mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-24 12:21:07 +02:00
For 2025.5.22 release (#181)
Co-authored-by: Patrick <patrick.sieberer@psi.ch> Co-authored-by: JulianHeymes <julian.heymes@psi.ch> Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch> Co-authored-by: Xiangyu Xie <45243914+xiangyuxie@users.noreply.github.com> Co-authored-by: xiangyu.xie <xiangyu.xie@psi.ch> Co-authored-by: AliceMazzoleni99 <alice.mazzoleni@psi.ch> Co-authored-by: Mazzoleni Alice Francesca <mazzol_a@pc17378.psi.ch> Co-authored-by: siebsi <sieb.patr@gmail.com>
This commit is contained in:
@ -1,22 +1,24 @@
|
||||
#pragma once
|
||||
#include <cstdint> //int64_t
|
||||
#include <cstddef> //size_t
|
||||
#include <cstdint>
|
||||
#include <cstddef>
|
||||
#include <array>
|
||||
|
||||
#include <cassert>
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename E, int64_t Ndim> class ArrayExpr {
|
||||
template <typename E, ssize_t Ndim> class ArrayExpr {
|
||||
public:
|
||||
static constexpr bool is_leaf = false;
|
||||
|
||||
auto operator[](size_t i) const { return static_cast<E const &>(*this)[i]; }
|
||||
auto operator()(size_t i) const { return static_cast<E const &>(*this)[i]; }
|
||||
auto size() const { return static_cast<E const &>(*this).size(); }
|
||||
std::array<int64_t, Ndim> shape() const { return static_cast<E const &>(*this).shape(); }
|
||||
std::array<ssize_t, Ndim> shape() const { return static_cast<E const &>(*this).shape(); }
|
||||
};
|
||||
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
class ArrayAdd : public ArrayExpr<ArrayAdd<A, B, Ndim>, Ndim> {
|
||||
const A &arr1_;
|
||||
const B &arr2_;
|
||||
@ -27,10 +29,10 @@ class ArrayAdd : public ArrayExpr<ArrayAdd<A, B, Ndim>, Ndim> {
|
||||
}
|
||||
auto operator[](int i) const { return arr1_[i] + arr2_[i]; }
|
||||
size_t size() const { return arr1_.size(); }
|
||||
std::array<int64_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
std::array<ssize_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
};
|
||||
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
class ArraySub : public ArrayExpr<ArraySub<A, B, Ndim>, Ndim> {
|
||||
const A &arr1_;
|
||||
const B &arr2_;
|
||||
@ -41,10 +43,10 @@ class ArraySub : public ArrayExpr<ArraySub<A, B, Ndim>, Ndim> {
|
||||
}
|
||||
auto operator[](int i) const { return arr1_[i] - arr2_[i]; }
|
||||
size_t size() const { return arr1_.size(); }
|
||||
std::array<int64_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
std::array<ssize_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
};
|
||||
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
class ArrayMul : public ArrayExpr<ArrayMul<A, B, Ndim>,Ndim> {
|
||||
const A &arr1_;
|
||||
const B &arr2_;
|
||||
@ -55,10 +57,10 @@ class ArrayMul : public ArrayExpr<ArrayMul<A, B, Ndim>,Ndim> {
|
||||
}
|
||||
auto operator[](int i) const { return arr1_[i] * arr2_[i]; }
|
||||
size_t size() const { return arr1_.size(); }
|
||||
std::array<int64_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
std::array<ssize_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
};
|
||||
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
class ArrayDiv : public ArrayExpr<ArrayDiv<A, B, Ndim>, Ndim> {
|
||||
const A &arr1_;
|
||||
const B &arr2_;
|
||||
@ -69,27 +71,27 @@ class ArrayDiv : public ArrayExpr<ArrayDiv<A, B, Ndim>, Ndim> {
|
||||
}
|
||||
auto operator[](int i) const { return arr1_[i] / arr2_[i]; }
|
||||
size_t size() const { return arr1_.size(); }
|
||||
std::array<int64_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
std::array<ssize_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
auto operator+(const ArrayExpr<A, Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArrayAdd<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
auto operator-(const ArrayExpr<A,Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArraySub<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
auto operator*(const ArrayExpr<A, Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArrayMul<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
auto operator/(const ArrayExpr<A, Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArrayDiv<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
170
include/aare/CalculateEta.hpp
Normal file
170
include/aare/CalculateEta.hpp
Normal file
@ -0,0 +1,170 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
enum class corner : int {
|
||||
cBottomLeft = 0,
|
||||
cBottomRight = 1,
|
||||
cTopLeft = 2,
|
||||
cTopRight = 3
|
||||
};
|
||||
|
||||
enum class pixel : int {
|
||||
pBottomLeft = 0,
|
||||
pBottom = 1,
|
||||
pBottomRight = 2,
|
||||
pLeft = 3,
|
||||
pCenter = 4,
|
||||
pRight = 5,
|
||||
pTopLeft = 6,
|
||||
pTop = 7,
|
||||
pTopRight = 8
|
||||
};
|
||||
|
||||
template <typename T> struct Eta2 {
|
||||
double x;
|
||||
double y;
|
||||
int c;
|
||||
T sum;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for all clusters in a Clustervector
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
NDArray<double, 2> calculate_eta2(const ClusterVector<ClusterType> &clusters) {
|
||||
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
|
||||
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_eta2(clusters[i]);
|
||||
eta2(i, 0) = e.x;
|
||||
eta2(i, 1) = e.y;
|
||||
}
|
||||
|
||||
return eta2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for a generic sized cluster and return them
|
||||
* in a Eta2 struct containing etay, etax and the index of the respective 2x2
|
||||
* subcluster.
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
Eta2<T>
|
||||
calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
Eta2<T> eta{};
|
||||
|
||||
auto max_sum = cl.max_sum_2x2();
|
||||
eta.sum = max_sum.first;
|
||||
auto c = max_sum.second;
|
||||
|
||||
size_t cluster_center_index =
|
||||
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
|
||||
|
||||
size_t index_bottom_left_max_2x2_subcluster =
|
||||
(int(c / (ClusterSizeX - 1))) * ClusterSizeX + c % (ClusterSizeX - 1);
|
||||
|
||||
// check that cluster center is in max subcluster
|
||||
if (cluster_center_index != index_bottom_left_max_2x2_subcluster &&
|
||||
cluster_center_index != index_bottom_left_max_2x2_subcluster + 1 &&
|
||||
cluster_center_index !=
|
||||
index_bottom_left_max_2x2_subcluster + ClusterSizeX &&
|
||||
cluster_center_index !=
|
||||
index_bottom_left_max_2x2_subcluster + ClusterSizeX + 1)
|
||||
throw std::runtime_error("Photon center is not in max 2x2_subcluster");
|
||||
|
||||
if ((cluster_center_index - index_bottom_left_max_2x2_subcluster) %
|
||||
ClusterSizeX ==
|
||||
0) {
|
||||
if ((cl.data[cluster_center_index + 1] +
|
||||
cl.data[cluster_center_index]) != 0)
|
||||
|
||||
eta.x = static_cast<double>(cl.data[cluster_center_index + 1]) /
|
||||
static_cast<double>((cl.data[cluster_center_index + 1] +
|
||||
cl.data[cluster_center_index]));
|
||||
} else {
|
||||
if ((cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index - 1]) != 0)
|
||||
|
||||
eta.x = static_cast<double>(cl.data[cluster_center_index]) /
|
||||
static_cast<double>((cl.data[cluster_center_index - 1] +
|
||||
cl.data[cluster_center_index]));
|
||||
}
|
||||
if ((cluster_center_index - index_bottom_left_max_2x2_subcluster) /
|
||||
ClusterSizeX <
|
||||
1) {
|
||||
assert(cluster_center_index + ClusterSizeX <
|
||||
ClusterSizeX * ClusterSizeY); // suppress warning
|
||||
if ((cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index + ClusterSizeX]) != 0)
|
||||
eta.y = static_cast<double>(
|
||||
cl.data[cluster_center_index + ClusterSizeX]) /
|
||||
static_cast<double>(
|
||||
(cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index + ClusterSizeX]));
|
||||
} else {
|
||||
if ((cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index - ClusterSizeX]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[cluster_center_index]) /
|
||||
static_cast<double>(
|
||||
(cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index - ClusterSizeX]));
|
||||
}
|
||||
|
||||
eta.c = c; // TODO only supported for 2x2 and 3x3 clusters -> at least no
|
||||
// underyling enum class
|
||||
return eta;
|
||||
}
|
||||
|
||||
// TODO! Look up eta2 calculation - photon center should be top right corner
|
||||
template <typename T>
|
||||
Eta2<T> calculate_eta2(const Cluster<T, 2, 2, int16_t> &cl) {
|
||||
Eta2<T> eta{};
|
||||
|
||||
if ((cl.data[0] + cl.data[1]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
|
||||
if ((cl.data[0] + cl.data[2]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
|
||||
eta.sum = cl.sum();
|
||||
eta.c = static_cast<int>(corner::cBottomLeft); // TODO! This is not correct,
|
||||
// but need to put something
|
||||
return eta;
|
||||
}
|
||||
|
||||
// calculates Eta3 for 3x3 cluster based on code from analyze_cluster
|
||||
// TODO only supported for 3x3 Clusters
|
||||
template <typename T> Eta2<T> calculate_eta3(const Cluster<T, 3, 3> &cl) {
|
||||
|
||||
Eta2<T> eta{};
|
||||
|
||||
T sum = 0;
|
||||
|
||||
std::for_each(std::begin(cl.data), std::end(cl.data),
|
||||
[&sum](T x) { sum += x; });
|
||||
|
||||
eta.sum = sum;
|
||||
|
||||
eta.c = corner::cBottomLeft;
|
||||
|
||||
if ((cl.data[3] + cl.data[4] + cl.data[5]) != 0)
|
||||
|
||||
eta.x = static_cast<double>(-cl.data[3] + cl.data[3 + 2]) /
|
||||
|
||||
(cl.data[3] + cl.data[4] + cl.data[5]);
|
||||
|
||||
if ((cl.data[1] + cl.data[4] + cl.data[7]) != 0)
|
||||
|
||||
eta.y = static_cast<double>(-cl.data[1] + cl.data[2 * 3 + 1]) /
|
||||
|
||||
(cl.data[1] + cl.data[4] + cl.data[7]);
|
||||
|
||||
return eta;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -1,36 +1,86 @@
|
||||
|
||||
/************************************************
|
||||
* @file Cluster.hpp
|
||||
* @short definition of cluster, where CoordType (x,y) give
|
||||
* the cluster center coordinates and data the actual cluster data
|
||||
* cluster size is given as template parameters
|
||||
***********************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <numeric>
|
||||
#include <type_traits>
|
||||
|
||||
namespace aare {
|
||||
|
||||
//TODO! Template this?
