mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-12 23:37:13 +02:00
RawSubFile support multi file access (#173)
This PR is a fix/improvement to a problem that Jonathan had. (#156) The original implementation opened all subfiles at once witch works for normal sized datasets but fails at a certain point (thousands of files). - This solution uses RawSubFile to manage the different file indicies and only opens the file we need - Added logger.h from slsDetectorPackage for debug printing (in production no messages should be visible)
This commit is contained in:
@ -1,79 +1,89 @@
|
||||
import sys
|
||||
sys.path.append('/home/l_msdetect/erik/aare/build')
|
||||
|
||||
from aare._aare import ClusterVector_i, Interpolator
|
||||
|
||||
import pickle
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import boost_histogram as bh
|
||||
import torch
|
||||
import math
|
||||
import time
|
||||
from aare import RawSubFile, DetectorType, RawFile
|
||||
|
||||
from pathlib import Path
|
||||
path = Path("/home/l_msdetect/erik/data/aare-test-data/raw/jungfrau/")
|
||||
f = RawSubFile(path/"jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16)
|
||||
|
||||
# f = RawFile(path/"jungfrau_single_master_0.json")
|
||||
|
||||
|
||||
# from aare._aare import ClusterVector_i, Interpolator
|
||||
|
||||
# import pickle
|
||||
# import numpy as np
|
||||
# import matplotlib.pyplot as plt
|
||||
# import boost_histogram as bh
|
||||
# import torch
|
||||
# import math
|
||||
# import time
|
||||
|
||||
|
||||
|
||||
def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
|
||||
"""
|
||||
Generate a 2D gaussian as position mx, my, with sigma=sigma.
|
||||
The gaussian is placed on a 2x2 pixel matrix with resolution
|
||||
res in one dimesion.
|
||||
"""
|
||||
x = torch.linspace(0, pixel_size*grid_size, res)
|
||||
x,y = torch.meshgrid(x,x, indexing="ij")
|
||||
return 1 / (2*math.pi*sigma**2) * \
|
||||
torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
|
||||
# def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
|
||||
# """
|
||||
# Generate a 2D gaussian as position mx, my, with sigma=sigma.
|
||||
# The gaussian is placed on a 2x2 pixel matrix with resolution
|
||||
# res in one dimesion.
|
||||
# """
|
||||
# x = torch.linspace(0, pixel_size*grid_size, res)
|
||||
# x,y = torch.meshgrid(x,x, indexing="ij")
|
||||
# return 1 / (2*math.pi*sigma**2) * \
|
||||
# torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
|
||||
|
||||
scale = 1000 #Scale factor when converting to integer
|
||||
pixel_size = 25 #um
|
||||
grid = 2
|
||||
resolution = 100
|
||||
sigma_um = 10
|
||||
xa = np.linspace(0,grid*pixel_size,resolution)
|
||||
ticks = [0, 25, 50]
|
||||
# scale = 1000 #Scale factor when converting to integer
|
||||
# pixel_size = 25 #um
|
||||
# grid = 2
|
||||
# resolution = 100
|
||||
# sigma_um = 10
|
||||
# xa = np.linspace(0,grid*pixel_size,resolution)
|
||||
# ticks = [0, 25, 50]
|
||||
|
||||
hit = np.array((20,20))
|
||||
etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
|
||||
# hit = np.array((20,20))
|
||||
# etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
|
||||
|
||||
local_resolution = 99
|
||||
grid_size = 3
|
||||
xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
|
||||
t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
|
||||
pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
|
||||
pixels = pixels.numpy()
|
||||
pixels = (pixels*scale).astype(np.int32)
|
||||
v = ClusterVector_i(3,3)
|
||||
v.push_back(1,1, pixels)
|
||||
# local_resolution = 99
|
||||
# grid_size = 3
|
||||
# xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
|
||||
# t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
|
||||
# pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
|
||||
# pixels = pixels.numpy()
|
||||
# pixels = (pixels*scale).astype(np.int32)
|
||||
# v = ClusterVector_i(3,3)
|
||||
# v.push_back(1,1, pixels)
|
||||
|
||||
with open(etahist_fname, "rb") as f:
|
||||
hist = pickle.load(f)
|
||||
eta = hist.view().copy()
|
||||
etabinsx = np.array(hist.axes.edges.T[0].flat)
|
||||
etabinsy = np.array(hist.axes.edges.T[1].flat)
|
||||
ebins = np.array(hist.axes.edges.T[2].flat)
|
||||
p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
|
||||
# with open(etahist_fname, "rb") as f:
|
||||
# hist = pickle.load(f)
|
