added cluster finder

This commit is contained in:
Erik Fröjdh 2024-10-25 16:18:36 +02:00
parent 54dd88f070
commit 5d643dc133
7 changed files with 816 additions and 3 deletions

View File

@ -0,0 +1,216 @@
#pragma once
#include "aare/Dtype.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "aare/Pedestal.hpp"
#include <cstddef>
namespace aare {
/** enum to define the event types */
enum eventType {
PEDESTAL, /** pedestal */
NEIGHBOUR, /** neighbour i.e. below threshold, but in the cluster of a photon */
PHOTON, /** photon i.e. above threshold */
PHOTON_MAX, /** maximum of a cluster satisfying the photon conditions */
NEGATIVE_PEDESTAL, /** negative value, will not be accounted for as pedestal in order to
avoid drift of the pedestal towards negative values */
UNDEFINED_EVENT = -1 /** undefined */
};
class ClusterFinder {
public:
ClusterFinder(int cluster_sizeX, int cluster_sizeY, double nSigma = 5.0, double threshold = 0.0)
: m_cluster_sizeX(cluster_sizeX), m_cluster_sizeY(cluster_sizeY), m_threshold(threshold), m_nSigma(nSigma) {
c2 = sqrt((cluster_sizeY + 1) / 2 * (cluster_sizeX + 1) / 2);
c3 = sqrt(cluster_sizeX * cluster_sizeY);
};
template <typename FRAME_TYPE, typename PEDESTAL_TYPE>
std::vector<Cluster> find_clusters_without_threshold(NDView<FRAME_TYPE, 2> frame, Pedestal<PEDESTAL_TYPE> &pedestal,
bool late_update = false) {
struct pedestal_update {
int x;
int y;
FRAME_TYPE value;
};
std::vector<pedestal_update> pedestal_updates;
std::vector<Cluster> clusters;
std::vector<std::vector<eventType>> eventMask;
for (int i = 0; i < frame.shape(0); i++) {
eventMask.push_back(std::vector<eventType>(frame.shape(1)));
}
long double val;
long double max;
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
// initialize max and total
max = std::numeric_limits<FRAME_TYPE>::min();
long double total = 0;
eventMask[iy][ix] = PEDESTAL;
for (short ir = -(m_cluster_sizeY / 2); ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2); ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) && iy + ir >= 0 && iy + ir < frame.shape(0)) {
val = frame(iy + ir, ix + ic) - pedestal.mean(iy + ir, ix + ic);
total += val;
if (val > max) {
max = val;
}
}
}
}
auto rms = pedestal.standard_deviation(iy, ix);
if (frame(iy, ix) - pedestal.mean(iy, ix) < -m_nSigma * rms) {
eventMask[iy][ix] = NEGATIVE_PEDESTAL;
continue;
} else if (max > m_nSigma * rms) {
eventMask[iy][ix] = PHOTON;
} else if (total > c3 * m_nSigma * rms) {
eventMask[iy][ix] = PHOTON;
} else{
if (late_update) {
pedestal_updates.push_back({ix, iy, frame(iy, ix)});
} else {
pedestal.push(iy, ix, frame(iy, ix));
}
continue;
}
if (eventMask[iy][ix] == PHOTON && (frame(iy, ix) - pedestal.mean(iy, ix)) >= max) {
eventMask[iy][ix] = PHOTON_MAX;
Cluster cluster(m_cluster_sizeX, m_cluster_sizeY, Dtype(typeid(PEDESTAL_TYPE)));
cluster.x = ix;
cluster.y = iy;
short i = 0;
for (short ir = -(m_cluster_sizeY / 2); ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2); ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) && iy + ir >= 0 && iy + ir < frame.shape(0)) {
PEDESTAL_TYPE tmp = static_cast<PEDESTAL_TYPE>(frame(iy + ir, ix + ic)) -
pedestal.mean(iy + ir, ix + ic);