|
||||
struct Cluster3x3 {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int32_t data[9];
|
||||
// requires clause c++20 maybe update
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = int16_t>
|
||||
struct Cluster {
|
||||
|
||||
int32_t sum_2x2() const{
|
||||
std::array<int32_t, 4> total;
|
||||
total[0] = data[0] + data[1] + data[3] + data[4];
|
||||
total[1] = data[1] + data[2] + data[4] + data[5];
|
||||
total[2] = data[3] + data[4] + data[6] + data[7];
|
||||
total[3] = data[4] + data[5] + data[7] + data[8];
|
||||
return *std::max_element(total.begin(), total.end());
|
||||
}
|
||||
static_assert(std::is_arithmetic_v<T>, "T needs to be an arithmetic type");
|
||||
static_assert(std::is_integral_v<CoordType>,
|
||||
"CoordType needs to be an integral type");
|
||||
static_assert(ClusterSizeX > 0 && ClusterSizeY > 0,
|
||||
"Cluster sizes must be bigger than zero");
|
||||
|
||||
int32_t sum() const{
|
||||
return std::accumulate(data, data + 9, 0);
|
||||
CoordType x;
|
||||
CoordType y;
|
||||
std::array<T, ClusterSizeX * ClusterSizeY> data;
|
||||
|
||||
static constexpr uint8_t cluster_size_x = ClusterSizeX;
|
||||
static constexpr uint8_t cluster_size_y = ClusterSizeY;
|
||||
using value_type = T;
|
||||
using coord_type = CoordType;
|
||||
|
||||
T sum() const { return std::accumulate(data.begin(), data.end(), T{}); }
|
||||
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
|
||||
if constexpr (cluster_size_x == 3 && cluster_size_y == 3) {
|
||||
std::array<T, 4> sum_2x2_subclusters;
|
||||
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
|
||||
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
|
||||
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
|
||||
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
|
||||
int index = std::max_element(sum_2x2_subclusters.begin(),
|
||||
sum_2x2_subclusters.end()) -
|
||||
sum_2x2_subclusters.begin();
|
||||
return std::make_pair(sum_2x2_subclusters[index], index);
|
||||
} else if constexpr (cluster_size_x == 2 && cluster_size_y == 2) {
|
||||
return std::make_pair(data[0] + data[1] + data[2] + data[3], 0);
|
||||
} else {
|
||||
constexpr size_t num_2x2_subclusters =
|
||||
(ClusterSizeX - 1) * (ClusterSizeY - 1);
|
||||
|
||||
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
|
||||
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
|
||||
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
|
||||
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
|
||||
data[i * ClusterSizeX + j] +
|
||||
data[i * ClusterSizeX + j + 1] +
|
||||
data[(i + 1) * ClusterSizeX + j] +
|
||||
data[(i + 1) * ClusterSizeX + j + 1];
|
||||
}
|
||||
|
||||
int index = std::max_element(sum_2x2_subcluster.begin(),
|
||||
sum_2x2_subcluster.end()) -
|
||||
sum_2x2_subcluster.begin();
|
||||
return std::make_pair(sum_2x2_subcluster[index], index);
|
||||
}
|
||||
}
|
||||
};
|
||||
struct Cluster2x2 {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int32_t data[4];
|
||||
};
|
||||
|
||||
} // namespace aare
|
||||
// Type Traits for is_cluster_type
|
||||
template <typename T>
|
||||
struct is_cluster : std::false_type {}; // Default case: Not a Cluster
|
||||
|
||||
template <typename T, uint8_t X, uint8_t Y, typename CoordType>
|
||||
struct is_cluster<Cluster<T, X, Y, CoordType>> : std::true_type {}; // Cluster
|
||||
|
||||
template <typename T> constexpr bool is_cluster_v = is_cluster<T>::value;
|
||||
|
||||
} // namespace aare
|
||||
|
@ -2,29 +2,31 @@
|
||||
#include <atomic>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
class ClusterCollector{
|
||||
ProducerConsumerQueue<ClusterVector<int>>* m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_stopped{true};
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
std::thread m_thread;
|
||||
std::vector<ClusterVector<int>> m_clusters;
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterCollector {
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_stopped{true};
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
std::thread m_thread;
|
||||
std::vector<ClusterVector<ClusterType>> m_clusters;
|
||||
|
||||
void process(){
|
||||
void process() {
|
||||
m_stopped = false;
|
||||
fmt::print("ClusterCollector started\n");
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<int> *clusters = m_source->frontPtr();
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
|
||||
clusters != nullptr) {
|
||||
m_clusters.push_back(std::move(*clusters));
|
||||
m_source->popFront();
|
||||
}else{
|
||||
} else {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
@ -32,21 +34,25 @@ class ClusterCollector{
|
||||
m_stopped = true;
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterCollector(ClusterFinderMT<uint16_t, double, int32_t>* source){
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterCollector::process, this);
|
||||
}
|
||||
void stop(){
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
}
|
||||
std::vector<ClusterVector<int>> steal_clusters(){
|
||||
if(!m_stopped){
|
||||
throw std::runtime_error("ClusterCollector is still running");
|
||||
}
|
||||
return std::move(m_clusters);
|
||||
public:
|
||||
ClusterCollector(ClusterFinderMT<ClusterType, uint16_t, double> *source) {
|
||||
m_source = source->sink();
|
||||
m_thread =
|
||||
std::thread(&ClusterCollector::process,
|
||||
this); // only one process does that so why isnt it
|
||||
// automatically written to m_cluster in collect
|
||||
// - instead of writing first to m_sink?
|
||||
}
|
||||
void stop() {
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
}
|
||||
std::vector<ClusterVector<ClusterType>> steal_clusters() {
|
||||
if (!m_stopped) {
|
||||
throw std::runtime_error("ClusterCollector is still running");
|
||||
}
|
||||
return std::move(m_clusters);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -2,6 +2,7 @@
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/GainMap.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include <filesystem>
|
||||
@ -10,43 +11,18 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
/*
|
||||
Binary cluster file. Expects data to be layed out as:
|
||||
int32_t frame_number
|
||||
uint32_t number_of_clusters
|
||||
int16_t x, int16_t y, int32_t data[9] x number_of_clusters
|
||||
int32_t frame_number
|
||||
uint32_t number_of_clusters
|
||||
....
|
||||
*/
|
||||
|
||||
//TODO! Legacy enums, migrate to enum class
|
||||
typedef enum {
|
||||
cBottomLeft = 0,
|
||||
cBottomRight = 1,
|
||||
cTopLeft = 2,
|
||||
cTopRight = 3
|
||||
} corner;
|
||||
|
||||
typedef enum {
|
||||
pBottomLeft = 0,
|
||||
pBottom = 1,
|
||||
pBottomRight = 2,
|
||||
pLeft = 3,
|
||||
pCenter = 4,
|
||||
pRight = 5,
|
||||
pTopLeft = 6,
|
||||
pTop = 7,
|
||||
pTopRight = 8
|
||||
} pixel;
|
||||
|
||||
struct Eta2 {
|
||||
double x;
|
||||
double y;
|
||||
corner c;
|
||||
int32_t sum;
|
||||
};
|
||||
|
||||
struct ClusterAnalysis {
|
||||
uint32_t c;
|
||||
int32_t tot;
|
||||
double etax;
|
||||
double etay;
|
||||
};
|
||||
|
||||
|
||||
|
||||
// TODO: change to support any type of clusters, e.g. header line with
|
||||
// clsuter_size_x, cluster_size_y,
|
||||
/**
|
||||
* @brief Class to read and write cluster files
|
||||
* Expects data to be laid out as:
|
||||
@ -59,14 +35,19 @@ struct ClusterAnalysis {
|
||||
* uint32_t number_of_clusters
|
||||
* etc.
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename Enable = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterFile {
|
||||
FILE *fp{};
|
||||
uint32_t m_num_left{}; /*Number of photons left in frame*/
|
||||
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
|
||||
const std::string m_mode; /*Mode to open the file in*/
|
||||
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
|
||||
std::optional<NDArray<int32_t, 2>> m_noise_map; /*Noise map to cut photons, will be applied if set*/
|
||||
std::optional<NDArray<double, 2>> m_gain_map; /*Gain map to apply to the clusters, will be applied if set*/
|
||||
const std::string m_filename{};
|
||||
uint32_t m_num_left{}; /*Number of photons left in frame*/
|
||||
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
|
||||
std::string m_mode; /*Mode to open the file in*/
|
||||
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
|
||||
std::optional<NDArray<int32_t, 2>>
|
||||
m_noise_map; /*Noise map to cut photons, will be applied if set*/
|
||||
std::optional<InvertedGainMap> m_gain_map; /*Gain map to apply to the
|
||||
clusters, will be applied if set*/
|
||||
|
||||
public:
|
||||
/**
|
||||
@ -79,74 +60,390 @@ class ClusterFile {
|
||||
* @throws std::runtime_error if the file could not be opened
|
||||
*/
|
||||
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000,
|
||||
const std::string &mode = "r");
|
||||
|
||||
|
||||
~ClusterFile();
|
||||
const std::string &mode = "r")
|
||||
|
||||
: m_filename(fname.string()), m_chunk_size(chunk_size), m_mode(mode) {
|
||||
|
||||
if (mode == "r") {
|
||||
fp = fopen(m_filename.c_str(), "rb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for reading: " +
|
||||
m_filename);
|
||||
}
|
||||
} else if (mode == "w") {
|
||||
fp = fopen(m_filename.c_str(), "wb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for writing: " +
|
||||
m_filename);
|
||||
}
|
||||
} else if (mode == "a") {
|
||||
fp = fopen(m_filename.c_str(), "ab");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for appending: " +
|
||||
m_filename);
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported mode: " + mode);
|
||||
}
|
||||
}
|
||||
|
||||
~ClusterFile() { close(); }
|
||||
|
||||
/**
|
||||
* @brief Read n_clusters clusters from the file discarding frame numbers.
|
||||
* If EOF is reached the returned vector will have less than n_clusters
|
||||
* clusters
|
||||
* @brief Read n_clusters clusters from the file discarding
|
||||
* frame numbers. If EOF is reached the returned vector will
|
||||
* have less than n_clusters clusters
|
||||
*/
|
||||
ClusterVector<int32_t> read_clusters(size_t n_clusters);
|
||||
|
||||
ClusterVector<int32_t> read_clusters(size_t n_clusters, ROI roi);
|
||||
ClusterVector<ClusterType> read_clusters(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi) {
|
||||
return read_clusters_with_cut(n_clusters);
|
||||
} else {
|
||||
return read_clusters_without_cut(n_clusters);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file and return the clusters. The
|
||||
* cluster vector will have the frame number set.
|
||||
* @throws std::runtime_error if the file is not opened for reading or the file pointer not
|
||||
* at the beginning of a frame
|
||||
* @brief Read a single frame from the file and return the
|
||||
* clusters. The cluster vector will have the frame number
|
||||
* set.
|
||||
* @throws std::runtime_error if the file is not opened for
|
||||
* reading or the file pointer not at the beginning of a
|
||||
* frame
|
||||
*/
|
||||
ClusterVector<int32_t> read_frame();
|
||||
ClusterVector<ClusterType> read_frame() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error(LOCATION + "File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi) {
|
||||
return read_frame_with_cut();
|
||||
} else {
|
||||
return read_frame_without_cut();
|
||||
}
|
||||
}
|
||||
|
||||
void write_frame(const ClusterVector<ClusterType> &clusters) {
|
||||
if (m_mode != "w" && m_mode != "a") {
|
||||
throw std::runtime_error("File not opened for writing");
|
||||
}
|
||||
|
||||
int32_t frame_number = clusters.frame_number();
|
||||
fwrite(&frame_number, sizeof(frame_number), 1, fp);
|
||||
uint32_t n_clusters = clusters.size();
|
||||
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
|
||||
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
|
||||
}
|
||||
|
||||
void write_frame(const ClusterVector<int32_t> &clusters);
|
||||
|
||||
/**
|
||||
* @brief Return the chunk size
|
||||
*/
|
||||
size_t chunk_size() const { return m_chunk_size; }
|
||||
|
||||
/**
|
||||
* @brief Set the region of interest to use when reading clusters. If set only clusters within
|
||||
* the ROI will be read.
|
||||
* @brief Set the region of interest to use when reading
|
||||
* clusters. If set only clusters within the ROI will be
|
||||
* read.
|
||||
*/
|
||||
void set_roi(ROI roi);
|
||||
void set_roi(ROI roi) { m_roi = roi; }
|
||||
|
||||
/**
|
||||
* @brief Set the noise map to use when reading clusters. If set clusters below the noise
|
||||
* level will be discarded. Selection criteria one of: Central pixel above noise, highest
|
||||
* 2x2 sum above 2 * noise, total sum above 3 * noise.
|
||||
* @brief Set the noise map to use when reading clusters. If
|
||||
* set clusters below the noise level will be discarded.
|
||||
* Selection criteria one of: Central pixel above noise,
|
||||
* highest 2x2 sum above 2 * noise, total sum above 3 *
|
||||
* noise.
|
||||
*/
|
||||
void set_noise_map(const NDView<int32_t, 2> noise_map);
|
||||
void set_noise_map(const NDView<int32_t, 2> noise_map) {
|
||||
m_noise_map = NDArray<int32_t, 2>(noise_map);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the gain map to use when reading clusters. If set the gain map will be applied
|
||||
* to the clusters that pass ROI and noise_map selection. The gain map is expected to be in ADU/energy.
|
||||
* @brief Set the gain map to use when reading clusters. If set the gain map
|
||||
* will be applied to the clusters that pass ROI and noise_map selection.
|
||||
* The gain map is expected to be in ADU/energy.
|
||||
*/
|
||||
void set_gain_map(const NDView<double, 2> gain_map);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Close the file. If not closed the file will be closed in the destructor
|
||||
*/
|
||||
void close();
|
||||
void set_gain_map(const NDView<double, 2> gain_map) {
|
||||
m_gain_map = InvertedGainMap(gain_map);
|
||||
}
|
||||
|
||||
private:
|
||||
ClusterVector<int32_t> read_clusters_with_cut(size_t n_clusters);
|
||||
ClusterVector<int32_t> read_clusters_without_cut(size_t n_clusters);
|
||||
ClusterVector<int32_t> read_frame_with_cut();
|
||||
ClusterVector<int32_t> read_frame_without_cut();
|
||||
bool is_selected(Cluster3x3 &cl);
|
||||
Cluster3x3 read_one_cluster();
|
||||
void set_gain_map(const InvertedGainMap &gain_map) {
|
||||
m_gain_map = gain_map;
|
||||
}
|
||||
|
||||
void set_gain_map(const InvertedGainMap &&gain_map) {
|
||||
m_gain_map = gain_map;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Close the file. If not closed the file will be
|
||||
* closed in the destructor
|
||||
*/
|
||||
void close() {
|
||||
if (fp) {
|
||||
fclose(fp);
|
||||
fp = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
/** @brief Open the file in specific mode
|
||||
*
|
||||
*/
|
||||
void open(const std::string &mode) {
|
||||
if (fp) {
|
||||
close();
|
||||
}
|
||||
|
||||
if (mode == "r") {
|
||||
fp = fopen(m_filename.c_str(), "rb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for reading: " +
|
||||
m_filename);
|
||||
}
|
||||
m_mode = "r";
|
||||
} else if (mode == "w") {
|
||||
fp = fopen(m_filename.c_str(), "wb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for writing: " +
|
||||
m_filename);
|
||||
}
|
||||
m_mode = "w";
|
||||
} else if (mode == "a") {
|
||||
fp = fopen(m_filename.c_str(), "ab");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for appending: " +
|
||||
m_filename);
|
||||
}
|
||||
m_mode = "a";
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported mode: " + mode);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
ClusterVector<ClusterType> read_clusters_with_cut(size_t n_clusters);
|
||||
ClusterVector<ClusterType> read_clusters_without_cut(size_t n_clusters);
|
||||
ClusterVector<ClusterType> read_frame_with_cut();
|
||||
ClusterVector<ClusterType> read_frame_without_cut();
|
||||
bool is_selected(ClusterType &cl);
|
||||
ClusterType read_one_cluster();
|
||||
};
|
||||
|
||||
//TODO! helper functions that doesn't really belong here
|
||||
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters);
|
||||
Eta2 calculate_eta2(Cluster3x3 &cl);
|
||||
Eta2 calculate_eta2(Cluster2x2 &cl);
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_clusters_without_cut(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
|
||||
ClusterVector<ClusterType> clusters(n_clusters);
|
||||
clusters.resize(n_clusters);
|
||||
|
||||
int32_t iframe = 0; // frame number needs to be 4 bytes!
