mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-07-05 17:24:47 +02:00
added roi, noise and gain
This commit is contained in:
36
include/aare/Cluster.hpp
Normal file
36
include/aare/Cluster.hpp
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <array>
|
||||||
|
#include <cstddef>
|
||||||
|
#include <cstdint>
|
||||||
|
#include <numeric>
|
||||||
|
|
||||||
|
namespace aare {
|
||||||
|
|
||||||
|
//TODO! Template this?
|
||||||
|
struct Cluster3x3 {
|
||||||
|
int16_t x;
|
||||||
|
int16_t y;
|
||||||
|
int32_t data[9];
|
||||||
|
|
||||||
|
int32_t sum_2x2() const{
|
||||||
|
std::array<int32_t, 4> total;
|
||||||
|
total[0] = data[0] + data[1] + data[3] + data[4];
|
||||||
|
total[1] = data[1] + data[2] + data[4] + data[5];
|
||||||
|
total[2] = data[3] + data[4] + data[6] + data[7];
|
||||||
|
total[3] = data[4] + data[5] + data[7] + data[8];
|
||||||
|
return *std::max_element(total.begin(), total.end());
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t sum() const{
|
||||||
|
return std::accumulate(data, data + 9, 0);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
struct Cluster2x2 {
|
||||||
|
int16_t x;
|
||||||
|
int16_t y;
|
||||||
|
int32_t data[4];
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace aare
|
@ -1,24 +1,15 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
|
#include "aare/Cluster.hpp"
|
||||||
#include "aare/ClusterVector.hpp"
|
#include "aare/ClusterVector.hpp"
|
||||||
#include "aare/NDArray.hpp"
|
#include "aare/NDArray.hpp"
|
||||||
#include "aare/defs.hpp"
|
#include "aare/defs.hpp"
|
||||||
#include <filesystem>
|
#include <filesystem>
|
||||||
#include <fstream>
|
#include <fstream>
|
||||||
|
#include <optional>
|
||||||
|
|
||||||
namespace aare {
|
namespace aare {
|
||||||
|
|
||||||
//TODO! Template this?
|
|
||||||
struct Cluster3x3 {
|
|
||||||
int16_t x;
|
|
||||||
int16_t y;
|
|
||||||
int32_t data[9];
|
|
||||||
};
|
|
||||||
struct Cluster2x2 {
|
|
||||||
int16_t x;
|
|
||||||
int16_t y;
|
|
||||||
int32_t data[4];
|
|
||||||
};
|
|
||||||
|
|
||||||
typedef enum {
|
typedef enum {
|
||||||
cBottomLeft = 0,
|
cBottomLeft = 0,
|
||||||
@ -80,6 +71,9 @@ class ClusterFile {
|
|||||||
uint32_t m_num_left{};
|
uint32_t m_num_left{};
|
||||||
size_t m_chunk_size{};
|
size_t m_chunk_size{};
|
||||||
const std::string m_mode;
|
const std::string m_mode;
|
||||||
|
std::optional<ROI> m_roi;
|
||||||
|
std::optional<NDArray<int32_t, 2>> m_noise_map;
|
||||||
|
std::optional<NDArray<double, 2>> m_gain_map;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
/**
|
/**
|
||||||
@ -104,7 +98,9 @@ class ClusterFile {
|
|||||||
*/
|
*/
|
||||||
ClusterVector<int32_t> read_clusters(size_t n_clusters);
|
ClusterVector<int32_t> read_clusters(size_t n_clusters);
|
||||||
|
|
||||||
ClusterVector<int32_t> read_clusters(size_t n_clusters, ROI roi);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Read a single frame from the file and return the clusters. The
|
* @brief Read a single frame from the file and return the clusters. The
|
||||||
@ -126,11 +122,23 @@ class ClusterFile {
|
|||||||
*/
|
*/
|
||||||
size_t chunk_size() const { return m_chunk_size; }
|
size_t chunk_size() const { return m_chunk_size; }
|
||||||
|
|
||||||
|
void set_roi(ROI roi);
|
||||||
|
|
||||||
|
void set_noise_map(const NDView<int32_t, 2> noise_map);
|
||||||
|
|
||||||
|
