
||||
REQUIRE(*data == value);
|
||||
@ -149,4 +149,5 @@ TEST_CASE("test explicit copy constructor") {
|
||||
REQUIRE(frame2.bitdepth() == bitdepth);
|
||||
REQUIRE(frame2.bytes() == rows * cols * bitdepth / 8);
|
||||
REQUIRE(frame2.data() != data);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -17,8 +17,8 @@ endif()
|
||||
list(APPEND CMAKE_MODULE_PATH ${Catch2_SOURCE_DIR}/extras)
|
||||
|
||||
add_executable(tests test.cpp)
|
||||
target_link_libraries(tests PRIVATE Catch2::Catch2WithMain)
|
||||
|
||||
target_link_libraries(tests PRIVATE Catch2::Catch2WithMain aare_core aare_compiler_flags)
|
||||
# target_compile_options(tests PRIVATE -fno-omit-frame-pointer -fsanitize=address)
|
||||
set_target_properties(tests PROPERTIES
|
||||
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
|
||||
OUTPUT_NAME run_tests
|
||||
@ -34,7 +34,7 @@ set(TestSources
|
||||
target_sources(tests PRIVATE ${TestSources} )
|
||||
|
||||
#Work around to remove, this is not the way to do it =)
|
||||
target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
|
||||
# target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
|
||||
|
||||
|
||||
#configure a header to pass test file paths
|
||||
|
@ -3,6 +3,7 @@
|
||||
#include <climits>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <fmt/core.h>
|
||||
|
||||
TEST_CASE("Test suite can find data assets", "[.integration]") {
|
||||
auto fpath = test_data_path() / "numpy" / "test_numpy_file.npy";
|
||||
@ -18,4 +19,20 @@ TEST_CASE("Test suite can open data assets", "[.integration]") {
|
||||
TEST_CASE("Test float32 and char8") {
|
||||
REQUIRE(sizeof(float) == 4);
|
||||
REQUIRE(CHAR_BIT == 8);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Uncomment the following tests to verify that asan is working
|
||||
*/
|
||||
|
||||
// TEST_CASE("trigger asan stack"){
|
||||
// int arr[5] = {1,2,3,4,5};
|
||||
// int val = arr[7];
|
||||
// fmt::print("val: {}\n", val);
|
||||
// }
|
||||
|
||||
// TEST_CASE("trigger asan heap"){
|
||||
// auto *ptr = new int[5];
|
||||
// ptr[70] = 5;
|
||||
// fmt::print("ptr: {}\n", ptr[70]);
|
||||
// }
|
Loading…
x
Reference in New Issue
Block a user