|
||||
size_t nph_read = 0;
|
||||
uint32_t nn = m_num_left;
|
||||
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
|
||||
|
||||
auto buf = clusters.data();
|
||||
// if there are photons left from previous frame read them first
|
||||
if (nph) {
|
||||
if (nph > n_clusters) {
|
||||
// if we have more photons left in the frame then photons to
|
||||
// read we read directly the requested number
|
||||
nn = n_clusters;
|
||||
} else {
|
||||
nn = nph;
|
||||
}
|
||||
nph_read += fread((buf + nph_read), clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn; // write back the number of photons left
|
||||
}
|
||||
|
||||
if (nph_read < n_clusters) {
|
||||
// keep on reading frames and photons until reaching n_clusters
|
||||
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
||||
clusters.set_frame_number(iframe);
|
||||
// read number of clusters in frame
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
if (nph > (n_clusters - nph_read))
|
||||
nn = n_clusters - nph_read;
|
||||
else
|
||||
nn = nph;
|
||||
|
||||
nph_read +=
|
||||
fread((buf + nph_read), clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Resize the vector to the number o f clusters.
|
||||
// No new allocation, only change bounds.
|
||||
clusters.resize(nph_read);
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_clusters_with_cut(size_t n_clusters) {
|
||||
ClusterVector<ClusterType> clusters;
|
||||
clusters.reserve(n_clusters);
|
||||
|
||||
// if there are photons left from previous frame read them first
|
||||
if (m_num_left) {
|
||||
while (m_num_left && clusters.size() < n_clusters) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we did not have enough clusters left in the previous frame
|
||||
// keep on reading frames until reaching n_clusters
|
||||
if (clusters.size() < n_clusters) {
|
||||
// sanity check
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
LOCATION + "Entered second loop with clusters left\n");
|
||||
}
|
||||
|
||||
int32_t frame_number = 0; // frame number needs to be 4 bytes!
|
||||
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
|
||||
clusters.set_frame_number(
|
||||
frame_number); // cluster vector will hold the last
|
||||
// frame number
|
||||
while (m_num_left && clusters.size() < n_clusters) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we have enough clusters, break out of the outer while loop
|
||||
if (clusters.size() >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterType ClusterFile<ClusterType, Enable>::read_one_cluster() {
|
||||
ClusterType c;
|
||||
auto rc = fread(&c, sizeof(c), 1, fp);
|
||||
if (rc != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read cluster");
|
||||
}
|
||||
--m_num_left;
|
||||
return c;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_frame_without_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read frame number");
|
||||
}
|
||||
|
||||
int32_t n_clusters; // Saved as 32bit integer in the cluster file
|
||||
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<ClusterType> clusters(n_clusters);
|
||||
clusters.set_frame_number(frame_number);
|
||||
|
||||
clusters.resize(n_clusters);
|
||||
|
||||
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
|
||||
static_cast<size_t>(n_clusters)) {
|
||||
throw std::runtime_error(LOCATION + "Could not read clusters");
|
||||
}
|
||||
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_frame_with_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read frame number");
|
||||
}
|
||||
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<ClusterType> clusters;
|
||||
clusters.reserve(m_num_left);
|
||||
clusters.set_frame_number(frame_number);
|
||||
while (m_num_left) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
bool ClusterFile<ClusterType, Enable>::is_selected(ClusterType &cl) {
|
||||
// Should fail fast
|
||||
if (m_roi) {
|
||||
if (!(m_roi->contains(cl.x, cl.y))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
size_t cluster_center_index =
|
||||
(ClusterType::cluster_size_x / 2) +
|
||||
(ClusterType::cluster_size_y / 2) * ClusterType::cluster_size_x;
|
||||
|
||||
if (m_noise_map) {
|
||||
auto sum_1x1 = cl.data[cluster_center_index]; // central pixel
|
||||
auto sum_2x2 = cl.max_sum_2x2().first; // highest sum of 2x2 subclusters
|
||||
auto total_sum = cl.sum(); // sum of all pixels
|
||||
|
||||
auto noise =
|
||||
(*m_noise_map)(cl.y, cl.x); // TODO! check if this is correct
|
||||
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise ||
|
||||
total_sum <= 3 * noise) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// we passed all checks
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
|
@ -3,35 +3,41 @@
|
||||
#include <filesystem>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare{
|
||||
namespace aare {
|
||||
|
||||
class ClusterFileSink{
|
||||
ProducerConsumerQueue<ClusterVector<int>>* m_source;
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterFileSink {
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_stopped{true};
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
std::thread m_thread;
|
||||
std::ofstream m_file;
|
||||
|
||||
|
||||
void process(){
|
||||
void process() {
|
||||
m_stopped = false;
|
||||
fmt::print("ClusterFileSink started\n");
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<int> *clusters = m_source->frontPtr();
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
|
||||
clusters != nullptr) {
|
||||
// Write clusters to file
|
||||
int32_t frame_number = clusters->frame_number(); //TODO! Should we store frame number already as int?
|
||||
int32_t frame_number =
|
||||
clusters->frame_number(); // TODO! Should we store frame
|
||||
// number already as int?
|
||||
uint32_t num_clusters = clusters->size();
|
||||
m_file.write(reinterpret_cast<const char*>(&frame_number), sizeof(frame_number));
|
||||
m_file.write(reinterpret_cast<const char*>(&num_clusters), sizeof(num_clusters));
|
||||
m_file.write(reinterpret_cast<const char*>(clusters->data()), clusters->size() * clusters->item_size());
|
||||
m_file.write(reinterpret_cast<const char *>(&frame_number),
|
||||
sizeof(frame_number));
|
||||
m_file.write(reinterpret_cast<const char *>(&num_clusters),
|
||||
sizeof(num_clusters));
|
||||
m_file.write(reinterpret_cast<const char *>(clusters->data()),
|
||||
clusters->size() * clusters->item_size());
|
||||
m_source->popFront();
|
||||
}else{
|
||||
} else {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
@ -39,18 +45,18 @@ class ClusterFileSink{
|
||||
m_stopped = true;
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterFileSink(ClusterFinderMT<uint16_t, double, int32_t>* source, const std::filesystem::path& fname){
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterFileSink::process, this);
|
||||
m_file.open(fname, std::ios::binary);
|
||||
}
|
||||
void stop(){
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
m_file.close();
|
||||
}
|
||||
public:
|
||||
ClusterFileSink(ClusterFinderMT<ClusterType, uint16_t, double> *source,
|
||||
const std::filesystem::path &fname) {
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterFileSink::process, this);
|
||||
m_file.open(fname, std::ios::binary);
|
||||
}
|
||||
void stop() {
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
m_file.close();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // namespace aare
|
@ -1,148 +0,0 @@
|
||||
#pragma once
|
||||
#include "aare/core/defs.hpp"
|
||||
#include <filesystem>
|
||||
#include <string>
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace aare {
|
||||
struct ClusterHeader {
|
||||
int32_t frame_number;
|
||||
int32_t n_clusters;
|
||||
std::string to_string() const {
|
||||
return "frame_number: " + std::to_string(frame_number) + ", n_clusters: " + std::to_string(n_clusters);
|
||||
}
|
||||
};
|
||||
|
||||
struct ClusterV2_ {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
std::array<int32_t, 9> data;
|
||||
std::string to_string(bool detailed = false) const {
|
||||
if (detailed) {
|
||||
std::string data_str = "[";
|
||||
for (auto &d : data) {
|
||||
data_str += std::to_string(d) + ", ";
|
||||
}
|
||||
data_str += "]";
|
||||
return "x: " + std::to_string(x) + ", y: " + std::to_string(y) + ", data: " + data_str;
|
||||
}
|
||||
return "x: " + std::to_string(x) + ", y: " + std::to_string(y);
|
||||
}
|
||||
};
|
||||
|
||||
struct ClusterV2 {
|
||||
ClusterV2_ cluster;
|
||||
int32_t frame_number;
|
||||
std::string to_string() const {
|
||||
return "frame_number: " + std::to_string(frame_number) + ", " + cluster.to_string();
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief
|
||||
* important not: fp always points to the clusters header and does not point to individual clusters
|
||||
*
|
||||
*/
|
||||
class ClusterFileV2 {
|
||||
std::filesystem::path m_fpath;
|
||||
std::string m_mode;
|
||||
FILE *fp{nullptr};
|
||||
|
||||
void check_open(){
|
||||
if (!fp)
|
||||
throw std::runtime_error(fmt::format("File: {} not open", m_fpath.string()));
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterFileV2(std::filesystem::path const &fpath, std::string const &mode): m_fpath(fpath), m_mode(mode) {
|
||||
if (m_mode != "r" && m_mode != "w")
|
||||
throw std::invalid_argument("mode must be 'r' or 'w'");
|
||||
if (m_mode == "r" && !std::filesystem::exists(m_fpath))
|
||||
throw std::invalid_argument("File does not exist");
|
||||
if (mode == "r") {
|
||||
fp = fopen(fpath.string().c_str(), "rb");
|
||||
} else if (mode == "w") {
|
||||
if (std::filesystem::exists(fpath)) {
|
||||
fp = fopen(fpath.string().c_str(), "r+b");
|
||||
} else {
|
||||
fp = fopen(fpath.string().c_str(), "wb");
|
||||
}
|
||||
}
|
||||
if (fp == nullptr) {
|
||||
throw std::runtime_error("Failed to open file");
|
||||
}
|
||||
}
|
||||
~ClusterFileV2() { close(); }
|
||||
std::vector<ClusterV2> read() {
|
||||
check_open();
|
||||
|
||||
ClusterHeader header;
|
||||
fread(&header, sizeof(ClusterHeader), 1, fp);
|
||||
std::vector<ClusterV2_> clusters_(header.n_clusters);
|
||||
fread(clusters_.data(), sizeof(ClusterV2_), header.n_clusters, fp);
|
||||
std::vector<ClusterV2> clusters;
|
||||
for (auto &c : clusters_) {
|
||||
ClusterV2 cluster;
|
||||
cluster.cluster = std::move(c);
|
||||
cluster.frame_number = header.frame_number;
|
||||
clusters.push_back(cluster);
|
||||
}
|
||||
|
||||
return clusters;
|
||||
}
|
||||
std::vector<std::vector<ClusterV2>> read(int n_frames) {
|
||||
std::vector<std::vector<ClusterV2>> clusters;
|
||||
for (int i = 0; i < n_frames; i++) {
|
||||
clusters.push_back(read());
|
||||
}
|
||||
return clusters;
|
||||
}
|
||||
|
||||
size_t write(std::vector<ClusterV2> const &clusters) {
|
||||
check_open();
|
||||
if (m_mode != "w")
|
||||
throw std::runtime_error("File not opened in write mode");
|
||||
if (clusters.empty())
|
||||
return 0;
|
||||
|
||||
ClusterHeader header;
|
||||
header.frame_number = clusters[0].frame_number;
|
||||
header.n_clusters = clusters.size();
|
||||
fwrite(&header, sizeof(ClusterHeader), 1, fp);
|
||||
for (auto &c : clusters) {
|
||||
fwrite(&c.cluster, sizeof(ClusterV2_), 1, fp);
