Added chi2 to fit results (#131)

- fit_gaus and fit_pol1 now return a dict
- calculate chi2 after fit
- cleaned up code
This commit is contained in:
Erik Fröjdh 2025-02-18 21:13:27 +01:00 committed by GitHub
parent 8abfc68138
commit 6a83988485
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 291 additions and 255 deletions

View File

@ -85,7 +85,7 @@ if(AARE_FETCH_LMFIT)
GIT_TAG main
PATCH_COMMAND ${lmfit_patch}
UPDATE_DISCONNECTED 1
EXCLUDE_FROM_ALL
EXCLUDE_FROM_ALL 1
)
#Disable what we don't need from lmfit
set(BUILD_TESTING OFF CACHE BOOL "")

View File

@ -17,6 +17,13 @@ NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par);
} // namespace func
/**
* @brief Estimate the initial parameters for a Gaussian fit
*/
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
static constexpr int DEFAULT_NUM_THREADS = 4;
/**
@ -26,14 +33,15 @@ static constexpr int DEFAULT_NUM_THREADS = 4;
*/
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y);
/**
* @brief Fit a 1D Gaussian to each pixel. Data layout [row, col, values]
* @param x x values
* @param y y vales, layout [row, col, values]
* @param n_threads number of threads to use
*/
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y, int n_threads = DEFAULT_NUM_THREADS);
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
int n_threads = DEFAULT_NUM_THREADS);
/**
@ -45,10 +53,12 @@ NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y, int n_thre
* @param par_err_out output error parameters
*/
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out);
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
double& chi2);
/**
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout [row, col, values]
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout
* [row, col, values]
* @param x x values
* @param y y vales, layout [row, col, values]
* @param y_err error in y, layout [row, col, values]
@ -57,20 +67,21 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
* @param n_threads number of threads to use
*/
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, int n_threads = DEFAULT_NUM_THREADS);
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads = DEFAULT_NUM_THREADS
);
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y);
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y, int n_threads = DEFAULT_NUM_THREADS);
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
int n_threads = DEFAULT_NUM_THREADS);
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y,
NDView<double, 1> y_err, NDView<double, 1> par_out,
NDView<double, 1> par_err_out);
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
//TODO! not sure we need to offer the different version in C++
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
NDView<double, 3> y_err, NDView<double, 3> par_out,
NDView<double, 3> par_err_out, int n_threads = DEFAULT_NUM_THREADS);
// TODO! not sure we need to offer the different version in C++
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out,NDView<double, 2> chi2_out,
int n_threads = DEFAULT_NUM_THREADS);
} // namespace aare

View File

@ -69,6 +69,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
std::copy(v.begin(), v.end(), begin());
}
template<size_t Size>
NDArray(const std::array<T, Size>& arr) : NDArray<T,1>({Size}) {
std::copy(arr.begin(), arr.end(), begin());
}
// Move constructor
NDArray(NDArray &&other) noexcept
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
@ -105,6 +110,20 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
NDArray &operator-=(const NDArray &other);
NDArray &operator*=(const NDArray &other);
//Write directly to the data array, or create a new one
template<size_t Size>
NDArray<T,1>& operator=(const std::array<T,Size> &other){
if(Size != size_){
delete[] data_;
size_ = Size;
data_ = new T[size_];
}
for (size_t i = 0; i < Size; ++i) {
data_[i] = other[i];
}
return *this;
}
// NDArray& operator/=(const NDArray& other);
template <typename V> NDArray &operator/=(const NDArray<V, Ndim> &other) {
@ -135,6 +154,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
NDArray &operator&=(const T & /*mask*/);
void sqrt() {
for (int i = 0; i < size_; ++i) {
data_[i] = std::sqrt(data_[i]);
@ -318,6 +342,9 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const T &value) {
return *this;
}
template <typename T, int64_t Ndim>
NDArray<T, Ndim> NDArray<T, Ndim>::operator+(const T &value) {
NDArray result = *this;
@ -418,4 +445,6 @@ NDArray<T, Ndim> load(const std::string &pathname,
return img;
}
} // namespace aare