cluster.set<PEDESTAL_TYPE>(i, tmp);
i++;
}
}
}
clusters.push_back(cluster);
}
}
}
if (late_update) {
for (auto &update : pedestal_updates) {
pedestal.push(update.y, update.x, update.value);
}
}
return clusters;
}
template <typename FRAME_TYPE, typename PEDESTAL_TYPE>
std::vector<Cluster> find_clusters_with_threshold(NDView<FRAME_TYPE, 2> frame, Pedestal<PEDESTAL_TYPE> &pedestal) {
assert(m_threshold > 0);
std::vector<Cluster> clusters;
std::vector<std::vector<eventType>> eventMask;
for (int i = 0; i < frame.shape(0); i++) {
eventMask.push_back(std::vector<eventType>(frame.shape(1)));
}
double tthr, tthr1, tthr2;
NDArray<FRAME_TYPE, 2> rest({frame.shape(0), frame.shape(1)});
NDArray<int, 2> nph({frame.shape(0), frame.shape(1)});
// convert to n photons
// nph = (frame-pedestal.mean()+0.5*m_threshold)/m_threshold; // can be optimized with expression templates?
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
auto val = frame(iy, ix) - pedestal.mean(iy, ix);
nph(iy, ix) = (val + 0.5 * m_threshold) / m_threshold;
nph(iy, ix) = nph(iy, ix) < 0 ? 0 : nph(iy, ix);
rest(iy, ix) = val - nph(iy, ix) * m_threshold;
}
}
// iterate over frame pixels
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
eventMask[iy][ix] = PEDESTAL;
// initialize max and total
FRAME_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
long double total = 0;
if (rest(iy, ix) <= 0.25 * m_threshold) {
pedestal.push(iy, ix, frame(iy, ix));
continue;
}
eventMask[iy][ix] = NEIGHBOUR;
// iterate over cluster pixels around the current pixel (ix,iy)
for (short ir = -(m_cluster_sizeY / 2); ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2); ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) && iy + ir >= 0 && iy + ir < frame.shape(0)) {
auto val = frame(iy + ir, ix + ic) - pedestal.mean(iy + ir, ix + ic);
total += val;
if (val > max) {
max = val;
}
}
}
}
auto rms = pedestal.standard_deviation(iy, ix);
if (m_nSigma == 0) {
tthr = m_threshold;
tthr1 = m_threshold;
tthr2 = m_threshold;
} else {
tthr = m_nSigma * rms;
tthr1 = m_nSigma * rms * c3;
tthr2 = m_nSigma * rms * c2;
if (m_threshold > 2 * tthr)
tthr = m_threshold - tthr;
if (m_threshold > 2 * tthr1)
tthr1 = tthr - tthr1;
if (m_threshold > 2 * tthr2)
tthr2 = tthr - tthr2;
}
if (total > tthr1 || max > tthr) {
eventMask[iy][ix] = PHOTON;
nph(iy, ix) += 1;
rest(iy, ix) -= m_threshold;
} else {
pedestal.push(iy, ix, frame(iy, ix));
continue;
}
if (eventMask[iy][ix] == PHOTON && frame(iy, ix) - pedestal.mean(iy, ix) >= max) {
eventMask[iy][ix] = PHOTON_MAX;
Cluster cluster(m_cluster_sizeX, m_cluster_sizeY, Dtype(typeid(FRAME_TYPE)));
cluster.x = ix;
cluster.y = iy;
short i = 0;
for (short ir = -(m_cluster_sizeY / 2); ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2); ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) && iy + ir >= 0 && iy + ir < frame.shape(0)) {
auto tmp = frame(iy + ir, ix + ic) - pedestal.mean(iy + ir, ix + ic);
cluster.set<FRAME_TYPE>(i, tmp);
i++;
}
}
}
clusters.push_back(cluster);
}
}
}
return clusters;
}
protected:
int m_cluster_sizeX;
int m_cluster_sizeY;
double m_threshold;
double m_nSigma;
double c2;
double c3;
};
} // namespace aare