|
||||
}
|
||||
return clusters.size();
|
||||
}
|
||||
|
||||
size_t write(std::vector<std::vector<ClusterV2>> const &clusters) {
|
||||
check_open();
|
||||
if (m_mode != "w")
|
||||
throw std::runtime_error("File not opened in write mode");
|
||||
|
||||
size_t n_clusters = 0;
|
||||
for (auto &c : clusters) {
|
||||
n_clusters += write(c);
|
||||
}
|
||||
return n_clusters;
|
||||
}
|
||||
|
||||
int seek_to_begin() { return fseek(fp, 0, SEEK_SET); }
|
||||
int seek_to_end() { return fseek(fp, 0, SEEK_END); }
|
||||
|
||||
int32_t frame_number() {
|
||||
auto pos = ftell(fp);
|
||||
ClusterHeader header;
|
||||
fread(&header, sizeof(ClusterHeader), 1, fp);
|
||||
fseek(fp, pos, SEEK_SET);
|
||||
return header.frame_number;
|
||||
}
|
||||
|
||||
void close() {
|
||||
if (fp) {
|
||||
fclose(fp);
|
||||
fp = nullptr;
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace aare
|
@ -10,17 +10,19 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
|
||||
typename CT = int32_t>
|
||||
template <typename ClusterType = Cluster<int32_t, 3, 3>,
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
class ClusterFinder {
|
||||
Shape<2> m_image_size;
|
||||
const int m_cluster_sizeX;
|
||||
const int m_cluster_sizeY;
|
||||
const PEDESTAL_TYPE m_nSigma;
|
||||
const PEDESTAL_TYPE c2;
|
||||
const PEDESTAL_TYPE c3;
|
||||
Pedestal<PEDESTAL_TYPE> m_pedestal;
|
||||
ClusterVector<CT> m_clusters;
|
||||
ClusterVector<ClusterType> m_clusters;
|
||||
|
||||
static const uint8_t ClusterSizeX = ClusterType::cluster_size_x;
|
||||
static const uint8_t ClusterSizeY = ClusterType::cluster_size_y;
|
||||
using CT = typename ClusterType::value_type;
|
||||
|
||||
public:
|
||||
/**
|
||||
@ -31,15 +33,12 @@ class ClusterFinder {
|
||||
* @param capacity initial capacity of the cluster vector
|
||||
*
|
||||
*/
|
||||
ClusterFinder(Shape<2> image_size, Shape<2> cluster_size,
|
||||
PEDESTAL_TYPE nSigma = 5.0, size_t capacity = 1000000)
|
||||
: m_image_size(image_size), m_cluster_sizeX(cluster_size[0]),
|
||||
m_cluster_sizeY(cluster_size[1]),
|
||||
m_nSigma(nSigma),
|
||||
c2(sqrt((m_cluster_sizeY + 1) / 2 * (m_cluster_sizeX + 1) / 2)),
|
||||
c3(sqrt(m_cluster_sizeX * m_cluster_sizeY)),
|
||||
m_pedestal(image_size[0], image_size[1]),
|
||||
m_clusters(m_cluster_sizeX, m_cluster_sizeY, capacity) {};
|
||||
ClusterFinder(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
|
||||
size_t capacity = 1000000)
|
||||
: m_image_size(image_size), m_nSigma(nSigma),
|
||||
c2(sqrt((ClusterSizeY + 1) / 2 * (ClusterSizeX + 1) / 2)),
|
||||
c3(sqrt(ClusterSizeX * ClusterSizeY)),
|
||||
m_pedestal(image_size[0], image_size[1]), m_clusters(capacity) {};
|
||||
|
||||
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
|
||||
m_pedestal.push(frame);
|
||||
@ -56,23 +55,28 @@ class ClusterFinder {
|
||||
* same capacity as the old one
|
||||
*
|
||||
*/
|
||||
ClusterVector<CT> steal_clusters(bool realloc_same_capacity = false) {
|
||||
ClusterVector<CT> tmp = std::move(m_clusters);
|
||||
ClusterVector<ClusterType>
|
||||
steal_clusters(bool realloc_same_capacity = false) {
|
||||
ClusterVector<ClusterType> tmp = std::move(m_clusters);
|
||||
if (realloc_same_capacity)
|
||||
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY,
|
||||
tmp.capacity());
|
||||
m_clusters = ClusterVector<ClusterType>(tmp.capacity());
|
||||
else
|
||||
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY);
|
||||
m_clusters = ClusterVector<ClusterType>{};
|
||||
return tmp;
|
||||
}
|
||||
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
|
||||
// // TODO! deal with even size clusters
|
||||
// // currently 3,3 -> +/- 1
|
||||
// // 4,4 -> +/- 2
|
||||
int dy = m_cluster_sizeY / 2;
|
||||
int dx = m_cluster_sizeX / 2;
|
||||
int dy = ClusterSizeY / 2;
|
||||
int dx = ClusterSizeX / 2;
|
||||
int has_center_pixel_x =
|
||||
ClusterSizeX %
|
||||
2; // for even sized clusters there is no proper cluster center and
|
||||
// even amount of pixels around the center
|
||||
int has_center_pixel_y = ClusterSizeY % 2;
|
||||
|
||||
m_clusters.set_frame_number(frame_number);
|
||||
std::vector<CT> cluster_data(m_cluster_sizeX * m_cluster_sizeY);
|
||||
for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
|
||||
@ -87,8 +91,8 @@ class ClusterFinder {
|
||||
continue; // NEGATIVE_PEDESTAL go to next pixel
|
||||
// TODO! No pedestal update???
|
||||
|
||||
for (int ir = -dy; ir < dy + 1; ir++) {
|
||||
for (int ic = -dx; ic < dx + 1; ic++) {
|
||||
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
|
||||
for (int ic = -dx; ic < dx + has_center_pixel_x; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
PEDESTAL_TYPE val =
|
||||
@ -109,27 +113,33 @@ class ClusterFinder {
|
||||
// pass
|
||||
} else {
|
||||
// m_pedestal.push(iy, ix, frame(iy, ix)); // Safe option
|
||||
m_pedestal.push_fast(iy, ix, frame(iy, ix)); // Assume we have reached n_samples in the pedestal, slight performance improvement
|
||||
continue; // It was a pedestal value nothing to store
|
||||
m_pedestal.push_fast(
|
||||
iy, ix,
|
||||
frame(iy,
|
||||
ix)); // Assume we have reached n_samples in the
|
||||
// pedestal, slight performance improvement
|
||||
continue; // It was a pedestal value nothing to store
|
||||
}
|
||||
|
||||
// Store cluster
|
||||
if (value == max) {
|
||||
// Zero out the cluster data
|
||||
std::fill(cluster_data.begin(), cluster_data.end(), 0);
|
||||
ClusterType cluster{};
|
||||
cluster.x = ix;
|
||||
cluster.y = iy;
|
||||
|
||||
// Fill the cluster data since we have a photon to store
|
||||
// It's worth redoing the look since most of the time we
|
||||
// don't have a photon
|
||||
int i = 0;
|
||||
for (int ir = -dy; ir < dy + 1; ir++) {
|
||||
for (int ic = -dx; ic < dx + 1; ic++) {
|
||||
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
|
||||
for (int ic = -dx; ic < dx + has_center_pixel_y; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
CT tmp =
|
||||
static_cast<CT>(frame(iy + ir, ix + ic)) -
|
||||
m_pedestal.mean(iy + ir, ix + ic);
|
||||
cluster_data[i] =
|
||||
static_cast<CT>(
|
||||
m_pedestal.mean(iy + ir, ix + ic));
|
||||
cluster.data[i] =
|
||||
tmp; // Watch for out of bounds access
|
||||
i++;
|
||||
}
|
||||
@ -137,9 +147,7 @@ class ClusterFinder {
|
||||
}
|
||||
|
||||
// Add the cluster to the output ClusterVector
|
||||
m_clusters.push_back(
|
||||
ix, iy,
|
||||
reinterpret_cast<std::byte *>(cluster_data.data()));
|
||||
m_clusters.push_back(cluster);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -30,14 +30,17 @@ struct FrameWrapper {
|
||||
* @tparam PEDESTAL_TYPE type of the pedestal data
|
||||
* @tparam CT type of the cluster data
|
||||
*/
|
||||
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
|
||||
typename CT = int32_t>
|
||||
template <typename ClusterType = Cluster<int32_t, 3, 3>,
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
class ClusterFinderMT {
|
||||
|
||||
protected:
|
||||
using CT = typename ClusterType::value_type;
|
||||
size_t m_current_thread{0};
|
||||
size_t m_n_threads{0};
|
||||
using Finder = ClusterFinder<FRAME_TYPE, PEDESTAL_TYPE, CT>;
|
||||
using Finder = ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>;
|
||||
using InputQueue = ProducerConsumerQueue<FrameWrapper>;
|
||||
using OutputQueue = ProducerConsumerQueue<ClusterVector<int>>;
|
||||
using OutputQueue = ProducerConsumerQueue<ClusterVector<ClusterType>>;
|
||||
std::vector<std::unique_ptr<InputQueue>> m_input_queues;
|
||||
std::vector<std::unique_ptr<OutputQueue>> m_output_queues;
|
||||
|
||||
@ -48,6 +51,7 @@ class ClusterFinderMT {
|
||||
std::thread m_collect_thread;
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
|
||||
private:
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_processing_threads_stopped{true};
|
||||
|
||||
@ -66,7 +70,8 @@ class ClusterFinderMT {
|
||||
switch (frame->type) {
|
||||
case FrameType::DATA:
|
||||
cf->find_clusters(frame->data.view(), frame->frame_number);
|
||||
m_output_queues[thread_id]->write(cf->steal_clusters(realloc_same_capacity));
|
||||
m_output_queues[thread_id]->write(
|
||||
cf->steal_clusters(realloc_same_capacity));
|
||||
break;
|
||||
|
||||
case FrameType::PEDESTAL:
|
||||
@ -114,28 +119,32 @@ class ClusterFinderMT {
|
||||
* expected number of clusters in a frame per frame.
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
ClusterFinderMT(Shape<2> image_size, Shape<2> cluster_size,
|
||||
PEDESTAL_TYPE nSigma = 5.0, size_t capacity = 2000,
|
||||
size_t n_threads = 3)
|
||||
ClusterFinderMT(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
|
||||
size_t capacity = 2000, size_t n_threads = 3)
|
||||
: m_n_threads(n_threads) {
|
||||
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
m_cluster_finders.push_back(
|
||||
std::make_unique<ClusterFinder<FRAME_TYPE, PEDESTAL_TYPE, CT>>(
|
||||
image_size, cluster_size, nSigma, capacity));
|
||||
std::make_unique<
|
||||
ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>>(
|
||||
image_size, nSigma, capacity));
|
||||
}
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
m_input_queues.emplace_back(std::make_unique<InputQueue>(200));
|
||||
m_output_queues.emplace_back(std::make_unique<OutputQueue>(200));
|
||||
}
|
||||
//TODO! Should we start automatically?
|
||||
// TODO! Should we start automatically?
|
||||
start();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the sink queue where all the clusters are collected
|
||||
* @warning You need to empty this queue otherwise the cluster finder will wait forever
|
||||
* @warning You need to empty this queue otherwise the cluster finder will
|
||||
* wait forever
|
||||
*/
|
||||
ProducerConsumerQueue<ClusterVector<int>> *sink() { return &m_sink; }
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *sink() {
|
||||
return &m_sink;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Start all processing threads
|
||||
|
@ -1,4 +1,5 @@
|
||||
#pragma once
|
||||
#include "aare/Cluster.hpp" //TODO maybe store in seperate file !!!
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
@ -13,292 +14,157 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterVector; // Forward declaration
|
||||
|
||||
/**
|
||||
* @brief ClusterVector is a container for clusters of various sizes. It uses a
|
||||
* contiguous memory buffer to store the clusters. It is templated on the data
|
||||
* type and the coordinate type of the clusters.
|
||||
* @brief ClusterVector is a container for clusters of various sizes. It
|
||||
* uses a contiguous memory buffer to store the clusters. It is templated on
|
||||
* the data type and the coordinate type of the clusters.
|
||||
* @note push_back can invalidate pointers to elements in the container
|
||||
* @warning ClusterVector is currently move only to catch unintended copies, but
|
||||
* this might change since there are probably use cases where copying is needed.
|
||||
* @warning ClusterVector is currently move only to catch unintended copies,
|
||||
* but this might change since there are probably use cases where copying is
|
||||
* needed.