void set_gain_map(const NDView<double, 2> gain_map);
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Close the file. If not closed the file will be closed in the destructor
|
* @brief Close the file. If not closed the file will be closed in the destructor
|
||||||
*/
|
*/
|
||||||
void close();
|
void close();
|
||||||
|
|
||||||
|
private:
|
||||||
|
ClusterVector<int32_t> read_clusters_with_cut(size_t n_clusters);
|
||||||
|
ClusterVector<int32_t> read_clusters_without_cut(size_t n_clusters);
|
||||||
|
bool is_selected(Cluster3x3 &cl);
|
||||||
|
Cluster3x3 read_one_cluster();
|
||||||
};
|
};
|
||||||
|
|
||||||
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
|
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
|
||||||
@ -142,4 +150,6 @@ NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters);
|
|||||||
Eta2 calculate_eta2(Cluster3x3 &cl);
|
Eta2 calculate_eta2(Cluster3x3 &cl);
|
||||||
Eta2 calculate_eta2(Cluster2x2 &cl);
|
Eta2 calculate_eta2(Cluster2x2 &cl);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
} // namespace aare
|
} // namespace aare
|
||||||
|
@ -8,6 +8,9 @@
|
|||||||
|
|
||||||
#include <fmt/core.h>
|
#include <fmt/core.h>
|
||||||
|
|
||||||
|
#include "aare/Cluster.hpp"
|
||||||
|
#include "aare/NDView.hpp"
|
||||||
|
|
||||||
namespace aare {
|
namespace aare {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -265,6 +268,28 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
|||||||
m_size = new_size;
|
m_size = new_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void apply_gain_map(const NDView<double> gain_map){
|
||||||
|
//in principle we need to know the size of the image for this lookup
|
||||||
|
//TODO! check orientations
|
||||||
|
std::array<int64_t, 9> xcorr = {-1, 0, 1, -1, 0, 1, -1, 0, 1};
|
||||||
|
std::array<int64_t, 9> ycorr = {-1, -1, -1, 0, 0, 0, 1, 1, 1};
|
||||||
|
for (size_t i=0; i<m_size; i++){
|
||||||
|
auto& cl = at<Cluster3x3>(i);
|
||||||
|
|
||||||
|
if (cl.x > 0 && cl.y > 0 && cl.x < gain_map.shape(1)-1 && cl.y < gain_map.shape(0)-1){
|
||||||
|
for (size_t j=0; j<9; j++){
|
||||||
|
size_t x = cl.x + xcorr[j];
|
||||||
|
size_t y = cl.y + ycorr[j];
|
||||||
|
cl.data[j] = static_cast<T>(cl.data[j] * gain_map(y, x));
|
||||||
|
}
|
||||||
|
}else{
|
||||||
|
memset(cl.data, 0, 9*sizeof(T)); //clear edge clusters
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
void allocate_buffer(size_t new_capacity) {
|
void allocate_buffer(size_t new_capacity) {
|
||||||
size_t num_bytes = item_size() * new_capacity;
|
size_t num_bytes = item_size() * new_capacity;
|
||||||
|
@ -6,6 +6,9 @@
|
|||||||
#include <array>
|
#include <array>
|
||||||
#include <stdexcept>
|
#include <stdexcept>
|
||||||
|
|
||||||
|
// #include <algorithm>
|
||||||
|
// #include <array>
|
||||||
|
// #include <numeric>
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
#include <cstdint>
|
#include <cstdint>
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
@ -43,6 +46,7 @@ inline constexpr size_t bits_per_byte = 8;
|
|||||||
void assert_failed(const std::string &msg);
|
void assert_failed(const std::string &msg);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class DynamicCluster {
|
class DynamicCluster {
|
||||||
public:
|
public:
|
||||||
int cluster_sizeX;
|
int cluster_sizeX;
|
||||||
@ -215,6 +219,9 @@ struct ROI{
|
|||||||
|
|
||||||