View File

@ -1,5 +1,5 @@
#pragma once
#include "aare/defs.hpp"
#include "aare/ArrayExpr.hpp"
#include <algorithm>
@ -99,6 +99,15 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
NDView &operator/=(const NDView &other) { return elemenwise(other, std::divides<T>()); }
template<size_t Size>
NDView& operator=(const std::array<T, Size> &arr) {
if(size() != arr.size())
throw std::runtime_error(LOCATION + "Array and NDView size mismatch");
std::copy(arr.begin(), arr.end(), begin());
return *this;
}
NDView &operator=(const T val) {
for (auto it = begin(); it != end(); ++it)
*it = val;

View File

@ -0,0 +1,18 @@
#include <thread>
#include <vector>
#include <utility>
namespace aare {
template<typename F>
void RunInParallel(F func, const std::vector<std::pair<int, int>>& tasks) {
// auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(func, task.first, task.second));
}
for (auto &thread : threads) {
thread.join();
}
}
} // namespace aare

View File

@ -49,11 +49,10 @@ set(PYTHON_EXAMPLES
examples/fits.py
)
# Copy the python examples to the build directory
foreach(FILE ${PYTHON_EXAMPLES})
configure_file(${FILE} ${CMAKE_BINARY_DIR}/${FILE} )
message(STATUS "Copying ${FILE} to ${CMAKE_BINARY_DIR}/${FILE}")
endforeach(FILE ${PYTHON_EXAMPLES})

View File

@ -8,61 +8,15 @@ import numpy as np
import boost_histogram as bh
import time
<<<<<<< HEAD
from aare import File, ClusterFinder, VarClusterFinder, ClusterFile, CtbRawFile
from aare import gaus, fit_gaus
import aare
base = Path('/mnt/sls_det_storage/moench_data/Julian/MOENCH05/20250113_first_xrays_redo/raw_files/')
cluster_file = Path('/home/l_msdetect/erik/tmp/Cu.clust')
data = np.random.normal(10, 1, 1000)
t0 = time.perf_counter()
offset= -0.5
hist3d = bh.Histogram(
bh.axis.Regular(160, 0+offset, 160+offset), #x
bh.axis.Regular(150, 0+offset, 150+offset), #y
bh.axis.Regular(200, 0, 6000), #ADU
)
total_clusters = 0
with ClusterFile(cluster_file, chunk_size = 1000) as f:
for i, clusters in enumerate(f):
arr = np.array(clusters)
total_clusters += clusters.size
hist3d.fill(arr['y'],arr['x'], clusters.sum_2x2()) #python talks [row, col] cluster finder [x,y]
=======
from aare import RawFile
f = RawFile('/mnt/sls_det_storage/jungfrau_data1/vadym_tests/jf12_M431/laser_scan/laserScan_pedestal_G0_master_0.json')
print(f'{f.frame_number(1)}')
for i in range(10):
header, img = f.read_frame()
print(header['frameNumber'], img.shape)
>>>>>>> developer
hist = bh.Histogram(bh.axis.Regular(10, 0, 20))
hist.fill(data)
t_elapsed = time.perf_counter()-t0
print(f'Histogram filling took: {t_elapsed:.3f}s {total_clusters/t_elapsed/1e6:.3f}M clusters/s')
histogram_data = hist3d.counts()
x = hist3d.axes[2].edges[:-1]
y = histogram_data[100,100,:]
xx = np.linspace(x[0], x[-1])
# fig, ax = plt.subplots()
# ax.step(x, y, where = 'post')
y_err = np.sqrt(y)
y_err = np.zeros(y.size)
y_err += 1
# par = fit_gaus2(y,x, y_err)
# ax.plot(xx, gaus(xx,par))
# print(par)
res = fit_gaus(y,x)
res2 = fit_gaus(y,x, y_err)
print(res)
print(res2)
x = hist.axes[0].centers
y = hist.values()
y_err = np.sqrt(y)+1
res = aare.fit_gaus(x, y, y_err, chi2 = True)