|
||||
* @tparam T data type of the pixels in the cluster
|
||||
* @tparam CoordType data type of the x and y coordinates of the cluster
|
||||
* (normally int16_t)
|
||||
*/
|
||||
template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
using value_type = T;
|
||||
size_t m_cluster_size_x;
|
||||
size_t m_cluster_size_y;
|
||||
std::byte *m_data{};
|
||||
size_t m_size{0};
|
||||
size_t m_capacity;
|
||||
uint64_t m_frame_number{0}; // TODO! Check frame number size and type
|
||||
/*
|
||||
Format string used in the python bindings to create a numpy
|
||||
array from the buffer
|
||||
= - native byte order
|
||||
h - short
|
||||
d - double
|
||||
i - int
|
||||
*/
|
||||
constexpr static char m_fmt_base[] = "=h:x:\nh:y:\n({},{}){}:data:";
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
std::vector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> m_data{};
|
||||
int32_t m_frame_number{0}; // TODO! Check frame number size and type
|
||||
|
||||
public:
|
||||
using value_type = T;
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
/**
|
||||
* @brief Construct a new ClusterVector object
|
||||
* @param cluster_size_x size of the cluster in x direction
|
||||
* @param cluster_size_y size of the cluster in y direction
|
||||
* @param capacity initial capacity of the buffer in number of clusters
|
||||
* @param frame_number frame number of the clusters. Default is 0, which is
|
||||
* also used to indicate that the clusters come from many frames
|
||||
*/
|
||||
ClusterVector(size_t cluster_size_x = 3, size_t cluster_size_y = 3,
|
||||
size_t capacity = 1024, uint64_t frame_number = 0)
|
||||
: m_cluster_size_x(cluster_size_x), m_cluster_size_y(cluster_size_y),
|
||||
m_capacity(capacity), m_frame_number(frame_number) {
|
||||
allocate_buffer(capacity);
|
||||
ClusterVector(size_t capacity = 1024, uint64_t frame_number = 0)
|
||||
: m_frame_number(frame_number) {
|
||||
m_data.reserve(capacity);
|
||||
}
|
||||
|
||||
~ClusterVector() { delete[] m_data; }
|
||||
|
||||
// Move constructor
|
||||
ClusterVector(ClusterVector &&other) noexcept
|
||||
: m_cluster_size_x(other.m_cluster_size_x),
|
||||
m_cluster_size_y(other.m_cluster_size_y), m_data(other.m_data),
|
||||
m_size(other.m_size), m_capacity(other.m_capacity),
|
||||
m_frame_number(other.m_frame_number) {
|
||||
other.m_data = nullptr;
|
||||
other.m_size = 0;
|
||||
other.m_capacity = 0;
|
||||
: m_data(other.m_data), m_frame_number(other.m_frame_number) {
|
||||
other.m_data.clear();
|
||||
}
|
||||
|
||||
// Move assignment operator
|
||||
ClusterVector &operator=(ClusterVector &&other) noexcept {
|
||||
if (this != &other) {
|
||||
delete[] m_data;
|
||||
m_cluster_size_x = other.m_cluster_size_x;
|
||||
m_cluster_size_y = other.m_cluster_size_y;
|
||||
m_data = other.m_data;
|
||||
m_size = other.m_size;
|
||||
m_capacity = other.m_capacity;
|
||||
m_frame_number = other.m_frame_number;
|
||||
other.m_data = nullptr;
|
||||
other.m_size = 0;
|
||||
other.m_capacity = 0;
|
||||
other.m_data.clear();
|
||||
other.m_frame_number = 0;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reserve space for at least capacity clusters
|
||||
* @param capacity number of clusters to reserve space for
|
||||
* @note If capacity is less than the current capacity, the function does
|
||||
* nothing.
|
||||
*/
|
||||
void reserve(size_t capacity) {
|
||||
if (capacity > m_capacity) {
|
||||
allocate_buffer(capacity);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Add a cluster to the vector
|
||||
* @param x x-coordinate of the cluster
|
||||
* @param y y-coordinate of the cluster
|
||||
* @param data pointer to the data of the cluster
|
||||
* @warning The data pointer must point to a buffer of size cluster_size_x *
|
||||
* cluster_size_y * sizeof(T)
|
||||
*/
|
||||
void push_back(CoordType x, CoordType y, const std::byte *data) {
|
||||
if (m_size == m_capacity) {
|
||||
allocate_buffer(m_capacity * 2);
|
||||
}
|
||||
std::byte *ptr = element_ptr(m_size);
|
||||
*reinterpret_cast<CoordType *>(ptr) = x;
|
||||
ptr += sizeof(CoordType);
|
||||
*reinterpret_cast<CoordType *>(ptr) = y;
|
||||
ptr += sizeof(CoordType);
|
||||
|
||||
std::copy(data, data + m_cluster_size_x * m_cluster_size_y * sizeof(T),
|
||||
ptr);
|
||||
m_size++;
|
||||
}
|
||||
ClusterVector &operator+=(const ClusterVector &other) {
|
||||
if (m_size + other.m_size > m_capacity) {
|
||||
allocate_buffer(m_capacity + other.m_size);
|
||||
}
|
||||
std::copy(other.m_data, other.m_data + other.m_size * item_size(),
|
||||
m_data + m_size * item_size());
|
||||
m_size += other.m_size;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sum the pixels in each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
*/
|
||||
std::vector<T> sum() {
|
||||
std::vector<T> sums(m_size);
|
||||
const size_t stride = item_size();
|
||||
const size_t n_pixels = m_cluster_size_x * m_cluster_size_y;
|
||||
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
|
||||
std::vector<T> sums(m_data.size());
|
||||
|
||||
std::transform(
|
||||
m_data.begin(), m_data.end(), sums.begin(),
|
||||
[](const ClusterType &cluster) { return cluster.sum(); });
|
||||
|
||||
for (size_t i = 0; i < m_size; i++) {
|
||||
sums[i] =
|
||||
std::accumulate(reinterpret_cast<T *>(ptr),
|
||||
reinterpret_cast<T *>(ptr) + n_pixels, T{});
|
||||
ptr += stride;
|
||||
}
|
||||
return sums;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the maximum sum of the 2x2 subclusters in each cluster
|
||||
* @brief Sum the pixels in the 2x2 subcluster with the biggest pixel sum in
|
||||
* each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
* @throws std::runtime_error if the cluster size is not 3x3
|
||||
* @warning Only 3x3 clusters are supported for the 2x2 sum.
|
||||
*/
|
||||
std::vector<T> sum_2x2() {
|
||||
std::vector<T> sums(m_size);
|
||||
const size_t stride = item_size();
|
||||
std::vector<T> sums_2x2(m_data.size());
|
||||
|
||||
if (m_cluster_size_x != 3 || m_cluster_size_y != 3) {
|
||||
throw std::runtime_error(
|
||||
"Only 3x3 clusters are supported for the 2x2 sum.");
|
||||
}
|
||||
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
|
||||
std::transform(m_data.begin(), m_data.end(), sums_2x2.begin(),
|
||||
[](const ClusterType &cluster) {
|
||||
return cluster.max_sum_2x2().first;
|
||||
});
|
||||
|
||||
for (size_t i = 0; i < m_size; i++) {
|
||||
std::array<T, 4> total;
|
||||
auto T_ptr = reinterpret_cast<T *>(ptr);
|
||||
total[0] = T_ptr[0] + T_ptr[1] + T_ptr[3] + T_ptr[4];
|
||||
total[1] = T_ptr[1] + T_ptr[2] + T_ptr[4] + T_ptr[5];
|
||||
total[2] = T_ptr[3] + T_ptr[4] + T_ptr[6] + T_ptr[7];
|
||||
total[3] = T_ptr[4] + T_ptr[5] + T_ptr[7] + T_ptr[8];
|
||||
return sums_2x2;
|
||||
}
|
||||
|
||||
sums[i] = *std::max_element(total.begin(), total.end());
|
||||
ptr += stride;
|
||||
}
|
||||
/**
|
||||
* @brief Reserve space for at least capacity clusters
|
||||
* @param capacity number of clusters to reserve space for
|
||||
* @note If capacity is less than the current capacity, the function does
|
||||
* nothing.
|
||||
*/
|
||||
void reserve(size_t capacity) { m_data.reserve(capacity); }
|
||||
|
||||
return sums;
|
||||
void resize(size_t size) { m_data.resize(size); }
|
||||
|
||||
void push_back(const ClusterType &cluster) { m_data.push_back(cluster); }
|
||||
|
||||
ClusterVector &operator+=(const ClusterVector &other) {
|
||||
m_data.insert(m_data.end(), other.begin(), other.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of clusters in the vector
|
||||
*/
|
||||
size_t size() const { return m_size; }
|
||||
size_t size() const { return m_data.size(); }
|
||||
|
||||
uint8_t cluster_size_x() const { return ClusterSizeX; }
|
||||
|
||||
uint8_t cluster_size_y() const { return ClusterSizeY; }
|
||||
|
||||
/**
|
||||
* @brief Return the capacity of the buffer in number of clusters. This is
|
||||
* the number of clusters that can be stored in the current buffer without
|
||||
* reallocation.
|
||||
*/
|
||||
size_t capacity() const { return m_capacity; }
|
||||
size_t capacity() const { return m_data.capacity(); }
|
||||
|
||||
auto begin() const { return m_data.begin(); }
|
||||
|
||||
auto end() const { return m_data.end(); }
|
||||
|
||||
/**
|
||||
* @brief Return the size in bytes of a single cluster
|
||||
*/
|
||||
size_t item_size() const {
|
||||
return 2 * sizeof(CoordType) +
|
||||
m_cluster_size_x * m_cluster_size_y * sizeof(T);
|
||||
return sizeof(ClusterType); // 2 * sizeof(CoordType) + ClusterSizeX *
|
||||
// ClusterSizeY * sizeof(T);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the offset in bytes for the i-th cluster
|
||||
*/
|
||||
size_t element_offset(size_t i) const { return item_size() * i; }
|
||||
|
||||
/**
|
||||
* @brief Return a pointer to the i-th cluster
|
||||
*/
|
||||
std::byte *element_ptr(size_t i) { return m_data + element_offset(i); }
|
||||
|
||||
/**
|
||||
* @brief Return a pointer to the i-th cluster
|
||||
*/
|
||||
const std::byte *element_ptr(size_t i) const {
|
||||
return m_data + element_offset(i);
|
||||
}
|
||||
|
||||
size_t cluster_size_x() const { return m_cluster_size_x; }
|
||||
size_t cluster_size_y() const { return m_cluster_size_y; }
|
||||
|
||||
std::byte *data() { return m_data; }
|
||||
std::byte const *data() const { return m_data; }
|
||||
ClusterType *data() { return m_data.data(); }
|
||||
ClusterType const *data() const { return m_data.data(); }
|
||||
|
||||
/**
|
||||
* @brief Return a reference to the i-th cluster casted to type V
|
||||
* @tparam V type of the cluster
|
||||
*/
|
||||
template <typename V> V &at(size_t i) {
|
||||
return *reinterpret_cast<V *>(element_ptr(i));
|
||||
}
|
||||
ClusterType &operator[](size_t i) { return m_data[i]; }
|
||||
|
||||
template <typename V> const V &at(size_t i) const {
|
||||
return *reinterpret_cast<const V *>(element_ptr(i));
|
||||
}
|
||||
|
||||
const std::string_view fmt_base() const {
|
||||
// TODO! how do we match on coord_t?
|
||||
return m_fmt_base;
|
||||
}
|
||||
const ClusterType &operator[](size_t i) const { return m_data[i]; }
|
||||
|
||||
/**
|
||||
* @brief Return the frame number of the clusters. 0 is used to indicate
|
||||
* that the clusters come from many frames
|
||||
*/
|
||||
uint64_t frame_number() const { return m_frame_number; }
|
||||
int32_t frame_number() const { return m_frame_number; }
|
||||
|
||||
void set_frame_number(uint64_t frame_number) {
|
||||
void set_frame_number(int32_t frame_number) {
|
||||
m_frame_number = frame_number;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resize the vector to contain new_size clusters. If new_size is
|
||||
* greater than the current capacity, a new buffer is allocated. If the size
|
||||
* is smaller no memory is freed, size is just updated.
|
||||
* @param new_size new size of the vector
|
||||
* @warning The additional clusters are not initialized
|
||||
*/
|
||||
void resize(size_t new_size) {
|
||||
// TODO! Should we initialize the new clusters?
