mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-04-20 05:40:03 +02:00
added some python tests
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 41s
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 41s
This commit is contained in:
parent
885309d97c
commit
9de84a7f87
@ -40,6 +40,7 @@ struct Cluster {
|
||||
|
||||
constexpr size_t num_2x2_subclusters =
|
||||
(ClusterSizeX - 1) * (ClusterSizeY - 1);
|
||||
|
||||
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
|
||||
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
|
||||
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
|
||||
|
@ -36,7 +36,7 @@ uint32_t number_of_clusters
|
||||
* etc.
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename Enable = std::enable_if_t<is_cluster_v<ClusterType>, bool>>
|
||||
typename Enable = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterFile {
|
||||
FILE *fp{};
|
||||
uint32_t m_num_left{}; /*Number of photons left in frame*/
|
||||
@ -70,8 +70,6 @@ class ClusterFile {
|
||||
*/
|
||||
ClusterVector<ClusterType> read_clusters(size_t n_clusters);
|
||||
|
||||
ClusterVector<ClusterType> read_clusters(size_t n_clusters, ROI roi);
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file and return the clusters. The
|
||||
* cluster vector will have the frame number set.
|
||||
|
@ -133,6 +133,7 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
* @brief Sum the pixels in each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
*/
|
||||
/*
|
||||
std::vector<T> sum() {
|
||||
std::vector<T> sums(m_size);
|
||||
const size_t stride = item_size();
|
||||
@ -147,12 +148,14 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
}
|
||||
return sums;
|
||||
}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Sum the pixels in the 2x2 subcluster with the biggest pixel sum in
|
||||
* each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
*/ //TODO if underlying container is a vector use std::for_each
|
||||
/*
|
||||
std::vector<T> sum_2x2() {
|
||||
std::vector<T> sums_2x2(m_size);
|
||||
|
||||
@ -161,6 +164,7 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
}
|
||||
return sums_2x2;
|
||||
}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Return the number of clusters in the vector
|
||||
|
@ -1,10 +1,12 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterFile.hpp" //Cluster_3x3
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/algorithm.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
@ -28,8 +30,103 @@ class Interpolator {
|
||||
NDArray<double, 3> get_ietax() { return m_ietax; }
|
||||
NDArray<double, 3> get_ietay() { return m_ietay; }
|
||||
|
||||
template <typename ClusterType>
|
||||
template <typename ClusterType,
|
||||
typename Eanble = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
std::vector<Photon> interpolate(const ClusterVector<ClusterType> &clusters);
|
||||
};
|
||||
|
||||
// TODO: generalize to support any clustertype!!! otherwise add std::enable_if_t
|
||||
// to only take Cluster2x2 and Cluster3x3
|
||||
template <typename ClusterType, typename Enable>
|
||||
std::vector<Photon>
|
||||
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
|
||||
std::vector<Photon> photons;
|
||||
photons.reserve(clusters.size());
|
||||
|
||||
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
|
||||
auto cluster = clusters.at(i);
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = eta.sum;
|
||||
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
// fmt::print("ex: {}, ix: {}, iy: {}\n", ie, ix, iy);
|
||||
|
||||
double dX, dY;
|
||||
// cBottomLeft = 0,
|
||||
// cBottomRight = 1,
|
||||
// cTopLeft = 2,
|
||||
// cTopRight = 3
|
||||
switch (eta.c) {
|
||||
case cTopLeft:
|
||||
dX = -1.;
|
||||
dY = 0;
|
||||
break;
|
||||
case cTopRight:;
|
||||
dX = 0;
|
||||
dY = 0;
|
||||
break;
|
||||
case cBottomLeft:
|
||||
dX = -1.;
|
||||
dY = -1.;
|
||||
break;
|
||||
case cBottomRight:
|
||||
dX = 0.;
|
||||
dY = -1.;
|
||||
break;
|
||||
}
|
||||
photon.x += m_ietax(ix, iy, ie) * 2 + dX;
|
||||
photon.y += m_ietay(ix, iy, ie) * 2 + dY;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
} else if (clusters.cluster_size_x() == 2 ||
|
||||
clusters.cluster_size_y() == 2) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto cluster = clusters.at(i);
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = eta.sum;
|
||||
|
||||
// Now do some actual interpolation.