121
include/aare/Pedestal.hpp Normal file
View File

@ -0,0 +1,121 @@
#pragma once
#include "aare/Frame.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include <cstddef>
namespace aare {
template <typename SUM_TYPE = double> class Pedestal {
public:
Pedestal(uint32_t rows, uint32_t cols, uint32_t n_samples = 1000)
: m_rows(rows), m_cols(cols), m_freeze(false), m_samples(n_samples), m_cur_samples(NDArray<uint32_t, 2>({rows, cols}, 0)),m_sum(NDArray<SUM_TYPE, 2>({rows, cols})),
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})) {
assert(rows > 0 && cols > 0 && n_samples > 0);
m_sum = 0;
m_sum2 = 0;
}
~Pedestal() = default;
NDArray<SUM_TYPE, 2> mean() {
NDArray<SUM_TYPE, 2> mean_array({m_rows, m_cols});
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
mean_array(i / m_cols, i % m_cols) = mean(i / m_cols, i % m_cols);
}
return mean_array;
}
NDArray<SUM_TYPE, 2> variance() {
NDArray<SUM_TYPE, 2> variance_array({m_rows, m_cols});
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
variance_array(i / m_cols, i % m_cols) = variance(i / m_cols, i % m_cols);
}
return variance_array;
}
NDArray<SUM_TYPE, 2> standard_deviation() {
NDArray<SUM_TYPE, 2> standard_deviation_array({m_rows, m_cols});
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
standard_deviation_array(i / m_cols, i % m_cols) = standard_deviation(i / m_cols, i % m_cols);
}
return standard_deviation_array;
}
void clear() {
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
clear(i / m_cols, i % m_cols);
}
}
/*
* index level operations
*/
SUM_TYPE mean(const uint32_t row, const uint32_t col) const {
if (m_cur_samples(row, col) == 0) {
return 0.0;
}
return m_sum(row, col) / m_cur_samples(row, col);
}
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
if (m_cur_samples(row, col) == 0) {
return 0.0;
}
return m_sum2(row, col) / m_cur_samples(row, col) - mean(row, col) * mean(row, col);
}
SUM_TYPE standard_deviation(const uint32_t row, const uint32_t col) const { return std::sqrt(variance(row, col)); }
void clear(const uint32_t row, const uint32_t col) {
m_sum(row, col) = 0;
m_sum2(row, col) = 0;
m_cur_samples(row, col) = 0;
}
// frame level operations
template <typename T> void push(NDView<T, 2> frame) {
assert(frame.size() == m_rows * m_cols);
// TODO: test the effect of #pragma omp parallel for
for (uint32_t index = 0; index < m_rows * m_cols; index++) {
push<T>(index / m_cols, index % m_cols, frame(index));
}
}
template <typename T> void push(Frame &frame) {
assert(frame.rows() == static_cast<size_t>(m_rows) && frame.cols() == static_cast<size_t>(m_cols));
push<T>(frame.view<T>());
}
// getter functions
inline uint32_t rows() const { return m_rows; }
inline uint32_t cols() const { return m_cols; }
inline uint32_t n_samples() const { return m_samples; }
inline NDArray<uint32_t, 2> cur_samples() const { return m_cur_samples; }
inline NDArray<SUM_TYPE, 2> get_sum() const { return m_sum; }
inline NDArray<SUM_TYPE, 2> get_sum2() const { return m_sum2; }
// pixel level operations (should be refactored to allow users to implement their own pixel level operations)
template <typename T> inline void push(const uint32_t row, const uint32_t col, const T val_) {
if (m_freeze) {
return;
}
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
const uint32_t idx = index(row, col);
if (m_cur_samples(idx) < m_samples) {
m_sum(idx) += val;
m_sum2(idx) += val * val;
m_cur_samples(idx)++;
} else {
m_sum(idx) += val - m_sum(idx) / m_cur_samples(idx);
m_sum2(idx) += val * val - m_sum2(idx) / m_cur_samples(idx);
}
}
inline uint32_t index(const uint32_t row, const uint32_t col) const { return row * m_cols + col; };
void set_freeze(bool freeze) { m_freeze = freeze; }
private:
uint32_t m_rows;
uint32_t m_cols;
bool m_freeze;
uint32_t m_samples;
NDArray<uint32_t, 2> m_cur_samples;
NDArray<SUM_TYPE, 2> m_sum;
NDArray<SUM_TYPE, 2> m_sum2;
};
} // namespace aare