int64_t height() const { return ymax - ymin; }
|
int64_t height() const { return ymax - ymin; }
|
||||||
int64_t width() const { return xmax - xmin; }
|
int64_t width() const { return xmax - xmin; }
|
||||||
|
bool contains(int64_t x, int64_t y) const {
|
||||||
|
return x >= xmin && x < xmax && y >= ymin && y < ymax;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
@ -31,26 +31,22 @@ void define_cluster_file_io_bindings(py::module &m) {
|
|||||||
auto v = new ClusterVector<int32_t>(self.read_clusters(n_clusters));
|
auto v = new ClusterVector<int32_t>(self.read_clusters(n_clusters));
|
||||||
return v;
|
return v;
|
||||||
},py::return_value_policy::take_ownership)
|
},py::return_value_policy::take_ownership)
|
||||||
.def("read_clusters",
|
|
||||||
[](ClusterFile &self, size_t n_clusters, ROI roi) {
|
|
||||||
auto v = new ClusterVector<int32_t>(self.read_clusters(n_clusters, roi));
|
|
||||||
return v;
|
|
||||||
},py::return_value_policy::take_ownership)
|
|
||||||
.def("read_frame",
|
.def("read_frame",
|
||||||
[](ClusterFile &self) {
|
[](ClusterFile &self) {
|
||||||
auto v = new ClusterVector<int32_t>(self.read_frame());
|
auto v = new ClusterVector<int32_t>(self.read_frame());
|
||||||
return v;
|
return v;
|
||||||
})
|
})
|
||||||
|
.def("set_roi", &ClusterFile::set_roi)
|
||||||
|
.def("set_noise_map", [](ClusterFile &self, py::array_t<int32_t> noise_map) {
|
||||||
|
auto view = make_view_2d(noise_map);
|
||||||
|
self.set_noise_map(view);
|
||||||
|
})
|
||||||
|
.def("set_gain_map", [](ClusterFile &self, py::array_t<double> gain_map) {
|
||||||
|
auto view = make_view_2d(gain_map);
|
||||||
|
self.set_gain_map(view);
|
||||||
|
})
|
||||||
|
.def("close", &ClusterFile::close)
|
||||||
.def("write_frame", &ClusterFile::write_frame)
|
.def("write_frame", &ClusterFile::write_frame)
|
||||||
// .def("read_cluster_with_cut",
|
|
||||||
// [](ClusterFile &self, size_t n_clusters,
|
|
||||||
// py::array_t<double> noise_map, int nx, int ny) {
|
|
||||||
// auto view = make_view_2d(noise_map);
|
|
||||||
// auto *vec =
|
|
||||||
// new std::vector<Cluster3x3>(self.read_cluster_with_cut(
|
|
||||||
// n_clusters, view.data(), nx, ny));
|
|
||||||
// return return_vector(vec);
|
|
||||||
// })
|
|
||||||
.def("__enter__", [](ClusterFile &self) { return &self; })
|
.def("__enter__", [](ClusterFile &self) { return &self; })
|
||||||
.def("__exit__",
|
.def("__exit__",
|
||||||
[](ClusterFile &self,
|
[](ClusterFile &self,
|
||||||
|
@ -31,6 +31,18 @@ ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void ClusterFile::set_roi(ROI roi){
|
||||||
|
m_roi = roi;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ClusterFile::set_noise_map(const NDView<int32_t, 2> noise_map){
|
||||||
|
m_noise_map = NDArray<int32_t, 2>(noise_map);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ClusterFile::set_gain_map(const NDView<double, 2> gain_map){
|
||||||
|
m_gain_map = NDArray<double, 2>(gain_map);
|
||||||
|
}
|
||||||
|
|
||||||
ClusterFile::~ClusterFile() { close(); }
|
ClusterFile::~ClusterFile() { close(); }
|
||||||
|
|
||||||
void ClusterFile::close() {
|
void ClusterFile::close() {
|
||||||
@ -55,7 +67,19 @@ void ClusterFile::write_frame(const ClusterVector<int32_t> &clusters) {
|
|||||||
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
|
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
|
||||||
}