View File

@ -7,6 +7,7 @@
#include "aare/Fit.hpp"
namespace py = pybind11;
using namespace pybind11::literals;
void define_fit_bindings(py::module &m) {
@ -29,7 +30,8 @@ void define_fit_bindings(py::module &m) {
The points at which to evaluate the Gaussian function.
par : array_like
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
)", py::arg("x"), py::arg("par"));
)",
py::arg("x"), py::arg("par"));
m.def(
"pol1",
@ -49,7 +51,8 @@ void define_fit_bindings(py::module &m) {
The points at which to evaluate the polynomial function.
par : array_like
The parameters of the polynomial function. The first element is the intercept, and the second element is the slope.
)", py::arg("x"), py::arg("par"));
)",
py::arg("x"), py::arg("par"));
m.def(
"fit_gaus",
@ -72,7 +75,7 @@ void define_fit_bindings(py::module &m) {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
R"(
Fit a 1D Gaussian to data.
Parameters
@ -90,8 +93,8 @@ n_threads : int, optional
"fit_gaus",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
py::array_t<double, py::array::c_style | py::array::forcecast>
y_err, int n_threads) {
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
int n_threads) {
if (y.ndim() == 3) {
// Allocate memory for the output
// Need to have pointers to allow python to manage
@ -99,15 +102,20 @@ n_threads : int, optional
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
auto par_err =
new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
// Make views of the numpy arrays
auto y_view = make_view_3d(y);
auto y_view_err = make_view_3d(y_err);
auto x_view = make_view_1d(x);
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
par_err->view(), n_threads);
// return return_image_data(par);
return py::make_tuple(return_image_data(par),
return_image_data(par_err));
par_err->view(), chi2->view(), n_threads);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = return_image_data(chi2),
"Ndf"_a = y.shape(2) - 3);
} else if (y.ndim() == 1) {
// Allocate memory for the output
// Need to have pointers to allow python to manage
@ -120,15 +128,20 @@ n_threads : int, optional
auto y_view_err = make_view_1d(y_err);
auto x_view = make_view_1d(x);
double chi2 = 0;
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
par_err->view());
return py::make_tuple(return_image_data(par),
return_image_data(par_err));
par_err->view(), chi2);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = chi2, "Ndf"_a = y.size() - 3);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
R"(
Fit a 1D Gaussian to data with error estimates.
Parameters
@ -172,11 +185,10 @@ n_threads : int, optional
"fit_pol1",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
py::array_t<double, py::array::c_style | py::array::forcecast>
y_err, int n_threads) {
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
int n_threads) {
if (y.ndim() == 3) {
auto par =
new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
auto par_err =
new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
@ -184,10 +196,15 @@ n_threads : int, optional
auto y_view_err = make_view_3d(y_err);
auto x_view = make_view_1d(x);
aare::fit_pol1(x_view, y_view,y_view_err, par->view(),
par_err->view(), n_threads);
return py::make_tuple(return_image_data(par),
return_image_data(par_err));
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
par_err->view(), chi2->view(), n_threads);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = return_image_data(chi2),
"Ndf"_a = y.shape(2) - 2);
} else if (y.ndim() == 1) {
auto par = new NDArray<double, 1>({2});
@ -197,15 +214,18 @@ n_threads : int, optional
auto y_view_err = make_view_1d(y_err);
auto x_view = make_view_1d(x);
double chi2 = 0;
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
par_err->view());
return py::make_tuple(return_image_data(par),
return_image_data(par_err));
par_err->view(), chi2);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
R"(
Fit a 1D polynomial to data with error estimates.
Parameters