View File

@ -0,0 +1,307 @@
#pragma once
#include <algorithm>
#include <map>
#include <unordered_map>
#include <vector>
#include "aare/NDArray.hpp"
const int MAX_CLUSTER_SIZE = 200;
namespace aare {
template <typename T> class ClusterFinder {
public:
struct Hit {
int16_t size{};
int16_t row{};
int16_t col{};
uint16_t reserved{}; // for alignment
T energy{};
T max{};
// std::vector<int16_t> rows{};
// std::vector<int16_t> cols{};
int16_t rows[MAX_CLUSTER_SIZE] = {0};
int16_t cols[MAX_CLUSTER_SIZE] = {0};
double enes[MAX_CLUSTER_SIZE] = {0};
};
private:
const std::array<int64_t, 2> shape_;
NDView<T, 2> original_;
NDArray<int, 2> labeled_;
NDArray<int, 2> peripheral_labeled_;
NDArray<bool, 2> binary_; // over threshold flag
T threshold_;
NDView<T, 2> noiseMap;
bool use_noise_map = false;
int peripheralThresholdFactor_ = 5;
int current_label;
const std::array<int, 4> di{{0, -1, -1, -1}}; // row ### 8-neighbour by scaning from left to right
const std::array<int, 4> dj{{-1, -1, 0, 1}}; // col ### 8-neighbour by scaning from top to bottom
const std::array<int, 8> di_{{0, 0, -1, 1, -1, 1, -1, 1}}; // row
const std::array<int, 8> dj_{{-1, 1, 0, 0, 1, -1, -1, 1}}; // col
std::map<int, int> child; // heirachy: key: child; val: parent
std::unordered_map<int, Hit> h_size;
std::vector<Hit> hits;
// std::vector<std::vector<int16_t>> row
int check_neighbours(int i, int j);
public:
ClusterFinder(image_shape shape, T threshold)
: shape_(shape), labeled_(shape, 0), peripheral_labeled_(shape, 0), binary_(shape), threshold_(threshold) {
hits.reserve(2000);
}
NDArray<int, 2> labeled() { return labeled_; }
void set_noiseMap(NDView<T, 2> noise_map) {
noiseMap = noise_map;
use_noise_map = true;
}
void set_peripheralThresholdFactor(int factor) { peripheralThresholdFactor_ = factor; }
void find_clusters(NDView<T, 2> img);
void find_clusters_X(NDView<T, 2> img);
void rec_FillHit(int clusterIndex, int i, int j);
void single_pass(NDView<T, 2> img);
void first_pass();
void second_pass();
void store_clusters();
std::vector<Hit> steal_hits() {
std::vector<Hit> tmp;
std::swap(tmp, hits);
return tmp;
};
void clear_hits() { hits.clear(); };
void print_connections() {
fmt::print("Connections:\n");
for (auto it = child.begin(); it != child.end(); ++it) {
fmt::print("{} -> {}\n", it->first, it->second);
}
}
size_t total_clusters() const {
// TODO! fix for stealing
return hits.size();
}
private:
void add_link(int from, int to) {
// we want to add key from -> value to
// fmt::print("add_link({},{})\n", from, to);
auto it = child.find(from);
if (it == child.end()) {
child[from] = to;
} else {
// found need to disambiguate
if (it->second == to)
return;
else {
if (it->second > to) {
// child[from] = to;
auto old = it->second;
it->second = to;
add_link(old, to);
} else {
// found value is smaller than what we want to link
add_link(to, it->second);
}
}
}
}
};
template <typename T> int ClusterFinder<T>::check_neighbours(int i, int j) {
std::vector<int> neighbour_labels;
for (int k = 0; k < 4; ++k) {
const auto row = i + di[k];
const auto col = j + dj[k];
if (row >= 0 && col >= 0 && row < shape_[0] && col < shape_[1]) {
auto tmp = labeled_.value(i + di[k], j + dj[k]);
if (tmp != 0)
neighbour_labels.push_back(tmp);
}
}
if (neighbour_labels.size() == 0) {
return 0;
} else {
// need to sort and add to union field
std::sort(neighbour_labels.rbegin(), neighbour_labels.rend());
auto first = neighbour_labels.begin();
auto last = std::unique(first, neighbour_labels.end());
if (last - first == 1)
return *neighbour_labels.begin();
for (auto current = first; current != last - 1; ++current) {
auto next = current + 1;
add_link(*current, *next);
}
return neighbour_labels.back(); // already sorted
}
}
template <typename T> void ClusterFinder<T>::find_clusters(NDView<T, 2> img) {
original_ = img;
labeled_ = 0;
peripheral_labeled_ = 0;
current_label = 0;
child.clear();
first_pass();
// print_connections();
second_pass();
store_clusters();
}
template <typename T> void ClusterFinder<T>::find_clusters_X(NDView<T, 2> img) {