|
||||
if (new_size > m_capacity) {
|
||||
allocate_buffer(new_size);
|
||||
}
|
||||
m_size = new_size;
|
||||
}
|
||||
|
||||
void apply_gain_map(const NDView<double> gain_map){
|
||||
//in principle we need to know the size of the image for this lookup
|
||||
//TODO! check orientations
|
||||
std::array<int64_t, 9> xcorr = {-1, 0, 1, -1, 0, 1, -1, 0, 1};
|
||||
std::array<int64_t, 9> ycorr = {-1, -1, -1, 0, 0, 0, 1, 1, 1};
|
||||
for (size_t i=0; i<m_size; i++){
|
||||
auto& cl = at<Cluster3x3>(i);
|
||||
|
||||
if (cl.x > 0 && cl.y > 0 && cl.x < gain_map.shape(1)-1 && cl.y < gain_map.shape(0)-1){
|
||||
for (size_t j=0; j<9; j++){
|
||||
size_t x = cl.x + xcorr[j];
|
||||
size_t y = cl.y + ycorr[j];
|
||||
cl.data[j] = static_cast<T>(cl.data[j] * gain_map(y, x));
|
||||
}
|
||||
}else{
|
||||
memset(cl.data, 0, 9*sizeof(T)); //clear edge clusters
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
void allocate_buffer(size_t new_capacity) {
|
||||
size_t num_bytes = item_size() * new_capacity;
|
||||
std::byte *new_data = new std::byte[num_bytes]{};
|
||||
std::copy(m_data, m_data + item_size() * m_size, new_data);
|
||||
delete[] m_data;
|
||||
m_data = new_data;
|
||||
m_capacity = new_capacity;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -18,8 +18,8 @@ class FilePtr {
|
||||
FilePtr(FilePtr &&other);
|
||||
FilePtr &operator=(FilePtr &&other);
|
||||
FILE *get();
|
||||
int64_t tell();
|
||||
void seek(int64_t offset, int whence = SEEK_SET) {
|
||||
ssize_t tell();
|
||||
void seek(ssize_t offset, int whence = SEEK_SET) {
|
||||
if (fseek(fp_, offset, whence) != 0)
|
||||
throw std::runtime_error("Error seeking in file");
|
||||
}
|
||||
|
@ -15,6 +15,12 @@ NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par);
|
||||
double pol1(const double x, const double *par);
|
||||
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
double scurve(const double x, const double *par);
|
||||
NDArray<double, 1> scurve(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
double scurve2(const double x, const double *par);
|
||||
NDArray<double, 1> scurve2(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
} // namespace func
|
||||
|
||||
|
||||
@ -25,6 +31,9 @@ std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<doub
|
||||
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
|
||||
std::array<double, 6> scurve_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
|
||||
static constexpr int DEFAULT_NUM_THREADS = 4;
|
||||
|
||||
/**
|
||||
@ -38,7 +47,7 @@ NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y);
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian to each pixel. Data layout [row, col, values]
|
||||
* @param x x values
|
||||
* @param y y vales, layout [row, col, values]
|
||||
* @param y y values, layout [row, col, values]
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
|
||||
@ -51,7 +60,7 @@ NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian with error estimates
|
||||
* @param x x values
|
||||
* @param y y vales, layout [row, col, values]
|
||||
* @param y y values, layout [row, col, values]
|
||||
* @param y_err error in y, layout [row, col, values]
|
||||
* @param par_out output parameters
|
||||
* @param par_err_out output error parameters
|
||||
@ -64,7 +73,7 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout
|
||||
* [row, col, values]
|
||||
* @param x x values
|
||||
* @param y y vales, layout [row, col, values]
|
||||
* @param y y values, layout [row, col, values]
|
||||
* @param y_err error in y, layout [row, col, values]
|
||||
* @param par_out output parameters, layout [row, col, values]
|
||||
* @param par_err_out output parameter errors, layout [row, col, values]
|
||||
@ -88,5 +97,19 @@ void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,NDView<double, 2> chi2_out,
|
||||
int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
NDArray<double, 1> fit_scurve(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y, int n_threads);
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads);
|
||||
|
||||
NDArray<double, 1> fit_scurve2(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, int n_threads);
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads);
|
||||
} // namespace aare
|
@ -107,8 +107,8 @@ class Frame {
|
||||
* @return NDView<T, 2>
|
||||
*/
|
||||
template <typename T> NDView<T, 2> view() {
|
||||
std::array<int64_t, 2> shape = {static_cast<int64_t>(m_rows),
|
||||
static_cast<int64_t>(m_cols)};
|
||||
std::array<ssize_t, 2> shape = {static_cast<ssize_t>(m_rows),
|
||||
static_cast<ssize_t>(m_cols)};
|
||||
T *data = reinterpret_cast<T *>(m_data);
|
||||
return NDView<T, 2>(data, shape);
|
||||
}
|
||||
|
68
include/aare/GainMap.hpp
Normal file
68
include/aare/GainMap.hpp
Normal file
@ -0,0 +1,68 @@
|
||||
/************************************************
|
||||
* @file GainMap.hpp
|
||||
* @short function to apply gain map of image size to a vector of clusters -
|
||||
*note stored gainmap is inverted for efficient aaplication to images
|
||||
***********************************************/
|
||||
|
||||
#pragma once
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include <memory>
|
||||
|
||||
namespace aare {
|
||||
|
||||
class InvertedGainMap {
|
||||
|
||||
public:
|
||||
explicit InvertedGainMap(const NDArray<double, 2> &gain_map)
|
||||
: m_gain_map(gain_map) {
|
||||
for (auto &item : m_gain_map) {
|
||||
item = 1.0 / item;
|
||||
}
|
||||
};
|
||||
|
||||
explicit InvertedGainMap(const NDView<double, 2> gain_map) {
|
||||
m_gain_map = NDArray<double, 2>(gain_map);
|
||||
for (auto &item : m_gain_map) {
|
||||
item = 1.0 / item;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
void apply_gain_map(ClusterVector<ClusterType> &clustervec) {
|
||||
// in principle we need to know the size of the image for this lookup
|
||||
size_t ClusterSizeX = clustervec.cluster_size_x();
|
||||
size_t ClusterSizeY = clustervec.cluster_size_y();
|
||||
|
||||
using T = typename ClusterVector<ClusterType>::value_type;
|
||||
|
||||
int64_t index_cluster_center_x = ClusterSizeX / 2;
|
||||
int64_t index_cluster_center_y = ClusterSizeY / 2;
|
||||
for (size_t i = 0; i < clustervec.size(); i++) {
|
||||
auto &cl = clustervec[i];
|
||||
|
||||
if (cl.x > 0 && cl.y > 0 && cl.x < m_gain_map.shape(1) - 1 &&
|
||||
cl.y < m_gain_map.shape(0) - 1) {
|
||||
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
|
||||
size_t x = cl.x + j % ClusterSizeX - index_cluster_center_x;
|
||||
size_t y = cl.y + j / ClusterSizeX - index_cluster_center_y;
|
||||
cl.data[j] = static_cast<T>(
|
||||
static_cast<double>(cl.data[j]) *
|
||||
m_gain_map(
|
||||
y, x)); // cast after conversion to keep precision
|
||||
}
|
||||
} else {
|
||||
// clear edge clusters
|
||||
cl.data.fill(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
NDArray<double, 2> m_gain_map{};
|
||||
};
|
||||
|
||||
} // end of namespace aare
|
@ -1,29 +1,130 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterFile.hpp" //Cluster_3x3
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ClusterFile.hpp" //Cluster_3x3
|
||||
namespace aare{
|
||||
#include "aare/algorithm.hpp"
|
||||
|
||||
struct Photon{
|
||||
namespace aare {
|
||||
|
||||
struct Photon {
|
||||
double x;
|
||||
double y;
|
||||
double energy;
|
||||
};
|
||||
|
||||
class Interpolator{
|
||||
class Interpolator {
|
||||
NDArray<double, 3> m_ietax;
|
||||
NDArray<double, 3> m_ietay;
|
||||
|
||||
NDArray<double, 1> m_etabinsx;
|
||||
NDArray<double, 1> m_etabinsy;
|
||||
NDArray<double, 1> m_energy_bins;
|
||||
public:
|
||||
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins, NDView<double, 1> ybins, NDView<double, 1> ebins);
|
||||
NDArray<double, 3> get_ietax(){return m_ietax;}
|
||||
NDArray<double, 3> get_ietay(){return m_ietay;}
|
||||
|
||||
std::vector<Photon> interpolate(const ClusterVector<int32_t>& clusters);
|
||||
public:
|
||||
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
|
||||
NDView<double, 1> ybins, NDView<double, 1> ebins);
|
||||
NDArray<double, 3> get_ietax() { return m_ietax; }
|
||||
NDArray<double, 3> get_ietay() { return m_ietay; }
|
||||
|
||||
template <typename ClusterType,
|
||||
typename Eanble = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
std::vector<Photon> interpolate(const ClusterVector<ClusterType> &clusters);
|
||||
};
|
||||
|
||||
// TODO: generalize to support any clustertype!!! otherwise add std::enable_if_t
|
||||
// to only take Cluster2x2 and Cluster3x3
|
||||
template <typename ClusterType, typename Enable>
|
||||
std::vector<Photon>
|
||||
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
|
||||
std::vector<Photon> photons;
|
||||
photons.reserve(clusters.size());
|
||||
|
||||
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
|
||||
for (const ClusterType &cluster : clusters) {
|
||||
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = static_cast<decltype(photon.energy)>(eta.sum);
|
||||
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
// fmt::print("ex: {}, ix: {}, iy: {}\n", ie, ix, iy);
|
||||
|
||||
double dX, dY;
|
||||
// cBottomLeft = 0,
|
||||
// cBottomRight = 1,
|
||||
// cTopLeft = 2,
|
||||
// cTopRight = 3
|
||||
switch (static_cast<corner>(eta.c)) {
|
||||
case corner::cTopLeft:
|
||||
dX = -1.;
|
||||
dY = 0;
|
||||
break;
|
||||
case corner::cTopRight:;
|
||||
dX = 0;
|
||||
dY = 0;
|
||||
break;
|
||||
case corner::cBottomLeft:
|
||||
dX = -1.;
|
||||
dY = -1.;
|
||||
break;
|
||||
case corner::cBottomRight:
|
||||
dX = 0.;
|
||||
dY = -1.;
|
||||
break;
|
||||
}
|
||||
photon.x += m_ietax(ix, iy, ie) * 2 + dX;
|
||||
photon.y += m_ietay(ix, iy, ie) * 2 + dY;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
} else if (clusters.cluster_size_x() == 2 ||
|
||||
clusters.cluster_size_y() == 2) {
|
||||
for (const ClusterType &cluster : clusters) {
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = static_cast<decltype(photon.energy)>(eta.sum);
|
||||
|
||||
// Now do some actual interpolation.
|
||||
// Find which energy bin the cluster is in
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
photon.x += m_ietax(ix, iy, ie) *
|
||||
2; // eta goes between 0 and 1 but we could move the hit
|
||||
// anywhere in the 2x2
|
||||
photon.y += m_ietay(ix, iy, ie) * 2;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Only 3x3 and 2x2 clusters are supported for interpolation");
|
||||
}
|
||||
|
||||
return photons;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -22,10 +22,10 @@ TODO! Add expression templates for operators
|
||||
namespace aare {
|
||||
|
||||
|
||||
template <typename T, int64_t Ndim = 2>
|
||||
template <typename T, ssize_t Ndim = 2>
|
||||
class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
std::array<int64_t, Ndim> shape_;
|
||||
std::array<int64_t, Ndim> strides_;
|
||||
std::array<ssize_t, Ndim> shape_;
|
||||
std::array<ssize_t, Ndim> strides_;
|
||||
size_t size_{};
|
||||
T *data_;
|
||||
|
||||
@ -42,7 +42,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
*
|
||||
* @param shape shape of the new NDArray
|
||||
*/
|
||||
explicit NDArray(std::array<int64_t, Ndim> shape)
|
||||
explicit NDArray(std::array<ssize_t, Ndim> shape)
|
||||
: shape_(shape), strides_(c_strides<Ndim>(shape_)),
|
||||
size_(std::accumulate(shape_.begin(), shape_.end(), 1,
|
||||
std::multiplies<>())),
|
||||
@ -55,7 +55,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
* @param shape shape of the new array
|
||||
* @param value value to initialize the array with
|
||||
*/
|
||||
NDArray(std::array<int64_t, Ndim> shape, T value) : NDArray(shape) {
|
||||
NDArray(std::array<ssize_t, Ndim> shape, T value) : NDArray(shape) {
|
||||
this->operator=(value);
|
||||
}
|
||||
|
||||
@ -186,22 +186,22 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
}
|
||||
|
||||
// TODO! is int the right type for index?