View File

@ -1,10 +1,12 @@
#include "aare/Fit.hpp"
#include "aare/utils/task.hpp"
#include "aare/utils/par.hpp"
#include <lmcurve2.h>
#include <lmfit.hpp>
#include <thread>
#include <array>
namespace aare {
@ -35,33 +37,11 @@ NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
} // namespace func
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y) {
NDArray<double, 1> result({3}, 0);
lm_control_struct control = lm_control_double;
NDArray<double, 1> result = gaus_init_par(x, y);
lm_status_struct status;
// Estimate the initial parameters for the fit
std::vector<double> start_par{0, 0, 0};
auto e = std::max_element(y.begin(), y.end());
auto idx = std::distance(y.begin(), e);
start_par[0] = *e; // For amplitude we use the maximum value
start_par[1] =
x[idx]; // For the mean we use the x value of the maximum value
// For sigma we estimate the fwhm and divide by 2.35
// assuming equally spaced x values
auto delta = x[1] - x[0];
start_par[2] =
std::count_if(y.begin(), y.end(),
[e, delta](double val) { return val > *e / 2; }) *
delta / 2.35;
lmfit::result_t res(start_par);
lmcurve(res.par.size(), res.par.data(), x.size(), x.data(), y.data(),
aare::func::gaus, &control, &res.status);
result(0) = res.par[0];
result(1) = res.par[1];
result(2) = res.par[2];
lmcurve(result.size(), result.data(), x.size(), x.data(), y.data(),
aare::func::gaus, &lm_control_double, &status);
return result;
}
@ -81,65 +61,17 @@ NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(process, task.first, task.second));
}
for (auto &thread : threads) {
thread.join();
}
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
return result;
}
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_gaus(x, y_view, y_err_view, par_out_view, par_err_out_view);
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(process, task.first, task.second));
}
for (auto &thread : threads) {
thread.join();
}
}
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 3 || par_err_out.size() != 3) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 3");
}
lm_control_struct control = lm_control_double;
// Estimate the initial parameters for the fit
std::vector<double> start_par{0, 0, 0};
std::vector<double> start_par_err{0, 0, 0};
std::vector<double> start_cov{0, 0, 0, 0, 0, 0, 0, 0, 0};
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y) {
std::array<double, 3> start_par{0, 0, 0};
auto e = std::max_element(y.begin(), y.end());
auto idx = std::distance(y.begin(), e);
start_par[0] = *e; // For amplitude we use the maximum value
start_par[1] =
x[idx]; // For the mean we use the x value of the maximum value
@ -152,66 +84,82 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
[e, delta](double val) { return val > *e / 2; }) *
delta / 2.35;
lmfit::result_t res(start_par);
lmfit::result_t res_err(start_par_err);
lmfit::result_t cov(start_cov);
// TODO can we make lmcurve write the result directly where is should be?
lmcurve2(res.par.size(), res.par.data(), res_err.par.data(), cov.par.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::gaus,
&control, &res.status);
par_out(0) = res.par[0];
par_out(1) = res.par[1];
par_out(2) = res.par[2];
par_err_out(0) = res_err.par[0];
par_err_out(1) = res_err.par[1];
par_err_out(2) = res_err.par[2];
return start_par;
}
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out) {
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
// Estimate the initial parameters for the fit
std::array<double, 2> start_par{0, 0};
auto y2 = std::max_element(y.begin(), y.end());
auto x2 = x[std::distance(y.begin(), y2)];
auto y1 = std::min_element(y.begin(), y.end());
auto x1 = x[std::distance(y.begin(), y1)];
start_par[0] =
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
start_par[1] =
*y1 - ((*y2 - *y1) / (x2 - x1)) *
x1; // For the mean we use the x value of the maximum value
return start_par;
}
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
double &chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 2 || par_err_out.size() != 2) {
par_out.size() != 3 || par_err_out.size() != 3) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 2");
"and par_out, par_err_out must have size 3");
}
lm_control_struct control = lm_control_double;
// Estimate the initial parameters for the fit
std::vector<double> start_par{0, 0};
std::vector<double> start_par_err{0, 0};
std::vector<double> start_cov{0, 0, 0, 0};
// /* Collection of output parameters for status info. */
// typedef struct {
// double fnorm; /* norm of the residue vector fvec. */
// int nfev; /* actual number of iterations. */
// int outcome; /* Status indicator. Nonnegative values are used as
// index
// for the message text lm_infmsg, set in lmmin.c. */
// int userbreak; /* Set when function evaluation requests termination.
// */
// } lm_status_struct;
auto y2 = std::max_element(y.begin(), y.end());
auto x2 = x[std::distance(y.begin(), y2)];
auto y1 = std::min_element(y.begin(), y.end());
auto x1 = x[std::distance(y.begin(), y1)];
start_par[0] =
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
start_par[1] =
*y1 - ((*y2 - *y1) / (x2 - x1)) *
