test for interpolation with simulated normal energy distribution

This commit is contained in:
2025-10-08 16:35:52 +02:00
parent c78a73ebaf
commit 72a2604ca5
5 changed files with 822 additions and 6 deletions

View File

@@ -44,14 +44,14 @@ void define_ClusterFile(py::module &m, const std::string &typestr) {
auto v = new ClusterVector<ClusterType>(self.read_frame());
return v;
})
.def("set_roi", &ClusterFile<ClusterType>::set_roi,
py::arg("roi"))
.def("set_roi", &ClusterFile<ClusterType>::set_roi, py::arg("roi"))
.def(
"set_noise_map",
[](ClusterFile<ClusterType> &self, py::array_t<int32_t> noise_map) {
auto view = make_view_2d(noise_map);
self.set_noise_map(view);
}, py::arg("noise_map"))
},
py::arg("noise_map"))
.def("set_gain_map",
[](ClusterFile<ClusterType> &self, py::array_t<double> gain_map) {
@@ -84,11 +84,19 @@ template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
typename CoordType = uint16_t>
void register_calculate_eta(py::module &m) {
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
m.def("calculate_eta2",
[](const aare::ClusterVector<ClusterType> &clusters) {
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
return return_image_data(eta2);
});
m.def("calculate_eta2", [](const aare::Cluster<Type, CoordSizeX, CoordSizeY,
CoordType> &cluster) {
auto eta2 = calculate_eta2(cluster);
// TODO return proper eta class
return py::make_tuple(eta2.x, eta2.y, eta2.sum);
});
}
#pragma GCC diagnostic pop

View File

@@ -87,6 +87,8 @@ PYBIND11_MODULE(_aare, m) {
DEFINE_CLUSTER_BINDINGS(double, 9, 9, uint16_t, d);
DEFINE_CLUSTER_BINDINGS(float, 9, 9, uint16_t, f);
// DEFINE_CLUSTER_BINDINGS(double, 2, 1, uint16_t, d);
define_3x3_reduction<int, 3, 3, uint16_t>(m);
define_3x3_reduction<double, 3, 3, uint16_t>(m);
define_3x3_reduction<float, 3, 3, uint16_t>(m);

View File

@@ -53,8 +53,8 @@ def test_Interpolator():
assert interpolated_photons.size == 1
assert interpolated_photons[0]["x"] == -1
assert interpolated_photons[0]["y"] == -1
assert interpolated_photons[0]["x"] == 0
assert interpolated_photons[0]["y"] == 0
assert interpolated_photons[0]["energy"] == 4 #eta_sum = 4, dx, dy = -1,-1 m_ietax = 0, m_ietay = 0
clustervector = _aare.ClusterVector_Cluster2x2i()
@@ -84,7 +84,7 @@ def test_calculate_eta():
assert eta2[0,0] == 0.5
assert eta2[0,1] == 0.5
assert eta2[1,0] == 0.5
assert eta2[1,1] == 0.6 #1/5
assert eta2[1,1] == 0.4 #2/5
def test_cluster_finder():
"""Test ClusterFinder"""

