mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-12-23 13:31:24 +01:00
test for interpolation with simulated normal energy distribution
This commit is contained in:
143
python/tests/test_Interpolation.py
Normal file
143
python/tests/test_Interpolation.py
Normal file
@@ -0,0 +1,143 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
import boost_histogram as bh
|
||||
import pickle
|
||||
from scipy.stats import multivariate_normal
|
||||
|
||||
from aare import Interpolator, calculate_eta2
|
||||
from aare._aare import ClusterVector_Cluster2x2d, Cluster2x2d, Cluster3x3d, ClusterVector_Cluster3x3d
|
||||
|
||||
from conftest import test_data_path
|
||||
|
||||
pixel_width = 1e-4
|
||||
values = np.arange(0.5*pixel_width, 0.1, pixel_width)
|
||||
num_pixels = values.size
|
||||
X, Y = np.meshgrid(values, values)
|
||||
data_points = np.stack([X.ravel(), Y.ravel()], axis=1)
|
||||
variance = 10*pixel_width
|
||||
covariance_matrix = np.array([[variance, 0],[0, variance]])
|
||||
|
||||
def create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points):
|
||||
gaussian = multivariate_normal(mean=mean, cov=covariance_matrix)
|
||||
probability_values = gaussian.pdf(data_points)
|
||||
return (probability_values.reshape(X.shape)).round() #python bindings only support frame types of uint16_t
|
||||
|
||||
def photon_hit_in_euclidean_space(cluster_center, pixels_per_superpixel, photon_hit):
|
||||
scaled_photon_hit_x = cluster_center - (1 - photon_hit[0][0])*0.5*pixels_per_superpixel*pixel_width
|
||||
scaled_photon_hit_y = cluster_center - (1 - photon_hit[0][1])*0.5*pixels_per_superpixel*pixel_width
|
||||
return (scaled_photon_hit_x, scaled_photon_hit_y)
|
||||
|
||||
def create_2x2cluster_from_frame(frame, pixels_per_superpixel):
|
||||
return Cluster2x2d(1, 1, np.array([frame[0:pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
|
||||
frame[0:pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
|
||||
frame[pixels_per_superpixel:2*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
|
||||
frame[pixels_per_superpixel:2*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum()], dtype=np.float64))
|
||||
|
||||
|
||||
def create_3x3cluster_from_frame(frame, pixels_per_superpixel):
|
||||
return Cluster3x3d(1, 1, np.array([frame[0:pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
|
||||
frame[0:pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
|
||||
frame[0:pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum(),
|
||||
frame[pixels_per_superpixel:2*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
|
||||
frame[pixels_per_superpixel:2*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
|
||||
frame[pixels_per_superpixel:2*pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum(),
|
||||
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
|
||||
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
|
||||
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum()], dtype=np.float64))
|
||||
|
||||
|
||||
def calculate_eta_distribution(num_frames, pixels_per_superpixel, cluster_2x2 = True):
|
||||
hist = bh.Histogram(
|
||||
bh.axis.Regular(100, -0.2, 1.2),
|
||||
bh.axis.Regular(100, -0.2, 1.2), bh.axis.Regular(1, 0, num_pixels*num_pixels*1/(variance*2*np.pi)))
|
||||
|
||||
for frame_index in range(0, num_frames):
|
||||
mean_x = np.random.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
|
||||
mean_y = np.random.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
|
||||
frame = create_photon_hit_with_gaussian_distribution(np.array([mean_x, mean_y]), variance, data_points)
|