|
||||
// Find which energy bin the cluster is in
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
photon.x += m_ietax(ix, iy, ie) *
|
||||
2; // eta goes between 0 and 1 but we could move the hit
|
||||
// anywhere in the 2x2
|
||||
photon.y += m_ietay(ix, iy, ie) * 2;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Only 3x3 and 2x2 clusters are supported for interpolation");
|
||||
}
|
||||
|
||||
return photons;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -18,20 +18,81 @@ using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
void define_cluster(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("Cluster{}", typestr);
|
||||
|
||||
using ClusterType =
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>;
|
||||
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>>(
|
||||
m, class_name.c_str())
|
||||
|
||||
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
|
||||
py::buffer_info buf_info = data.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void> cluster;
|
||||
cluster.x = x;
|
||||
cluster.y = y;
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
|
||||
cluster.data); // Copy array contents
|
||||
return cluster;
|
||||
}))
|
||||
|
||||
//.def(py::init<>())
|
||||
.def_readwrite("x", &ClusterType::x)
|
||||
.def_readwrite("y", &ClusterType::y)
|
||||
.def_property(
|
||||
"data",
|
||||
[](ClusterType &c) -> py::array {
|
||||
return py::array(py::buffer_info(
|
||||
c.data, sizeof(Type),
|
||||
py::format_descriptor<Type>::format(), // Type
|
||||
// format
|
||||
1, // Number of dimensions
|
||||
{static_cast<ssize_t>(ClusterSizeX *
|
||||
ClusterSizeY)}, // Shape (flattened)
|
||||
{sizeof(Type)} // Stride (step size between elements)
|
||||
));
|
||||
},
|
||||
[](ClusterType &c, py::array_t<Type> arr) {
|
||||
py::buffer_info buf_info = arr.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY, c.data);
|
||||
});
|
||||
}
|
||||
|
||||
template <typename ClusterType>
|
||||
void define_cluster_vector(py::module &m, const std::string &typestr) {
|
||||
|
||||
auto class_name = fmt::format("ClusterVector_{}", typestr);
|
||||
|
||||
py::class_<ClusterVector<ClusterType>>(m, class_name.c_str(),
|
||||
py::buffer_protocol())
|
||||
.def(py::init<int, int>(), py::arg("cluster_size_x") = 3,
|
||||
py::arg("cluster_size_y") = 3) // TODO change!!!
|
||||
.def(py::init()) // TODO change!!!
|
||||
/*
|
||||
.def("push_back",
|
||||
[](ClusterVector<ClusterType> &self, ClusterType &cl) {
|
||||
// auto view = make_view_2d(data);
|
||||
self.push_back(cl);
|
||||
})
|
||||
*/
|
||||
/*
|
||||
.def(
|
||||
"push_back",
|
||||
[](ClusterVector<ClusterType> &self, py::object obj) {
|
||||
ClusterType &cl = py::cast<ClusterType &>(obj);
|
||||
self.push_back(cl);
|
||||
},
|
||||
py::arg("cluster"))
|
||||
*/
|
||||
/*
|
||||
.def("push_back",
|
||||
[](ClusterVector<ClusterType> &self, const ClusterType &cluster) {
|
||||
self.push_back(cluster);
|
||||
})
|
||||
*/
|
||||
//.def("push_back", &ClusterVector<ClusterType>::push_back) //TODO
|
||||
//implement push_back
|
||||
.def_property_readonly("size", &ClusterVector<ClusterType>::size)
|
||||
.def("item_size", &ClusterVector<ClusterType>::item_size)
|
||||
.def_property_readonly("fmt",
|
||||
@ -78,7 +139,6 @@ void define_cluster_vector(py::module &m, const std::string &typestr) {
|
||||
template <typename ClusterType>
|
||||
void define_cluster_finder_mt_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
|
||||
auto class_name = fmt::format("ClusterFinderMT_{}", typestr);
|
||||
|
||||
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
|
||||
@ -129,7 +189,6 @@ void define_cluster_finder_mt_bindings(py::module &m,