x1; // For the mean we use the x value of the maximum value
lm_status_struct status;
par_out = gaus_init_par(x, y);
std::array<double, 9> cov{0, 0, 0, 0, 0, 0, 0 , 0 , 0};
lmfit::result_t res(start_par);
lmfit::result_t res_err(start_par_err);
lmfit::result_t cov(start_cov);
// void lmcurve2( const int n_par, double *par, double *parerr, double *covar, const int m_dat, const double *t, const double *y, const double *dy, double (*f)( const double ti, const double *par ), const lm_control_struct *control, lm_status_struct *status);
// n_par - Number of free variables. Length of parameter vector par.
// par - Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||r||.
// parerr - Parameter uncertainties vector. Array of length n_par or NULL. On output, unless it or covar is NULL, it contains the weighted parameter uncertainties for the found parameters.
// covar - Covariance matrix. Array of length n_par * n_par or NULL. On output, unless it is NULL, it contains the covariance matrix.
// m_dat - Number of data points. Length of vectors t, y, dy. Must statisfy n_par <= m_dat.
// t - Array of length m_dat. Contains the abcissae (time, or "x") for which function f will be evaluated.
// y - Array of length m_dat. Contains the ordinate values that shall be fitted.
// dy - Array of length m_dat. Contains the standard deviations of the values y.
// f - A user-supplied parametric function f(ti;par).
// control - Parameter collection for tuning the fit procedure. In most cases, the default &lm_control_double is adequate. If f is only computed with single-precision accuracy, &lm_control_float should be used. Parameters are explained in lmmin2(3).
// status - A record used to return information about the minimization process: For details, see lmmin2(3).
lmcurve2(res.par.size(), res.par.data(), res_err.par.data(), cov.par.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::pol1,
&control, &res.status);
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::gaus,
&lm_control_double, &status);
par_out(0) = res.par[0];
par_out(1) = res.par[1];
par_err_out(0) = res_err.par[0];
par_err_out(1) = res_err.par[1];
// Calculate chi2
chi2 = 0;
for (size_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
@ -224,21 +172,64 @@ void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view);
fit_gaus(x, y_view, y_err_view, par_out_view, par_err_out_view,
chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(process, task.first, task.second));
RunInParallel(process, tasks);
}
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 2 || par_err_out.size() != 2) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 2");
}
for (auto &thread : threads) {
thread.join();
lm_status_struct status;
par_out = pol1_init_par(x, y);
std::array<double, 4> cov{0, 0, 0, 0};
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::pol1,
&lm_control_double, &status);
// Calculate chi2
chi2 = 0;
for (size_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
}
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y) {
// // Check that we have the correct sizes
// if (y.size() != x.size() || y.size() != y_err.size() ||
@ -246,28 +237,11 @@ NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y) {
// throw std::runtime_error("Data, x, data_err must have the same size "
// "and par_out, par_err_out must have size 2");
// }
NDArray<double, 1> par({2}, 0);
NDArray<double, 1> par = pol1_init_par(x, y);
lm_control_struct control = lm_control_double;
// Estimate the initial parameters for the fit
std::vector<double> start_par{0, 0};
auto y2 = std::max_element(y.begin(), y.end());
auto x2 = x[std::distance(y.begin(), y2)];
auto y1 = std::min_element(y.begin(), y.end());
auto x1 = x[std::distance(y.begin(), y1)];
start_par[0] = (*y2 - *y1) / (x2 - x1);
start_par[1] = *y1 - ((*y2 - *y1) / (x2 - x1)) * x1;
lmfit::result_t res(start_par);
lmcurve(res.par.size(), res.par.data(), x.size(), x.data(), y.data(),
aare::func::pol1, &control, &res.status);
par(0) = res.par[0];
par(1) = res.par[1];
lm_status_struct status;
lmcurve(par.size(), par.data(), x.size(), x.data(), y.data(),
aare::func::pol1, &lm_control_double, &status);
return par;
}
@ -287,13 +261,7 @@ NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
};
auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(process, task.first, task.second));
}
for (auto &thread : threads) {
thread.join();
}
RunInParallel(process, tasks);
return result;
}

View File

@ -380,3 +380,31 @@ TEST_CASE("Elementwise operations on images") {
}
}
}
TEST_CASE("Assign an std::array to a 1D NDArray") {
NDArray<int, 1> a{{5}, 0};
std::array<int, 5> b{1, 2, 3, 4, 5};
a = b;
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Assign an std::array to a 1D NDArray of a different size") {
NDArray<int, 1> a{{3}, 0};
std::array<int, 5> b{1, 2, 3, 4, 5};
a = b;
REQUIRE(a.size() == 5);
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Construct an NDArray from an std::array") {
std::array<int, 5> b{1, 2, 3, 4, 5};
NDArray<int, 1> a(b);
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}