original_ = img;
int clusterIndex = 0;
for (int i = 0; i < shape_[0]; ++i) {
for (int j = 0; j < shape_[1]; ++j) {
if (use_noise_map)
threshold_ = 5 * noiseMap(i, j);
if (original_(i, j) > threshold_) {
// printf("========== Cluster index: %d\n", clusterIndex);
rec_FillHit(clusterIndex, i, j);
clusterIndex++;
}
}
}
for (const auto &h : h_size)
hits.push_back(h.second);
h_size.clear();
}
template <typename T> void ClusterFinder<T>::rec_FillHit(int clusterIndex, int i, int j) {
// printf("original_(%d, %d)=%f\n", i, j, original_(i,j));
// printf("h_size[%d].size=%d\n", clusterIndex, h_size[clusterIndex].size);
if (h_size[clusterIndex].size < MAX_CLUSTER_SIZE) {
h_size[clusterIndex].rows[h_size[clusterIndex].size] = i;
h_size[clusterIndex].cols[h_size[clusterIndex].size] = j;
h_size[clusterIndex].enes[h_size[clusterIndex].size] = original_(i, j);
}
h_size[clusterIndex].size += 1;
h_size[clusterIndex].energy += original_(i, j);
if (h_size[clusterIndex].max < original_(i, j)) {
h_size[clusterIndex].row = i;
h_size[clusterIndex].col = j;
h_size[clusterIndex].max = original_(i, j);
}
original_(i, j) = 0;
for (int k = 0; k < 8; ++k) { // 8 for 8-neighbour
const auto row = i + di_[k];
const auto col = j + dj_[k];
if (row >= 0 && col >= 0 && row < shape_[0] && col < shape_[1]) {
if (use_noise_map)
threshold_ = peripheralThresholdFactor_ * noiseMap(row, col);
if (original_(row, col) > threshold_) {
rec_FillHit(clusterIndex, row, col);
} else {
// if (h_size[clusterIndex].size < MAX_CLUSTER_SIZE){
// h_size[clusterIndex].size += 1;
// h_size[clusterIndex].rows[h_size[clusterIndex].size] = row;
// h_size[clusterIndex].cols[h_size[clusterIndex].size] = col;
// h_size[clusterIndex].enes[h_size[clusterIndex].size] = original_(row, col);
// }// ? weather to include peripheral pixels
original_(row, col) = 0; // remove peripheral pixels, to avoid potential influence for pedestal updating
}
}
}
}
template <typename T> void ClusterFinder<T>::single_pass(NDView<T, 2> img) {
original_ = img;
labeled_ = 0;
current_label = 0;
child.clear();
first_pass();
// print_connections();
// second_pass();
// store_clusters();
}
template <typename T> void ClusterFinder<T>::first_pass() {
for (int i = 0; i < original_.size(); ++i) {
if (use_noise_map)
threshold_ = 5 * noiseMap(i);
binary_(i) = (original_(i) > threshold_);
}
for (int i = 0; i < shape_[0]; ++i) {
for (int j = 0; j < shape_[1]; ++j) {
// do we have someting to process?
if (binary_(i, j)) {
auto tmp = check_neighbours(i, j);
if (tmp != 0) {
labeled_(i, j) = tmp;
} else {
labeled_(i, j) = ++current_label;
}
}
}
}
}
template <typename T> void ClusterFinder<T>::second_pass() {
for (int64_t i = 0; i != labeled_.size(); ++i) {
auto current_label = labeled_(i);
if (current_label != 0) {
auto it = child.find(current_label);
while (it != child.end()) {
current_label = it->second;
it = child.find(current_label);
// do this once before doing the second pass?
// all values point to the final one...
}
labeled_(i) = current_label;
}
}
}
template <typename T> void ClusterFinder<T>::store_clusters() {
// Accumulate hit information in a map
// Do we always have monotonic increasing
// labels? Then vector?
// here the translation is label -> Hit
std::unordered_map<int, Hit> h_size;
for (int i = 0; i < shape_[0]; ++i) {
for (int j = 0; j < shape_[1]; ++j) {
if (labeled_(i, j) != 0 || false
// (i-1 >= 0 and labeled_(i-1, j) != 0) or // another circle of peripheral pixels
// (j-1 >= 0 and labeled_(i, j-1) != 0) or
// (i+1 < shape_[0] and labeled_(i+1, j) != 0) or
// (j+1 < shape_[1] and labeled_(i, j+1) != 0)
) {
Hit &record = h_size[labeled_(i, j)];
if (record.size < MAX_CLUSTER_SIZE) {
record.rows[record.size] = i;
record.cols[record.size] = j;
record.enes[record.size] = original_(i, j);
} else {
continue;
}
record.size += 1;
record.energy += original_(i, j);
if (record.max < original_(i, j)) {
record.row = i;
record.col = j;
record.max = original_(i, j);
}
}
}
}
for (const auto &h : h_size)
hits.push_back(h.second);
}
} // namespace aare