||||
# eta = hist.view().copy()
|
||||
# etabinsx = np.array(hist.axes.edges.T[0].flat)
|
||||
# etabinsy = np.array(hist.axes.edges.T[1].flat)
|
||||
# ebins = np.array(hist.axes.edges.T[2].flat)
|
||||
# p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
|
||||
|
||||
|
||||
|
||||
|
||||
#Generate the hit
|
||||
# #Generate the hit
|
||||
|
||||
|
||||
|
||||
|
||||
tmp = p.interpolate(v)
|
||||
print(f'tmp:{tmp}')
|
||||
pos = np.array((tmp['x'], tmp['y']))*25
|
||||
# tmp = p.interpolate(v)
|
||||
# print(f'tmp:{tmp}')
|
||||
# pos = np.array((tmp['x'], tmp['y']))*25
|
||||
|
||||
|
||||
print(pixels)
|
||||
fig, ax = plt.subplots(figsize = (7,7))
|
||||
ax.pcolormesh(xaxis, xaxis, t)
|
||||
ax.plot(*pos, 'o')
|
||||
ax.set_xticks([0,25,50,75])
|
||||
ax.set_yticks([0,25,50,75])
|
||||
ax.set_xlim(0,75)
|
||||
ax.set_ylim(0,75)
|
||||
ax.grid()
|
||||
print(f'{hit=}')
|
||||
print(f'{pos=}')
|
||||
# print(pixels)
|
||||
# fig, ax = plt.subplots(figsize = (7,7))
|
||||
# ax.pcolormesh(xaxis, xaxis, t)
|
||||
# ax.plot(*pos, 'o')
|
||||
# ax.set_xticks([0,25,50,75])
|
||||
# ax.set_yticks([0,25,50,75])
|
||||
# ax.set_xlim(0,75)
|
||||
# ax.set_ylim(0,75)
|
||||
# ax.grid()
|
||||
# print(f'{hit=}')
|
||||
# print(f'{pos=}')
|
@ -32,7 +32,7 @@ void define_raw_file_io_bindings(py::module &m) {
|
||||
shape.push_back(self.cols());
|
||||
|
||||
// return headers from all subfiles
|
||||
py::array_t<DetectorHeader> header(self.n_mod());
|
||||
py::array_t<DetectorHeader> header(self.n_modules());
|
||||
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
if (item_size == 1) {
|
||||
@ -61,10 +61,10 @@ void define_raw_file_io_bindings(py::module &m) {
|
||||
|
||||
// return headers from all subfiles
|
||||
py::array_t<DetectorHeader> header;
|
||||
if (self.n_mod() == 1) {
|
||||
if (self.n_modules() == 1) {
|
||||
header = py::array_t<DetectorHeader>(n_frames);
|
||||
} else {
|
||||
header = py::array_t<DetectorHeader>({self.n_mod(), n_frames});
|
||||
header = py::array_t<DetectorHeader>({self.n_modules(), n_frames});
|
||||
}
|
||||
// py::array_t<DetectorHeader> header({self.n_mod(), n_frames});
|
||||
|
||||
@ -100,7 +100,7 @@ void define_raw_file_io_bindings(py::module &m) {
|
||||
.def_property_readonly("cols", &RawFile::cols)
|
||||
.def_property_readonly("bitdepth", &RawFile::bitdepth)
|
||||
.def_property_readonly("geometry", &RawFile::geometry)
|
||||
.def_property_readonly("n_mod", &RawFile::n_mod)
|
||||
.def_property_readonly("n_modules", &RawFile::n_modules)
|
||||
.def_property_readonly("detector_type", &RawFile::detector_type)
|
||||
.def_property_readonly("master", &RawFile::master);
|
||||
}
|
@ -5,32 +5,35 @@ from aare import RawSubFile, DetectorType
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_a_jungfrau_RawSubFile(test_data_path):
|
||||
|
||||
# Starting with f1 there is now 7 frames left in the series of files
|
||||
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f1_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
|
||||
assert f.frames_in_file == 3
|
||||
assert f.frames_in_file == 7
|
||||
|
||||
headers, frames = f.read()
|
||||
|
||||
assert headers.size == 3
|
||||
assert frames.shape == (3, 512, 1024)
|
||||
assert headers.size == 7
|
||||
assert frames.shape == (7, 512, 1024)
|
||||
|
||||
# Frame numbers in this file should be 4, 5, 6
|
||||
for i,h in zip(range(4,7,1), headers):
|
||||
|
||||
for i,h in zip(range(4,11,1), headers):
|
||||
assert h["frameNumber"] == i
|
||||
|
||||
# Compare to canned data using numpy
|
||||
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
|
||||
assert np.all(data[3:6] == frames)
|
||||
assert np.all(data[3:] == frames)
|
||||
|
||||
@pytest.mark.files
|
||||
def test_iterate_over_a_jungfrau_RawSubFile(test_data_path):
|
||||
|
||||
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
|
||||
|
||||
# Given the first subfile in a series we can read all frames from f0, f1, f2...fN
|
||||
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
|
||||
i = 0
|
||||
for header, frame in f:
|
||||
assert header["frameNumber"] == i+1
|
||||
assert np.all(frame == data[i])
|
||||
i += 1
|
||||
assert i == 3
|
||||
assert header["frameNumber"] == 3
|
||||
assert i == 10
|
||||
assert header["frameNumber"] == 10
|
Reference in New Issue
Block a user