||||
|
||||
cluster = None
|
||||
|
||||
if cluster_2x2:
|
||||
cluster = create_2x2cluster_from_frame(frame, pixels_per_superpixel)
|
||||
else:
|
||||
cluster = create_3x3cluster_from_frame(frame, pixels_per_superpixel)
|
||||
|
||||
eta2 = calculate_eta2(cluster)
|
||||
hist.fill(eta2[0], eta2[1], eta2[2])
|
||||
|
||||
return hist
|
||||
|
||||
@pytest.mark.withdata
|
||||
def test_interpolation_of_2x2_cluster(test_data_path):
|
||||
"""Test Interpolation of 2x2 cluster from Photon hit with Gaussian Distribution"""
|
||||
|
||||
#TODO maybe better to compute in test instead of loading - depends on eta
|
||||
"""
|
||||
filename = test_data_path/"eta_distributions"/"eta_distribution_2x2cluster_gaussian.pkl"
|
||||
with open(filename, "rb") as f:
|
||||
eta_distribution = pickle.load(f)
|
||||
"""
|
||||
|
||||
num_frames = 1000
|
||||
pixels_per_superpixel = int(num_pixels*0.5)
|
||||
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel)
|
||||
|
||||
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges[:-1], eta_distribution.axes[1].edges[:-1], eta_distribution.axes[2].edges[:-1])
|
||||
|
||||
#actual photon hit
|
||||
mean = 1.2*pixels_per_superpixel*pixel_width
|
||||
mean = np.array([mean, mean])
|
||||
frame = create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points)
|
||||
cluster = create_2x2cluster_from_frame(frame, pixels_per_superpixel)
|
||||
|
||||
clustervec = ClusterVector_Cluster2x2d()
|
||||
clustervec.push_back(cluster)
|
||||
|
||||
interpolated_photon = interpolation.interpolate(clustervec)
|
||||
|
||||
assert interpolated_photon.size == 1
|
||||
|
||||
cluster_center = 1.5*pixels_per_superpixel*pixel_width
|
||||
|
||||
scaled_photon_hit = photon_hit_in_euclidean_space(cluster_center, pixels_per_superpixel, interpolated_photon)
|
||||
|
||||
assert (np.linalg.norm(scaled_photon_hit - mean) < np.linalg.norm(np.array([cluster_center, cluster_center] - mean)))
|
||||
|
||||
|
||||
@pytest.mark.withdata
|
||||
def test_interpolation_of_3x3_cluster(test_data_path):
|
||||
"""Test Interpolation of 3x3 Cluster from Photon hit with Gaussian Distribution"""
|
||||
|
||||
#TODO maybe better to compute in test instead of loading - depends on eta
|
||||
"""
|
||||
filename = test_data_path/"eta_distributions"/"eta_distribution_3x3cluster_gaussian.pkl"
|
||||
with open(filename, "rb") as f:
|
||||
eta_distribution = pickle.load(f)
|
||||
"""
|
||||
|
||||
num_frames = 1000
|
||||
pixels_per_superpixel = int(num_pixels/3)
|
||||
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, False)
|
||||
|
||||
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges[:-1], eta_distribution.axes[1].edges[:-1], eta_distribution.axes[2].edges[:-1])
|
||||
|
||||
#actual photon hit
|
||||
mean = 1.2*pixels_per_superpixel*pixel_width
|
||||
mean = np.array([mean, mean])
|
||||
frame = create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points)
|
||||
cluster = create_3x3cluster_from_frame(frame, pixels_per_superpixel)
|
||||
|
||||
clustervec = ClusterVector_Cluster3x3d()
|
||||
clustervec.push_back(cluster)
|
||||
|
||||
interpolated_photon = interpolation.interpolate(clustervec)
|
||||
|
||||
assert interpolated_photon.size == 1
|
||||
|
||||
cluster_center = 1.5*pixels_per_superpixel*pixel_width
|
||||
|
||||
scaled_photon_hit = photon_hit_in_euclidean_space(cluster_center, pixels_per_superpixel, interpolated_photon)
|
||||
|
||||
assert (np.linalg.norm(scaled_photon_hit - mean) < np.linalg.norm(np.array([cluster_center, cluster_center] - mean)))
|
||||
|
||||
Reference in New Issue
Block a user