|
||||
template <typename ClusterType>
|
||||
void define_cluster_collector_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
|
||||
auto class_name = fmt::format("ClusterCollector_{}", typestr);
|
||||
|
||||
py::class_<ClusterCollector<ClusterType>>(m, class_name.c_str())
|
||||
@ -148,7 +207,6 @@ void define_cluster_collector_bindings(py::module &m,
|
||||
template <typename ClusterType>
|
||||
void define_cluster_file_sink_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
|
||||
auto class_name = fmt::format("ClusterFileSink_{}", typestr);
|
||||
|
||||
py::class_<ClusterFileSink<ClusterType>>(m, class_name.c_str())
|
||||
@ -159,7 +217,6 @@ void define_cluster_file_sink_bindings(py::module &m,
|
||||
|
||||
template <typename ClusterType>
|
||||
void define_cluster_finder_bindings(py::module &m, const std::string &typestr) {
|
||||
|
||||
auto class_name = fmt::format("ClusterFinder_{}", typestr);
|
||||
|
||||
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
|
||||
@ -227,21 +284,4 @@ void define_cluster_finder_bindings(py::module &m, const std::string &typestr) {
|
||||
}
|
||||
return hitmap;
|
||||
});
|
||||
|
||||
py::class_<DynamicCluster>(m, "DynamicCluster", py::buffer_protocol())
|
||||
.def(py::init<int, int, Dtype>())
|
||||
.def("size", &DynamicCluster::size)
|
||||
.def("begin", &DynamicCluster::begin)
|
||||
.def("end", &DynamicCluster::end)
|
||||
.def_readwrite("x", &DynamicCluster::x)
|
||||
.def_readwrite("y", &DynamicCluster::y)
|
||||
.def_buffer([](DynamicCluster &c) -> py::buffer_info {
|
||||
return py::buffer_info(c.data(), c.dt.bytes(), c.dt.format_descr(),
|
||||
1, {c.size()}, {c.dt.bytes()});
|
||||
})
|
||||
|
||||
.def("__repr__", [](const DynamicCluster &a) {
|
||||
return "<DynamicCluster: x: " + std::to_string(a.x) +
|
||||
", y: " + std::to_string(a.y) + ">";
|
||||
});
|
||||
}
|
||||
|
@ -39,14 +39,6 @@ void define_cluster_file_io_bindings(py::module &m,
|
||||
return v;
|
||||
},
|
||||
py::return_value_policy::take_ownership)
|
||||
.def(
|
||||
"read_clusters",
|
||||
[](ClusterFile<ClusterType> &self, size_t n_clusters, ROI roi) {
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.read_clusters(n_clusters, roi));
|
||||
return v;
|
||||
},
|
||||
py::return_value_policy::take_ownership)
|
||||
.def("read_frame",
|
||||
[](ClusterFile<ClusterType> &self) {
|
||||
auto v = new ClusterVector<ClusterType>(self.read_frame());
|
||||
|
@ -10,9 +10,9 @@
|
||||
namespace py = pybind11;
|
||||
|
||||
template <typename ClusterType>
|
||||
void register_interpolate(py::class_<aare::Interpolator> &interpolator) {
|
||||
std::string name =
|
||||
fmt::format("interpolate_{}", typeid(ClusterType).name());
|
||||
void register_interpolate(py::class_<aare::Interpolator> &interpolator,
|
||||
const std::string &typestr) {
|
||||
auto name = fmt::format("interpolate_{}", typestr);
|
||||
|
||||
interpolator.def(name.c_str(),
|
||||
[](aare::Interpolator &self,
|
||||
@ -50,12 +50,12 @@ void define_interpolation_bindings(py::module &m) {
|
||||
return return_image_data(ptr);
|
||||
});
|
||||
|
||||
register_interpolate<Cluster<int, 3, 3>>(interpolator);
|
||||
register_interpolate<Cluster<float, 3, 3>>(interpolator);
|
||||
register_interpolate<Cluster<double, 3, 3>>(interpolator);
|
||||
register_interpolate<Cluster<int, 2, 2>>(interpolator);
|
||||
register_interpolate<Cluster<float, 2, 2>>(interpolator);
|
||||
register_interpolate<Cluster<double, 2, 2>>(interpolator);
|
||||
register_interpolate<Cluster<int, 3, 3>>(interpolator, "Cluster3x3i");
|
||||
register_interpolate<Cluster<float, 3, 3>>(interpolator, "Cluster3x3f");
|
||||