|
}
|
||||||
|
|
||||||
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters) {
|
|
||||||
|
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters){
|
||||||
|
if (m_mode != "r") {
|
||||||
|
throw std::runtime_error("File not opened for reading");
|
||||||
|
}
|
||||||
|
if (m_noise_map || m_roi){
|
||||||
|
return read_clusters_with_cut(n_clusters);
|
||||||
|
}else{
|
||||||
|
return read_clusters_without_cut(n_clusters);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ClusterVector<int32_t> ClusterFile::read_clusters_without_cut(size_t n_clusters) {
|
||||||
if (m_mode != "r") {
|
if (m_mode != "r") {
|
||||||
throw std::runtime_error("File not opened for reading");
|
throw std::runtime_error("File not opened for reading");
|
||||||
}
|
}
|
||||||
@ -105,70 +129,69 @@ ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters) {
|
|||||||
// Resize the vector to the number of clusters.
|
// Resize the vector to the number of clusters.
|
||||||
// No new allocation, only change bounds.
|
// No new allocation, only change bounds.
|
||||||
clusters.resize(nph_read);
|
clusters.resize(nph_read);
|
||||||
|
if(m_gain_map)
|
||||||
|
clusters.apply_gain_map(m_gain_map->view());
|
||||||
return clusters;
|
return clusters;
|
||||||
}
|
}
|
||||||
|
|
||||||
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters, ROI roi) {
|
|
||||||
if (m_mode != "r") {
|
|
||||||
throw std::runtime_error("File not opened for reading");
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
ClusterVector<int32_t> ClusterFile::read_clusters_with_cut(size_t n_clusters) {
|
||||||
ClusterVector<int32_t> clusters(3,3);
|
ClusterVector<int32_t> clusters(3,3);
|
||||||
clusters.reserve(n_clusters);
|
clusters.reserve(n_clusters);
|
||||||
|
|
||||||
Cluster3x3 tmp; //this would break if the cluster size changes
|
|
||||||
|
|
||||||
|
|
||||||
// if there are photons left from previous frame read them first
|
// if there are photons left from previous frame read them first
|
||||||
if (m_num_left) {
|
if (m_num_left) {
|
||||||
size_t nph_read = 0;
|
while(m_num_left && clusters.size() < n_clusters){
|
||||||
while(nph_read < m_num_left && clusters.size() < n_clusters){
|
Cluster3x3 c = read_one_cluster();
|
||||||
fread(&tmp, sizeof(tmp), 1, fp);
|
if(is_selected(c)){
|
||||||
nph_read++;
|
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
|
||||||
if(tmp.x >= roi.xmin && tmp.x <= roi.xmax && tmp.y >= roi.ymin && tmp.y <= roi.ymax){
|
|
||||||
clusters.push_back(tmp.x, tmp.y, reinterpret_cast<std::byte*>(tmp.data));
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
m_num_left -= nph_read;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// we did not have enough clusters left in the previous frame
|
||||||
|
// keep on reading frames until reaching n_clusters
|
||||||
if (clusters.size() < n_clusters) {
|
if (clusters.size() < n_clusters) {
|
||||||
|
// sanity check
|
||||||
if (m_num_left) {
|
if (m_num_left) {
|
||||||
throw std::runtime_error(LOCATION + "Entered second loop with clusters left\n");
|
throw std::runtime_error(LOCATION + "Entered second loop with clusters left\n");
|
||||||
}
|
}
|
||||||
// we did not have enough clusters left in the previous frame
|
|
||||||
// keep on reading frames until reaching n_clusters
|
|
||||||
|
|
||||||
int32_t frame_number = 0; // frame number needs to be 4 bytes!
