mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-12-18 19:11:25 +01:00
Inital implementation of multithreading for chunked pedestal
This commit is contained in:
@@ -20,9 +20,15 @@ enum class FrameType {
|
||||
struct FrameWrapper {
|
||||
FrameType type;
|
||||
uint64_t frame_number;
|
||||
// NDArray<T, 2> data;
|
||||
NDArray<uint16_t, 2> data;
|
||||
// NDArray<double, 2> data;
|
||||
// void* data_ptr;
|
||||
// std::type_index data_type;
|
||||
uint32_t chunk_number;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* @brief ClusterFinderMT is a multi-threaded version of ClusterFinder. It uses
|
||||
* a producer-consumer queue to distribute the frames to the threads. The
|
||||
@@ -68,6 +74,7 @@ class ClusterFinderMT {
|
||||
while (!m_stop_requested || !q->isEmpty()) {
|
||||
if (FrameWrapper *frame = q->frontPtr(); frame != nullptr) {
|
||||
|
||||
|
||||
switch (frame->type) {
|
||||
case FrameType::DATA:
|
||||
cf->find_clusters(frame->data.view(), frame->frame_number);
|
||||
@@ -121,7 +128,8 @@ class ClusterFinderMT {
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
ClusterFinderMT(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
|
||||
size_t capacity = 2000, size_t n_threads = 3)
|
||||
size_t capacity = 2000, size_t n_threads = 3,
|
||||
uint32_t chunk_size = 50000, uint32_t n_chunks = 10)
|
||||
: m_n_threads(n_threads) {
|
||||
|
||||
LOG(logDEBUG1) << "ClusterFinderMT: "
|
||||
@@ -134,7 +142,7 @@ class ClusterFinderMT {
|
||||
m_cluster_finders.push_back(
|
||||
std::make_unique<
|
||||
ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>>(
|
||||
image_size, nSigma, capacity));
|
||||
image_size, nSigma, capacity, chunk_size, n_chunks));
|
||||
}
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
m_input_queues.emplace_back(std::make_unique<InputQueue>(200));
|
||||
@@ -208,7 +216,7 @@ class ClusterFinderMT {
|
||||
*/
|
||||
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
|
||||
FrameWrapper fw{FrameType::PEDESTAL, 0,
|
||||
NDArray(frame)}; // TODO! copies the data!
|
||||
NDArray(frame), 0}; // TODO! copies the data!
|
||||
|
||||
for (auto &queue : m_input_queues) {
|
||||
while (!queue->write(fw)) {
|
||||
@@ -217,6 +225,23 @@ class ClusterFinderMT {
|
||||
}
|
||||
}
|
||||
|
||||
void push_pedestal_mean(NDView<PEDESTAL_TYPE, 2> frame, uint32_t chunk_number) {
|
||||
if (!m_processing_threads_stopped) {
|
||||
throw std::runtime_error("ClusterFinderMT is still running");
|
||||
}
|
||||
for (auto &cf : m_cluster_finders) {
|
||||
cf->push_pedestal_mean(frame, chunk_number);
|
||||
}
|
||||
}
|
||||
void push_pedestal_std(NDView<PEDESTAL_TYPE, 2> frame, uint32_t chunk_number) {
|
||||
if (!m_processing_threads_stopped) {
|
||||
throw std::runtime_error("ClusterFinderMT is still running");
|
||||
}
|
||||
for (auto &cf : m_cluster_finders) {
|
||||
cf->push_pedestal_std(frame, chunk_number);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Push the frame to the queue of the next available thread. Function
|
||||
* returns once the frame is in a queue.
|
||||
@@ -224,7 +249,7 @@ class ClusterFinderMT {
|
||||
*/
|
||||
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
|
||||
FrameWrapper fw{FrameType::DATA, frame_number,
|
||||
NDArray(frame)}; // TODO! copies the data!
|
||||
NDArray(frame), 0}; // TODO! copies the data!
|
||||
while (!m_input_queues[m_current_thread % m_n_threads]->write(fw)) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
|
||||
@@ -36,14 +36,14 @@ def ClusterFinder(image_size, cluster_size, n_sigma=5, dtype = np.int32, capacit
|
||||
|
||||
|
||||
|
||||
def ClusterFinderMT(image_size, cluster_size = (3,3), dtype=np.int32, n_sigma=5, capacity = 1024, n_threads = 3):
|
||||
def ClusterFinderMT(image_size, cluster_size = (3,3), dtype=np.int32, n_sigma=5, capacity = 1024, n_threads = 3, chunk_size=50000, n_chunks = 10):
|
||||
"""
|
||||
Factory function to create a ClusterFinderMT object. Provides a cleaner syntax for
|
||||
the templated ClusterFinderMT in C++.
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterFinderMT", cluster_size, dtype)
|
||||
return cls(image_size, n_sigma=n_sigma, capacity=capacity, n_threads=n_threads)
|
||||
return cls(image_size, n_sigma=n_sigma, capacity=capacity, n_threads=n_threads, chunk_size=chunk_size, n_chunks=n_chunks)
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -30,15 +30,30 @@ void define_ClusterFinderMT(py::module &m, const std::string &typestr) {
|
||||
|
||||
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
|
||||
.def(py::init<Shape<2>, pd_type, size_t, size_t, uint32_t, uint32_t>(),
|
||||
py::arg("image_size"), py::arg("n_sigma") = 5.0,
|
||||
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
|
||||
py::arg("capacity") = 2048, py::arg("n_threads") = 3,
|
||||
py::arg("chunk_size") = 50'000, py::arg("n_chunks") = 10)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
|
||||
.def("push_pedestal_mean",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<double> frame, uint32_t chunk_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_mean(view, chunk_number);
|
||||
})
|
||||
.def("push_pedestal_std",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<double> frame, uint32_t chunk_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_std(view, chunk_number);
|
||||
})
|
||||
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
|
||||
Reference in New Issue
Block a user