|
||||
T &operator()(int64_t i) { return data_[i]; }
|
||||
const T &operator()(int64_t i) const { return data_[i]; }
|
||||
T &operator()(ssize_t i) { return data_[i]; }
|
||||
const T &operator()(ssize_t i) const { return data_[i]; }
|
||||
|
||||
T &operator[](int64_t i) { return data_[i]; }
|
||||
const T &operator[](int64_t i) const { return data_[i]; }
|
||||
T &operator[](ssize_t i) { return data_[i]; }
|
||||
const T &operator[](ssize_t i) const { return data_[i]; }
|
||||
|
||||
T *data() { return data_; }
|
||||
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
|
||||
ssize_t size() const { return static_cast<ssize_t>(size_); }
|
||||
size_t total_bytes() const { return size_ * sizeof(T); }
|
||||
std::array<int64_t, Ndim> shape() const noexcept { return shape_; }
|
||||
int64_t shape(int64_t i) const noexcept { return shape_[i]; }
|
||||
std::array<int64_t, Ndim> strides() const noexcept { return strides_; }
|
||||
std::array<ssize_t, Ndim> shape() const noexcept { return shape_; }
|
||||
ssize_t shape(ssize_t i) const noexcept { return shape_[i]; }
|
||||
std::array<ssize_t, Ndim> strides() const noexcept { return strides_; }
|
||||
size_t bitdepth() const noexcept { return sizeof(T) * 8; }
|
||||
|
||||
std::array<int64_t, Ndim> byte_strides() const noexcept {
|
||||
std::array<ssize_t, Ndim> byte_strides() const noexcept {
|
||||
auto byte_strides = strides_;
|
||||
for (auto &val : byte_strides)
|
||||
val *= sizeof(T);
|
||||
@ -228,7 +228,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
};
|
||||
|
||||
// Move assign
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &
|
||||
NDArray<T, Ndim>::operator=(NDArray<T, Ndim> &&other) noexcept {
|
||||
if (this != &other) {
|
||||
@ -242,7 +242,7 @@ NDArray<T, Ndim>::operator=(NDArray<T, Ndim> &&other) noexcept {
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const NDArray<T, Ndim> &other) {
|
||||
// check shape
|
||||
if (shape_ == other.shape_) {
|
||||
@ -254,7 +254,7 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const NDArray<T, Ndim> &other) {
|
||||
throw(std::runtime_error("Shape of ImageDatas must match"));
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator-=(const NDArray<T, Ndim> &other) {
|
||||
// check shape
|
||||
if (shape_ == other.shape_) {
|
||||
@ -266,7 +266,7 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator-=(const NDArray<T, Ndim> &other) {
|
||||
throw(std::runtime_error("Shape of ImageDatas must match"));
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator*=(const NDArray<T, Ndim> &other) {
|
||||
// check shape
|
||||
if (shape_ == other.shape_) {
|
||||
@ -278,14 +278,14 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator*=(const NDArray<T, Ndim> &other) {
|
||||
throw(std::runtime_error("Shape of ImageDatas must match"));
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator&=(const T &mask) {
|
||||
for (auto it = begin(); it != end(); ++it)
|
||||
*it &= mask;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<bool, Ndim> NDArray<T, Ndim>::operator>(const NDArray &other) {
|
||||
if (shape_ == other.shape_) {
|
||||
NDArray<bool, Ndim> result{shape_};
|
||||
@ -297,7 +297,7 @@ NDArray<bool, Ndim> NDArray<T, Ndim>::operator>(const NDArray &other) {
|
||||
throw(std::runtime_error("Shape of ImageDatas must match"));
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const NDArray<T, Ndim> &other) {
|
||||
if (this != &other) {
|
||||
delete[] data_;
|
||||
@ -310,7 +310,7 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const NDArray<T, Ndim> &other) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
bool NDArray<T, Ndim>::operator==(const NDArray<T, Ndim> &other) const {
|
||||
if (shape_ != other.shape_)
|
||||
return false;
|
||||
@ -322,23 +322,23 @@ bool NDArray<T, Ndim>::operator==(const NDArray<T, Ndim> &other) const {
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
bool NDArray<T, Ndim>::operator!=(const NDArray<T, Ndim> &other) const {
|
||||
return !((*this) == other);
|
||||
}
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator++() {
|
||||
for (uint32_t i = 0; i < size_; ++i)
|
||||
data_[i] += 1;
|
||||
return *this;
|
||||
}
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const T &value) {
|
||||
std::fill_n(data_, size_, value);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const T &value) {
|
||||
for (uint32_t i = 0; i < size_; ++i)
|
||||
data_[i] += value;
|
||||
@ -348,57 +348,57 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const T &value) {
|
||||
|
||||
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> NDArray<T, Ndim>::operator+(const T &value) {
|
||||
NDArray result = *this;
|
||||
result += value;
|
||||
return result;
|
||||
}
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator-=(const T &value) {
|
||||
for (uint32_t i = 0; i < size_; ++i)
|
||||
data_[i] -= value;
|
||||
return *this;
|
||||
}
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> NDArray<T, Ndim>::operator-(const T &value) {
|
||||
NDArray result = *this;
|
||||
result -= value;
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator/=(const T &value) {
|
||||
for (uint32_t i = 0; i < size_; ++i)
|
||||
data_[i] /= value;
|
||||
return *this;
|
||||
}
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> NDArray<T, Ndim>::operator/(const T &value) {
|
||||
NDArray result = *this;
|
||||
result /= value;
|
||||
return result;
|
||||
}
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator*=(const T &value) {
|
||||
for (uint32_t i = 0; i < size_; ++i)
|
||||
data_[i] *= value;
|
||||
return *this;
|
||||
}
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
|
||||
NDArray result = *this;
|
||||
result *= value;
|
||||
return result;
|
||||
}
|
||||
// template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
|
||||
// template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print() {
|
||||
// if (shape_[0] < 20 && shape_[1] < 20)
|
||||
// Print_all();
|
||||
// else
|
||||
// Print_some();
|
||||
// }
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
|
||||
for (auto row = 0; row < arr.shape(0); ++row) {
|
||||
for (auto col = 0; col < arr.shape(1); ++col) {
|
||||
@ -410,7 +410,7 @@ std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
|
||||
return os;
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print_all() {
|
||||
template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print_all() {
|
||||
for (auto row = 0; row < shape_[0]; ++row) {
|
||||
for (auto col = 0; col < shape_[1]; ++col) {
|
||||
std::cout << std::setw(3);
|
||||
@ -419,7 +419,7 @@ template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print_all() {
|
||||
std::cout << "\n";
|
||||
}
|
||||
}
|
||||
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print_some() {
|
||||
template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print_some() {
|
||||
for (auto row = 0; row < 5; ++row) {
|
||||
for (auto col = 0; col < 5; ++col) {
|
||||
std::cout << std::setw(7);
|
||||
@ -429,7 +429,7 @@ template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print_some() {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
void save(NDArray<T, Ndim> &img, std::string &pathname) {
|
||||
std::ofstream f;
|
||||
f.open(pathname, std::ios::binary);
|
||||
@ -437,9 +437,9 @@ void save(NDArray<T, Ndim> &img, std::string &pathname) {
|
||||
f.close();
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
NDArray<T, Ndim> load(const std::string &pathname,
|
||||
std::array<int64_t, Ndim> shape) {
|
||||
std::array<ssize_t, Ndim> shape) {
|
||||
NDArray<T, Ndim> img{shape};
|
||||
std::ifstream f;
|
||||
f.open(pathname, std::ios::binary);
|
||||
|
@ -14,10 +14,10 @@
|
||||
#include <vector>
|
||||
namespace aare {
|
||||
|
||||
template <int64_t Ndim> using Shape = std::array<int64_t, Ndim>;
|
||||
template <ssize_t Ndim> using Shape = std::array<ssize_t, Ndim>;
|
||||
|
||||
// TODO! fix mismatch between signed and unsigned
|
||||
template <int64_t Ndim> Shape<Ndim> make_shape(const std::vector<size_t> &shape) {
|
||||
template <ssize_t Ndim> Shape<Ndim> make_shape(const std::vector<size_t> &shape) {
|
||||
if (shape.size() != Ndim)
|
||||
throw std::runtime_error("Shape size mismatch");
|
||||
Shape<Ndim> arr;
|
||||
@ -25,41 +25,41 @@ template <int64_t Ndim> Shape<Ndim> make_shape(const std::vector<size_t> &shape)
|
||||
return arr;
|
||||
}
|
||||
|
||||
template <int64_t Dim = 0, typename Strides> int64_t element_offset(const Strides & /*unused*/) { return 0; }
|
||||
template <ssize_t Dim = 0, typename Strides> ssize_t element_offset(const Strides & /*unused*/) { return 0; }
|
||||
|
||||
template <int64_t Dim = 0, typename Strides, typename... Ix>
|
||||
int64_t element_offset(const Strides &strides, int64_t i, Ix... index) {
|
||||
template <ssize_t Dim = 0, typename Strides, typename... Ix>
|
||||
ssize_t element_offset(const Strides &strides, ssize_t i, Ix... index) {
|
||||
return i * strides[Dim] + element_offset<Dim + 1>(strides, index...);
|
||||
}
|
||||
|
||||
template <int64_t Ndim> std::array<int64_t, Ndim> c_strides(const std::array<int64_t, Ndim> &shape) {
|
||||
std::array<int64_t, Ndim> strides{};
|
||||
template <ssize_t Ndim> std::array<ssize_t, Ndim> c_strides(const std::array<ssize_t, Ndim> &shape) {
|
||||
std::array<ssize_t, Ndim> strides{};
|
||||
std::fill(strides.begin(), strides.end(), 1);
|
||||
for (int64_t i = Ndim - 1; i > 0; --i) {
|
||||
for (ssize_t i = Ndim - 1; i > 0; --i) {
|
||||
strides[i - 1] = strides[i] * shape[i];
|
||||
}
|
||||
return strides;
|
||||
}
|
||||
|
||||
template <int64_t Ndim> std::array<int64_t, Ndim> make_array(const std::vector<int64_t> &vec) {
|
||||
template <ssize_t Ndim> std::array<ssize_t, Ndim> make_array(const std::vector<ssize_t> &vec) {
|
||||
assert(vec.size() == Ndim);
|
||||
std::array<int64_t, Ndim> arr{};
|
||||
std::array<ssize_t, Ndim> arr{};
|
||||
std::copy_n(vec.begin(), Ndim, arr.begin());
|
||||
return arr;
|
||||
}
|
||||
|
||||
template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
|
||||
template <typename T, ssize_t Ndim = 2> class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
|
||||
public:
|
||||
NDView() = default;
|
||||
~NDView() = default;
|
||||
NDView(const NDView &) = default;
|
||||
NDView(NDView &&) = default;
|
||||
|
||||
NDView(T *buffer, std::array<int64_t, Ndim> shape)
|
||||
NDView(T *buffer, std::array<ssize_t, Ndim> shape)
|
||||
: buffer_(buffer), strides_(c_strides<Ndim>(shape)), shape_(shape),
|
||||
size_(std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<>())) {}
|
||||
|
||||
// NDView(T *buffer, const std::vector<int64_t> &shape)
|
||||
// NDView(T *buffer, const std::vector<ssize_t> &shape)
|
||||
// : buffer_(buffer), strides_(c_strides<Ndim>(make_array<Ndim>(shape))), shape_(make_array<Ndim>(shape)),
|
||||
// size_(std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<>())) {}
|
||||
|
||||
@ -73,14 +73,14 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
|
||||
|
||||
ssize_t size() const { return static_cast<ssize_t>(size_); }
|
||||
size_t total_bytes() const { return size_ * sizeof(T); }
|
||||
std::array<int64_t, Ndim> strides() const noexcept { return strides_; }
|
||||
std::array<ssize_t, Ndim> strides() const noexcept { return strides_; }
|
||||
|
||||
T *begin() { return buffer_; }
|
||||
T *end() { return buffer_ + size_; }
|
||||
T const *begin() const { return buffer_; }
|
||||
T const *end() const { return buffer_ + size_; }
|
||||
T &operator()(int64_t i) const { return buffer_[i]; }
|
||||
T &operator[](int64_t i) const { return buffer_[i]; }
|
||||
T &operator()(ssize_t i) const { return buffer_[i]; }
|
||||
T &operator[](ssize_t i) const { return buffer_[i]; }
|
||||
|
||||
bool operator==(const NDView &other) const {
|
||||
if (size_ != other.size_)
|
||||
@ -136,15 +136,15 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
|
||||
}
|
||||
|
||||
auto &shape() const { return shape_; }
|
||||
auto shape(int64_t i) const { return shape_[i]; }
|
||||
auto shape(ssize_t i) const { return shape_[i]; }
|
||||
|
||||
T *data() { return buffer_; }
|
||||
void print_all() const;
|
||||
|
||||
private:
|
||||
T *buffer_{nullptr};
|
||||
std::array<int64_t, Ndim> strides_{};
|
||||
std::array<int64_t, Ndim> shape_{};
|
||||
std::array<ssize_t, Ndim> strides_{};
|
||||
std::array<ssize_t, Ndim> shape_{};
|
||||
uint64_t size_{};
|
||||
|
||||
template <class BinaryOperation> NDView &elemenwise(T val, BinaryOperation op) {
|
||||
@ -160,7 +160,7 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
template <typename T, int64_t Ndim> void NDView<T, Ndim>::print_all() const {
|
||||
template <typename T, ssize_t Ndim> void NDView<T, Ndim>::print_all() const {
|
||||
for (auto row = 0; row < shape_[0]; ++row) {
|
||||
for (auto col = 0; col < shape_[1]; ++col) {
|
||||
std::cout << std::setw(3);
|
||||
@ -171,7 +171,7 @@ template <typename T, int64_t Ndim> void NDView<T, Ndim>::print_all() const {
|
||||
}
|
||||
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
std::ostream& operator <<(std::ostream& os, const NDView<T, Ndim>& arr){
|
||||
for (auto row = 0; row < arr.shape(0); ++row) {
|
||||
for (auto col = 0; col < arr.shape(1); ++col) {
|
||||
@ -186,7 +186,7 @@ std::ostream& operator <<(std::ostream& os, const NDView<T, Ndim>& arr){
|
||||
|
||||
template <typename T>
|
||||
NDView<T,1> make_view(std::vector<T>& vec){
|
||||
return NDView<T,1>(vec.data(), {static_cast<int64_t>(vec.size())});
|
||||
return NDView<T,1>(vec.data(), {static_cast<ssize_t>(vec.size())});
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -69,7 +69,7 @@ class NumpyFile : public FileInterface {
|
||||
*/
|
||||
template <typename T, size_t NDim> NDArray<T, NDim> load() {
|
||||
NDArray<T, NDim> arr(make_shape<NDim>(m_header.shape));
|
||||
if (fseek(fp, static_cast<int64_t>(header_size), SEEK_SET)) {
|
||||
if (fseek(fp, static_cast<long>(header_size), SEEK_SET)) {
|
||||
throw std::runtime_error(LOCATION + "Error seeking to the start of the data");
|
||||
}
|
||||
size_t rc = fread(arr.data(), sizeof(T), arr.size(), fp);
|
||||
|
@ -107,7 +107,7 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
assert(frame.size() == m_rows * m_cols);
|
||||
|
||||
// TODO! move away from m_rows, m_cols
|
||||
if (frame.shape() != std::array<int64_t, 2>{m_rows, m_cols}) {
|
||||
if (frame.shape() != std::array<ssize_t, 2>{m_rows, m_cols}) {
|
||||
throw std::runtime_error(
|
||||
"Frame shape does not match pedestal shape");
|
||||
}
|
||||
@ -128,7 +128,7 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
assert(frame.size() == m_rows * m_cols);
|
||||
|
||||
// TODO! move away from m_rows, m_cols
|
||||
if (frame.shape() != std::array<int64_t, 2>{m_rows, m_cols}) {
|
||||
if (frame.shape() != std::array<ssize_t, 2>{m_rows, m_cols}) {
|
||||
throw std::runtime_error(
|
||||
"Frame shape does not match pedestal shape");
|
||||
}
|
||||
|
@ -30,22 +30,11 @@ struct ModuleConfig {
|
||||
* Consider using that unless you need raw file specific functionality.
