mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-12 15:27:13 +02:00
Added fitting with lmfit (#128)
- added stand alone fitting using: https://jugit.fz-juelich.de/mlz/lmfit.git - fit_gaus, fit_pol1 with and without errors - multi threaded fitting --------- Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
This commit is contained in:
@ -8,6 +8,28 @@ import numpy as np
|
||||
import boost_histogram as bh
|
||||
import time
|
||||
|
||||
<<<<<<< HEAD
|
||||
from aare import File, ClusterFinder, VarClusterFinder, ClusterFile, CtbRawFile
|
||||
from aare import gaus, fit_gaus
|
||||
|
||||
base = Path('/mnt/sls_det_storage/moench_data/Julian/MOENCH05/20250113_first_xrays_redo/raw_files/')
|
||||
cluster_file = Path('/home/l_msdetect/erik/tmp/Cu.clust')
|
||||
|
||||
t0 = time.perf_counter()
|
||||
offset= -0.5
|
||||
hist3d = bh.Histogram(
|
||||
bh.axis.Regular(160, 0+offset, 160+offset), #x
|
||||
bh.axis.Regular(150, 0+offset, 150+offset), #y
|
||||
bh.axis.Regular(200, 0, 6000), #ADU
|
||||
)
|
||||
|
||||
total_clusters = 0
|
||||
with ClusterFile(cluster_file, chunk_size = 1000) as f:
|
||||
for i, clusters in enumerate(f):
|
||||
arr = np.array(clusters)
|
||||
total_clusters += clusters.size
|
||||
hist3d.fill(arr['y'],arr['x'], clusters.sum_2x2()) #python talks [row, col] cluster finder [x,y]
|
||||
=======
|
||||
from aare import RawFile
|
||||
|
||||
f = RawFile('/mnt/sls_det_storage/jungfrau_data1/vadym_tests/jf12_M431/laser_scan/laserScan_pedestal_G0_master_0.json')
|
||||
@ -17,104 +39,30 @@ print(f'{f.frame_number(1)}')
|
||||
for i in range(10):
|
||||
header, img = f.read_frame()
|
||||
print(header['frameNumber'], img.shape)
|
||||
>>>>>>> developer
|
||||
|
||||
# for i, frame in enumerate(f):
|
||||
# print(f'{i}', end='\r')
|
||||
# print()
|
||||
|
||||
t_elapsed = time.perf_counter()-t0
|
||||
print(f'Histogram filling took: {t_elapsed:.3f}s {total_clusters/t_elapsed/1e6:.3f}M clusters/s')
|
||||
|
||||
histogram_data = hist3d.counts()
|
||||
x = hist3d.axes[2].edges[:-1]
|
||||
|
||||
# from aare._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink
|
||||
y = histogram_data[100,100,:]
|
||||
xx = np.linspace(x[0], x[-1])
|
||||
# fig, ax = plt.subplots()
|
||||
# ax.step(x, y, where = 'post')
|
||||
|
||||
y_err = np.sqrt(y)
|
||||
y_err = np.zeros(y.size)
|
||||
y_err += 1
|
||||
|
||||
# cf = ClusterFinderMT((400,400), (3,3), n_threads = 3)
|
||||
# # collector = ClusterCollector(cf)
|
||||
# out_file = ClusterFileSink(cf, "test.clust")
|
||||
# par = fit_gaus2(y,x, y_err)
|
||||
# ax.plot(xx, gaus(xx,par))
|
||||
# print(par)
|
||||
|
||||
# for i in range(1000):
|
||||
# img = f.read_frame()
|
||||
# cf.push_pedestal_frame(img)
|
||||
# print('Pedestal done')
|
||||
# cf.sync()
|
||||
res = fit_gaus(y,x)
|
||||
res2 = fit_gaus(y,x, y_err)
|
||||
print(res)
|
||||
print(res2)
|
||||
|
||||
# for i in range(100):
|
||||
# img = f.read_frame()
|
||||
# cf.find_clusters(img)
|
||||
|
||||
|
||||
# # time.sleep(1)
|
||||
# cf.stop()
|
||||
# time.sleep(1)
|
||||
# print('Second run')
|
||||
# cf.start()
|
||||
# for i in range(100):
|
||||
# img = f.read_frame()
|
||||
# cf.find_clusters(img)
|
||||
|
||||
# cf.stop()
|
||||
# print('Third run')
|
||||
# cf.start()
|
||||
# for i in range(129):
|
||||
# img = f.read_frame()
|
||||
# cf.find_clusters(img)
|
||||
|
||||
# cf.stop()
|
||||
# out_file.stop()
|
||||
# print('Done')
|
||||
|
||||
|
||||
# cfile = ClusterFile("test.clust")
|
||||
# i = 0
|
||||
# while True:
|
||||
# try:
|
||||
# cv = cfile.read_frame()
|
||||
# i+=1
|
||||
# except RuntimeError:
|
||||
# break
|
||||
# print(f'Read {i} frames')
|
||||
|
||||
|
||||
|
||||
|
||||
# # cf = ClusterFinder((400,400), (3,3))
|
||||
# # for i in range(1000):
|
||||
# # cf.push_pedestal_frame(f.read_frame())
|
||||
|
||||
# # fig, ax = plt.subplots()
|
||||
# # im = ax.imshow(cf.pedestal())
|
||||
# # cf.pedestal()
|
||||
# # cf.noise()
|
||||
|
||||
|
||||
|
||||
# # N = 500
|
||||
# # t0 = time.perf_counter()
|
||||
# # hist1 = bh.Histogram(bh.axis.Regular(40, -2, 4000))
|
||||
# # f.seek(0)
|
||||
|
||||
# # t0 = time.perf_counter()
|
||||
# # data = f.read_n(N)
|
||||
# # t_elapsed = time.perf_counter()-t0
|
||||
|
||||
|
||||
# # n_bytes = data.itemsize*data.size
|
||||
|
||||
# # print(f'Reading {N} frames took {t_elapsed:.3f}s {N/t_elapsed:.0f} FPS, {n_bytes/1024**2:.4f} GB/s')
|
||||
|
||||
|
||||
# # for frame in data:
|
||||
# # a = cf.find_clusters(frame)
|
||||
|
||||
# # clusters = cf.steal_clusters()
|
||||
|
||||
# # t_elapsed = time.perf_counter()-t0
|
||||
# # print(f'Clustering {N} frames took {t_elapsed:.2f}s {N/t_elapsed:.0f} FPS')
|
||||
|
||||
|
||||
# # t0 = time.perf_counter()
|
||||
# # total_clusters = clusters.size
|
||||
|
||||
# # hist1.fill(clusters.sum())
|
||||
|
||||
# # t_elapsed = time.perf_counter()-t0
|
||||
# # print(f'Filling histogram with the sum of {total_clusters} clusters took: {t_elapsed:.3f}s, {total_clusters/t_elapsed:.3g} clust/s')
|
||||
# # print(f'Average number of clusters per frame {total_clusters/N:.3f}')
|
Reference in New Issue
Block a user