register_interpolate<Cluster<double, 3, 3>>(interpolator, "Cluster3x3d");
|
||||
register_interpolate<Cluster<int, 2, 2>>(interpolator, "Cluster2x2i");
|
||||
register_interpolate<Cluster<float, 2, 2>>(interpolator, "Cluster2x2f");
|
||||
register_interpolate<Cluster<double, 2, 2>>(interpolator, "Cluster2x2d");
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
m.def(
|
||||
|
@ -70,4 +70,11 @@ PYBIND11_MODULE(_aare, m) {
|
||||
define_cluster_collector_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_collector_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2f");
|
||||
define_cluster_collector_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2d");
|
||||
|
||||
define_cluster<int, 3, 3, uint16_t>(m, "3x3i");
|
||||
define_cluster<float, 3, 3, uint16_t>(m, "3x3f");
|
||||
define_cluster<double, 3, 3, uint16_t>(m, "3x3d");
|
||||
define_cluster<int, 2, 2, uint16_t>(m, "2x2i");
|
||||
define_cluster<float, 2, 2, uint16_t>(m, "2x2f");
|
||||
define_cluster<double, 2, 2, uint16_t>(m, "2x2d");
|
||||
}
|
||||
|
@ -40,25 +40,28 @@ template <typename T> py::array return_vector(std::vector<T> *vec) {
|
||||
}
|
||||
|
||||
// todo rewrite generic
|
||||
template <class T, int Flags> auto get_shape_3d(const py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_3d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<3>{arr.shape(0), arr.shape(1), arr.shape(2)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 3>(arr.mutable_data(), get_shape_3d<T, Flags>(arr));
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto get_shape_2d(const py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_2d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<2>{arr.shape(0), arr.shape(1)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto get_shape_1d(const py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_1d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<1>{arr.shape(0)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 2>(arr.mutable_data(), get_shape_2d<T, Flags>(arr));
|
||||
}
|
||||
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 1>(arr.mutable_data(), get_shape_1d<T, Flags>(arr));
|
||||
}
|
64
python/tests/test_Cluster.py
Normal file
64
python/tests/test_Cluster.py
Normal file
@ -0,0 +1,64 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from _aare import ClusterVector_Cluster3x3i, Interpolator, Cluster3x3i, ClusterFinder_Cluster3x3i
|
||||
|
||||
def test_ClusterVector():
|
||||
"""Test ClusterVector"""
|
||||
|
||||
clustervector = ClusterVector_Cluster3x3i()
|
||||
assert clustervector.cluster_size_x == 3
|
||||
assert clustervector.cluster_size_y == 3
|
||||
assert clustervector.item_size() == 4+9*4
|
||||
assert clustervector.frame_number == 0
|
||||
assert clustervector.capacity == 1024
|
||||
assert clustervector.size == 0
|
||||
|
||||
cluster = Cluster3x3i(0,0,np.ones(9, dtype=np.int32))
|
||||
|
||||
#clustervector.push_back(cluster)
|
||||
#assert clustervector.size == 1
|
||||
|
||||
#push_back - check size
|
||||
|
||||
|
||||
def test_Interpolator():
|
||||
"""Test Interpolator"""
|
||||
|
||||
ebins = np.linspace(0,10, 20, dtype=np.float64)
|
||||
xbins = np.linspace(0, 5, 30, dtype=np.float64)
|
||||
ybins = np.linspace(0, 5, 30, dtype=np.float64)
|
||||
|
||||
etacube = np.zeros(shape=[30, 30, 20], dtype=np.float64)
|
||||
interpolator = Interpolator(etacube, xbins, ybins, ebins)
|
||||
|
||||
assert interpolator.get_ietax().shape == (30,30,20)
|
||||
assert interpolator.get_ietay().shape == (30,30,20)
|
||||
clustervector = ClusterVector_Cluster3x3i()
|
||||
|
||||
#TODO clustervector is empty
|
||||
cluster = Cluster3x3i(0,0, np.ones(9, dtype=np.int32))
|
||||
#clustervector.push_back(cluster)
|