|
||||
*/
|
||||
class RawFile : public FileInterface {
|
||||
size_t n_subfiles{}; //f0,f1...fn
|
||||
size_t n_subfile_parts{}; // d0,d1...dn
|
||||
//TODO! move to vector of SubFile instead of pointers
|
||||
std::vector<std::vector<RawSubFile *>> subfiles; //subfiles[f0,f1...fn][d0,d1...dn]
|
||||
// std::vector<xy> positions;
|
||||
|
||||
std::vector<std::unique_ptr<RawSubFile>> m_subfiles;
|
||||
ModuleConfig cfg{0, 0};
|
||||
|
||||
RawMasterFile m_master;
|
||||
|
||||
size_t m_current_frame{};
|
||||
|
||||
// std::vector<ModuleGeometry> m_module_pixel_0;
|
||||
// size_t m_rows{};
|
||||
// size_t m_cols{};
|
||||
|
||||
size_t m_current_subfile{};
|
||||
DetectorGeometry m_geometry;
|
||||
|
||||
public:
|
||||
@ -56,7 +45,7 @@ class RawFile : public FileInterface {
|
||||
|
||||
*/
|
||||
RawFile(const std::filesystem::path &fname, const std::string &mode = "r");
|
||||
virtual ~RawFile() override;
|
||||
virtual ~RawFile() override = default;
|
||||
|
||||
Frame read_frame() override;
|
||||
Frame read_frame(size_t frame_number) override;
|
||||
@ -80,7 +69,7 @@ class RawFile : public FileInterface {
|
||||
size_t cols() const override;
|
||||
size_t bitdepth() const override;
|
||||
xy geometry();
|
||||
size_t n_mod() const;
|
||||
size_t n_modules() const;
|
||||
|
||||
RawMasterFile master() const;
|
||||
|
||||
@ -115,9 +104,6 @@ class RawFile : public FileInterface {
|
||||
*/
|
||||
static DetectorHeader read_header(const std::filesystem::path &fname);
|
||||
|
||||
// void update_geometry_with_roi();
|
||||
int find_number_of_subfiles();
|
||||
|
||||
void open_subfiles();
|
||||
void find_geometry();
|
||||
};
|
||||
|
@ -121,6 +121,7 @@ class RawMasterFile {
|
||||
|
||||
size_t total_frames_expected() const;
|
||||
xy geometry() const;
|
||||
size_t n_modules() const;
|
||||
|
||||
std::optional<size_t> analog_samples() const;
|
||||
std::optional<size_t> digital_samples() const;
|
||||
|
@ -18,11 +18,20 @@ class RawSubFile {
|
||||
std::ifstream m_file;
|
||||
DetectorType m_detector_type;
|
||||
size_t m_bitdepth;
|
||||
std::filesystem::path m_fname;
|
||||
std::filesystem::path m_path; //!< path to the subfile
|
||||
std::string m_base_name; //!< base name used for formatting file names
|
||||
size_t m_offset{}; //!< file index of the first file, allow starting at non zero file
|
||||
size_t m_total_frames{}; //!< total number of frames in the series of files
|
||||
size_t m_rows{};
|
||||
size_t m_cols{};
|
||||
size_t m_bytes_per_frame{};
|
||||
size_t m_num_frames{};
|
||||
|
||||
|
||||
int m_module_index{};
|
||||
size_t m_current_file_index{}; //!< The index of the open file
|
||||
size_t m_current_frame_index{}; //!< The index of the current frame (with reference to all files)
|
||||
std::vector<size_t> m_last_frame_in_file{}; //!< Used for seeking to the correct file
|
||||
|
||||
uint32_t m_pos_row{};
|
||||
uint32_t m_pos_col{};
|
||||
|
||||
@ -67,12 +76,17 @@ class RawSubFile {
|
||||
size_t pixels_per_frame() const { return m_rows * m_cols; }
|
||||
size_t bytes_per_pixel() const { return m_bitdepth / bits_per_byte; }
|
||||
|
||||
size_t frames_in_file() const { return m_num_frames; }
|
||||
size_t frames_in_file() const { return m_total_frames; }
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void read_with_map(std::byte *image_buf);
|
||||
|
||||
void parse_fname(const std::filesystem::path &fname);
|
||||
void scan_files();
|
||||
void open_file(size_t file_index);
|
||||
std::filesystem::path fpath(size_t file_index) const;
|
||||
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -28,7 +28,7 @@ template <typename T> class VarClusterFinder {
|
||||
};
|
||||
|
||||
private:
|
||||
const std::array<int64_t, 2> shape_;
|
||||
const std::array<ssize_t, 2> shape_;
|
||||
NDView<T, 2> original_;
|
||||
NDArray<int, 2> labeled_;
|
||||
NDArray<int, 2> peripheral_labeled_;
|
||||
|
@ -107,5 +107,16 @@ std::vector<T> cumsum(const std::vector<T>& vec) {
|
||||
}
|
||||
|
||||
|
||||
template <typename Container> bool all_equal(const Container &c) {
|
||||
if (!c.empty() &&
|
||||
std::all_of(begin(c), end(c),
|
||||
[c](const typename Container::value_type &element) {
|
||||
return element == c.front();
|
||||
}))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace aare
|
@ -204,23 +204,25 @@ struct DetectorGeometry{
|
||||
int module_gap_row{};
|
||||
int module_gap_col{};
|
||||
std::vector<ModuleGeometry> module_pixel_0;
|
||||
|
||||
auto size() const { return module_pixel_0.size(); }
|
||||
};
|
||||
|
||||
struct ROI{
|
||||
int64_t xmin{};
|
||||
int64_t xmax{};
|
||||
int64_t ymin{};
|
||||
int64_t ymax{};
|
||||
ssize_t xmin{};
|
||||
ssize_t xmax{};
|
||||
ssize_t ymin{};
|
||||
ssize_t ymax{};
|
||||
|
||||
int64_t height() const { return ymax - ymin; }
|
||||
int64_t width() const { return xmax - xmin; }
|
||||
bool contains(int64_t x, int64_t y) const {
|
||||
ssize_t height() const { return ymax - ymin; }
|
||||
ssize_t width() const { return xmax - xmin; }
|
||||
bool contains(ssize_t x, ssize_t y) const {
|
||||
return x >= xmin && x < xmax && y >= ymin && y < ymax;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
using dynamic_shape = std::vector<int64_t>;
|
||||
using dynamic_shape = std::vector<ssize_t>;
|
||||
|
||||
//TODO! Can we uniform enums between the libraries?
|
||||
|
||||
|
139
include/aare/logger.hpp
Normal file
139
include/aare/logger.hpp
Normal file
@ -0,0 +1,139 @@
|
||||
#pragma once
|
||||
/*Utility to log to console*/
|
||||
|
||||
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <sys/time.h>
|
||||
|
||||
namespace aare {
|
||||
|
||||
#define RED "\x1b[31m"
|
||||
#define GREEN "\x1b[32m"
|
||||
#define YELLOW "\x1b[33m"
|
||||
#define BLUE "\x1b[34m"
|
||||
#define MAGENTA "\x1b[35m"
|
||||
#define CYAN "\x1b[36m"
|
||||
#define GRAY "\x1b[37m"
|
||||
#define DARKGRAY "\x1b[30m"
|
||||
|
||||
#define BG_BLACK "\x1b[48;5;232m"
|
||||
#define BG_RED "\x1b[41m"
|
||||
#define BG_GREEN "\x1b[42m"
|
||||
#define BG_YELLOW "\x1b[43m"
|
||||
#define BG_BLUE "\x1b[44m"
|
||||
#define BG_MAGENTA "\x1b[45m"
|
||||
#define BG_CYAN "\x1b[46m"
|
||||
#define RESET "\x1b[0m"
|
||||
#define BOLD "\x1b[1m"
|
||||
|
||||
|
||||
enum TLogLevel {
|
||||
logERROR,
|
||||
logWARNING,
|
||||
logINFOBLUE,
|
||||
logINFOGREEN,
|
||||
logINFORED,
|
||||
logINFOCYAN,
|
||||
logINFOMAGENTA,
|
||||
logINFO,
|
||||
logDEBUG,
|
||||
logDEBUG1,
|
||||
logDEBUG2,
|
||||
logDEBUG3,
|
||||
logDEBUG4,
|
||||
logDEBUG5
|
||||
};
|
||||
|
||||
// Compiler should optimize away anything below this value
|
||||
#ifndef AARE_LOG_LEVEL
|
||||
#define AARE_LOG_LEVEL "LOG LEVEL NOT SET IN CMAKE" //This is configured in the main CMakeLists.txt
|
||||
#endif
|
||||
|
||||
#define __AT__ \
|
||||
std::string(__FILE__) + std::string("::") + std::string(__func__) + \
|
||||
std::string("(): ")
|
||||
#define __SHORT_FORM_OF_FILE__ \
|
||||
(strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__)
|
||||
#define __SHORT_AT__ \
|
||||
std::string(__SHORT_FORM_OF_FILE__) + std::string("::") + \
|
||||
std::string(__func__) + std::string("(): ")
|
||||
|
||||
class Logger {
|
||||
std::ostringstream os;
|
||||
TLogLevel m_level = AARE_LOG_LEVEL;
|
||||
|
||||
public:
|
||||
Logger() = default;
|
||||
explicit Logger(TLogLevel level) : m_level(level){};
|
||||
~Logger() {
|
||||
// output in the destructor to allow for << syntax
|
||||
os << RESET << '\n';
|
||||
std::clog << os.str() << std::flush; // Single write
|
||||
}
|
||||
|
||||
static TLogLevel &ReportingLevel() { // singelton eeh TODO! Do we need a runtime option?
|
||||
static TLogLevel reportingLevel = logDEBUG5;
|
||||
return reportingLevel;
|
||||
}
|
||||
|
||||
// Danger this buffer need as many elements as TLogLevel
|
||||
static const char *Color(TLogLevel level) noexcept {
|
||||
static const char *const colors[] = {
|
||||
RED BOLD, YELLOW BOLD, BLUE, GREEN, RED, CYAN, MAGENTA,
|
||||
RESET, RESET, RESET, RESET, RESET, RESET, RESET};
|
||||
// out of bounds
|
||||
if (level < 0 || level >= sizeof(colors) / sizeof(colors[0])) {
|
||||
return RESET;
|
||||
}
|
||||
return colors[level];
|
||||
}
|
||||
|
||||
// Danger this buffer need as many elements as TLogLevel
|
||||
static std::string ToString(TLogLevel level) {
|
||||
static const char *const buffer[] = {
|
||||
"ERROR", "WARNING", "INFO", "INFO", "INFO",
|
||||
"INFO", "INFO", "INFO", "DEBUG", "DEBUG1",
|
||||
"DEBUG2", "DEBUG3", "DEBUG4", "DEBUG5"};
|
||||
// out of bounds
|
||||
if (level < 0 || level >= sizeof(buffer) / sizeof(buffer[0])) {
|
||||
return "UNKNOWN";
|
||||
}
|
||||
return buffer[level];
|
||||
}
|
||||
|
||||
std::ostringstream &Get() {
|
||||
os << Color(m_level) << "- " << Timestamp() << " " << ToString(m_level)
|
||||
<< ": ";
|
||||
return os;
|
||||
}
|
||||
|
||||
static std::string Timestamp() {
|
||||
constexpr size_t buffer_len = 12;
|
||||
char buffer[buffer_len];
|
||||
time_t t;
|
||||
::time(&t);
|
||||
tm r;
|
||||
strftime(buffer, buffer_len, "%X", localtime_r(&t, &r));
|
||||
buffer[buffer_len - 1] = '\0';
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv, nullptr);
|
||||
constexpr size_t result_len = 100;
|
||||
char result[result_len];
|
||||
snprintf(result, result_len, "%s.%03ld", buffer,
|
||||
static_cast<long>(tv.tv_usec) / 1000);
|
||||
result[result_len - 1] = '\0';
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
// TODO! Do we need to keep the runtime option?
|
||||
#define LOG(level) \
|
||||
if (level > AARE_LOG_LEVEL) \
|
||||
; \
|
||||
else if (level > aare::Logger::ReportingLevel()) \
|
||||
; \
|
||||
else \
|
||||
aare::Logger(level).Get()
|
||||
|
||||
} // namespace aare
|
Reference in New Issue
Block a user