View File

@@ -0,0 +1,143 @@
import pytest
import numpy as np
import boost_histogram as bh
import pickle
from scipy.stats import multivariate_normal
from aare import Interpolator, calculate_eta2
from aare._aare import ClusterVector_Cluster2x2d, Cluster2x2d, Cluster3x3d, ClusterVector_Cluster3x3d
from conftest import test_data_path
pixel_width = 1e-4
values = np.arange(0.5*pixel_width, 0.1, pixel_width)
num_pixels = values.size
X, Y = np.meshgrid(values, values)
data_points = np.stack([X.ravel(), Y.ravel()], axis=1)
variance = 10*pixel_width
covariance_matrix = np.array([[variance, 0],[0, variance]])
def create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points):
gaussian = multivariate_normal(mean=mean, cov=covariance_matrix)
probability_values = gaussian.pdf(data_points)
return (probability_values.reshape(X.shape)).round() #python bindings only support frame types of uint16_t
def photon_hit_in_euclidean_space(cluster_center, pixels_per_superpixel, photon_hit):
scaled_photon_hit_x = cluster_center - (1 - photon_hit[0][0])*0.5*pixels_per_superpixel*pixel_width
scaled_photon_hit_y = cluster_center - (1 - photon_hit[0][1])*0.5*pixels_per_superpixel*pixel_width
return (scaled_photon_hit_x, scaled_photon_hit_y)
def create_2x2cluster_from_frame(frame, pixels_per_superpixel):
return Cluster2x2d(1, 1, np.array([frame[0:pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[0:pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum()], dtype=np.float64))
def create_3x3cluster_from_frame(frame, pixels_per_superpixel):
return Cluster3x3d(1, 1, np.array([frame[0:pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[0:pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[0:pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum(),
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum()], dtype=np.float64))
def calculate_eta_distribution(num_frames, pixels_per_superpixel, cluster_2x2 = True):
hist = bh.Histogram(
bh.axis.Regular(100, -0.2, 1.2),
bh.axis.Regular(100, -0.2, 1.2), bh.axis.Regular(1, 0, num_pixels*num_pixels*1/(variance*2*np.pi)))
for frame_index in range(0, num_frames):
mean_x = np.random.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
mean_y = np.random.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
frame = create_photon_hit_with_gaussian_distribution(np.array([mean_x, mean_y]), variance, data_points)
cluster = None
if cluster_2x2:
cluster = create_2x2cluster_from_frame(frame, pixels_per_superpixel)
else:
cluster = create_3x3cluster_from_frame(frame, pixels_per_superpixel)
eta2 = calculate_eta2(cluster)
hist.fill(eta2[0], eta2[1], eta2[2])
return hist
@pytest.mark.withdata
def test_interpolation_of_2x2_cluster(test_data_path):
"""Test Interpolation of 2x2 cluster from Photon hit with Gaussian Distribution"""
#TODO maybe better to compute in test instead of loading - depends on eta
"""
filename = test_data_path/"eta_distributions"/"eta_distribution_2x2cluster_gaussian.pkl"
with open(filename, "rb") as f:
eta_distribution = pickle.load(f)
"""
num_frames = 1000
pixels_per_superpixel = int(num_pixels*0.5)
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel)
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges[:-1], eta_distribution.axes[1].edges[:-1], eta_distribution.axes[2].edges[:-1])
#actual photon hit
mean = 1.2*pixels_per_superpixel*pixel_width
mean = np.array([mean, mean])
frame = create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points)
cluster = create_2x2cluster_from_frame(frame, pixels_per_superpixel)
clustervec = ClusterVector_Cluster2x2d()
clustervec.push_back(cluster)
interpolated_photon = interpolation.interpolate(clustervec)
assert interpolated_photon.size == 1
cluster_center = 1.5*pixels_per_superpixel*pixel_width
scaled_photon_hit = photon_hit_in_euclidean_space(cluster_center, pixels_per_superpixel, interpolated_photon)
assert (np.linalg.norm(scaled_photon_hit - mean) < np.linalg.norm(np.array([cluster_center, cluster_center] - mean)))
@pytest.mark.withdata
def test_interpolation_of_3x3_cluster(test_data_path):
"""Test Interpolation of 3x3 Cluster from Photon hit with Gaussian Distribution"""
#TODO maybe better to compute in test instead of loading - depends on eta
"""
filename = test_data_path/"eta_distributions"/"eta_distribution_3x3cluster_gaussian.pkl"
with open(filename, "rb") as f:
eta_distribution = pickle.load(f)
"""
num_frames = 1000
pixels_per_superpixel = int(num_pixels/3)
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, False)
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges[:-1], eta_distribution.axes[1].edges[:-1], eta_distribution.axes[2].edges[:-1])
#actual photon hit
mean = 1.2*pixels_per_superpixel*pixel_width
mean = np.array([mean, mean])
frame = create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points)
cluster = create_3x3cluster_from_frame(frame, pixels_per_superpixel)
clustervec = ClusterVector_Cluster3x3d()
clustervec.push_back(cluster)
interpolated_photon = interpolation.interpolate(clustervec)
assert interpolated_photon.size == 1
cluster_center = 1.5*pixels_per_superpixel*pixel_width
scaled_photon_hit = photon_hit_in_euclidean_space(cluster_center, pixels_per_superpixel, interpolated_photon)
assert (np.linalg.norm(scaled_photon_hit - mean) < np.linalg.norm(np.array([cluster_center, cluster_center] - mean)))

File diff suppressed because one or more lines are too long