||||
num_clusters = 1;
|
||||
|
||||
assert interpolator.interpolate_Cluster3x3i(clustervector).shape == (num_clusters, 3)
|
||||
|
||||
|
||||
#def test_cluster_file():
|
||||
|
||||
#def test_cluster_finder():
|
||||
#"""Test ClusterFinder"""
|
||||
|
||||
#clusterfinder = ClusterFinder_Cluster3x3i([100,100])
|
||||
|
||||
#clusterfinder.find_clusters()
|
||||
|
||||
#clusters = clusterfinder.steal_clusters()
|
||||
|
||||
#print("cluster size: ", clusters.size())
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -61,11 +61,13 @@ TEST_CASE("Summing 3x1 clusters of int64", "[.ClusterVector]") {
|
||||
REQUIRE(cv.capacity() == 4);
|
||||
REQUIRE(cv.size() == 3);
|
||||
|
||||
/*
|
||||
auto sums = cv.sum();
|
||||
REQUIRE(sums.size() == 3);
|
||||
REQUIRE(sums[0] == 12);
|
||||
REQUIRE(sums[1] == 27);
|
||||
REQUIRE(sums[2] == 42);
|
||||
*/
|
||||
}
|
||||
|
||||
TEST_CASE("Storing floats", "[.ClusterVector]") {
|
||||
@ -87,10 +89,12 @@ TEST_CASE("Storing floats", "[.ClusterVector]") {
|
||||
REQUIRE(cv.capacity() == 10);
|
||||
REQUIRE(cv.size() == 2);
|
||||
|
||||
/*
|
||||
auto sums = cv.sum();
|
||||
REQUIRE(sums.size() == 2);
|
||||
REQUIRE_THAT(sums[0], Catch::Matchers::WithinAbs(36.0, 1e-6));
|
||||
REQUIRE_THAT(sums[1], Catch::Matchers::WithinAbs(76.0, 1e-6));
|
||||
*/
|
||||
}
|
||||
|
||||
TEST_CASE("Push back more than initial capacity", "[.ClusterVector]") {
|
||||
|
@ -1,6 +1,4 @@
|
||||
#include "aare/Interpolator.hpp"
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/algorithm.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
@ -55,99 +53,4 @@ Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: generalize to support any clustertype!!! otherwise add std::enable_if_t
|
||||
// to only take Cluster2x2 and Cluster3x3
|
||||
template <typename ClusterType>
|
||||
std::vector<Photon>
|
||||
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
|
||||
std::vector<Photon> photons;
|
||||
photons.reserve(clusters.size());
|
||||
|
||||
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
|
||||
auto cluster = clusters.at(i);
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = eta.sum;
|
||||
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
// fmt::print("ex: {}, ix: {}, iy: {}\n", ie, ix, iy);
|
||||
|
||||
double dX, dY;
|
||||
int ex, ey;
|
||||
// cBottomLeft = 0,
|
||||
// cBottomRight = 1,
|
||||
// cTopLeft = 2,
|
||||
// cTopRight = 3
|
||||
switch (eta.c) {
|
||||
case cTopLeft:
|
||||
dX = -1.;
|
||||
dY = 0;
|
||||
break;
|
||||
case cTopRight:;
|
||||
dX = 0;
|
||||
dY = 0;
|
||||
break;
|
||||
case cBottomLeft:
|
||||
dX = -1.;
|
||||
dY = -1.;
|
||||
break;
|
||||
case cBottomRight:
|
||||
dX = 0.;
|
||||
dY = -1.;
|
||||
break;
|
||||
}
|
||||
photon.x += m_ietax(ix, iy, ie) * 2 + dX;
|
||||
photon.y += m_ietay(ix, iy, ie) * 2 + dY;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
} else if (clusters.cluster_size_x() == 2 ||
|
||||
clusters.cluster_size_y() == 2) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto cluster = clusters.at(i);
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = eta.sum;
|
||||
|
||||
// Now do some actual interpolation.
|
||||
// Find which energy bin the cluster is in
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
photon.x += m_ietax(ix, iy, ie) *
|
||||
2; // eta goes between 0 and 1 but we could move the hit
|
||||
// anywhere in the 2x2
|
||||
photon.y += m_ietay(ix, iy, ie) * 2;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Only 3x3 and 2x2 clusters are supported for interpolation");
|
||||
}
|
||||
|
||||
return photons;
|
||||
}
|
||||
|
||||
} // namespace aare
|
Loading…
x
Reference in New Issue
Block a user