|
int32_t frame_number = 0; // frame number needs to be 4 bytes!
|
||||||
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
|
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
|
||||||
uint32_t nph_in_frame = 0; //number of photons we can read until next frame number
|
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
|
||||||
size_t nph_read = 0; //number of photons read in this frame
|
clusters.set_frame_number(frame_number); //cluster vector will hold the last frame number
|
||||||
|
while(m_num_left && clusters.size() < n_clusters){
|
||||||
if (fread(&nph_in_frame, sizeof(nph_in_frame), 1, fp)) {
|
Cluster3x3 c = read_one_cluster();
|
||||||
if(frame_number != 1){
|
if(is_selected(c)){
|
||||||
throw std::runtime_error("Frame number is not 1");
|
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
while(nph_read < nph_in_frame && clusters.size() < n_clusters){
|
// we have enough clusters, break out of the outer while loop
|
||||||
fread(&tmp, sizeof(tmp), 1, fp);
|
if (clusters.size() >= n_clusters)
|
||||||
nph_read++;
|
|
||||||
if(tmp.x >= roi.xmin && tmp.x <= roi.xmax && tmp.y >= roi.ymin && tmp.y <= roi.ymax){
|
|
||||||
clusters.push_back(tmp.x, tmp.y, reinterpret_cast<std::byte*>(tmp.data));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
m_num_left = nph_in_frame - nph_read;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (clusters.size() >= n_clusters){
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
if(m_gain_map)
|
||||||
|
clusters.apply_gain_map(m_gain_map->view());
|
||||||
|
|
||||||
return clusters;
|
return clusters;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Cluster3x3 ClusterFile::read_one_cluster(){
|
||||||
|
Cluster3x3 c;
|
||||||
|
auto rc = fread(&c, sizeof(c), 1, fp);
|
||||||
|
if (rc != 1) {
|
||||||
|
throw std::runtime_error(LOCATION + "Could not read cluster");
|
||||||
|
}
|
||||||
|
--m_num_left;
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
|
||||||
ClusterVector<int32_t> ClusterFile::read_frame() {
|
ClusterVector<int32_t> ClusterFile::read_frame() {
|
||||||
if (m_mode != "r") {
|
if (m_mode != "r") {
|
||||||
throw std::runtime_error("File not opened for reading");
|
throw std::runtime_error("File not opened for reading");
|
||||||
@ -198,6 +221,26 @@ ClusterVector<int32_t> ClusterFile::read_frame() {
|
|||||||
return clusters;
|
return clusters;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool ClusterFile::is_selected(Cluster3x3 &cl) {
|
||||||
|
//Should fail fast
|
||||||
|
if (m_roi) {
|
||||||
|
if (!(m_roi->contains(cl.x, cl.y))) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (m_noise_map){
|
||||||
|
int32_t sum_1x1 = cl.data[4]; // central pixel
|
||||||
|
int32_t sum_2x2 = cl.sum_2x2(); // highest sum of 2x2 subclusters
|
||||||
|
int32_t sum_3x3 = cl.sum(); // sum of all pixels
|
||||||
|
|
||||||
|
auto noise = (*m_noise_map)(cl.y, cl.x); //TODO! check if this is correct
|
||||||
|
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise || sum_3x3 <= 3 * noise) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//we passed all checks
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
// std::vector<Cluster3x3> ClusterFile::read_cluster_with_cut(size_t n_clusters,
|
// std::vector<Cluster3x3> ClusterFile::read_cluster_with_cut(size_t n_clusters,
|
||||||
// double *noise_map,
|
// double *noise_map,
|
||||||
|
Reference in New Issue
Block a user