View File

@ -23,6 +23,8 @@ if(AARE_TESTS)
# ${CMAKE_CURRENT_SOURCE_DIR}/test/ProducerConsumerQueue.test.cpp # ${CMAKE_CURRENT_SOURCE_DIR}/test/ProducerConsumerQueue.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/NDArray.test.cpp ${CMAKE_CURRENT_SOURCE_DIR}/NDArray.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/NDView.test.cpp ${CMAKE_CURRENT_SOURCE_DIR}/NDView.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ClusterFinder.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/Pedestal.test.cpp
# ${CMAKE_CURRENT_SOURCE_DIR}/test/CircularFifo.test.cpp # ${CMAKE_CURRENT_SOURCE_DIR}/test/CircularFifo.test.cpp
# ${CMAKE_CURRENT_SOURCE_DIR}/test/wrappers.test.cpp # ${CMAKE_CURRENT_SOURCE_DIR}/test/wrappers.test.cpp
# ${CMAKE_CURRENT_SOURCE_DIR}/test/Transforms.test.cpp # ${CMAKE_CURRENT_SOURCE_DIR}/test/Transforms.test.cpp

View File

@ -0,0 +1,59 @@
#include "aare/ClusterFinder.hpp"
#include "aare/Pedestal.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
#include <chrono>
#include <random>
using namespace aare;
class ClusterFinderUnitTest : public ClusterFinder {
public:
ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma = 5.0, double threshold = 0.0)
: ClusterFinder(cluster_sizeX, cluster_sizeY, nSigma, threshold) {}
double get_c2() { return c2; }
double get_c3() { return c3; }
auto get_threshold() { return m_threshold; }
auto get_nSigma() { return m_nSigma; }
auto get_cluster_sizeX() { return m_cluster_sizeX; }
auto get_cluster_sizeY() { return m_cluster_sizeY; }
};
TEST_CASE("test ClusterFinder constructor") {
ClusterFinderUnitTest cf(55, 100);
REQUIRE(cf.get_cluster_sizeX() == 55);
REQUIRE(cf.get_cluster_sizeY() == 100);
REQUIRE(cf.get_threshold() == 0.0);
REQUIRE(cf.get_nSigma() == 5.0);
double c2 = sqrt((100 + 1) / 2 * (55 + 1) / 2);
double c3 = sqrt(55 * 100);
// REQUIRE(compare_floats<double>(cf.get_c2(), c2));
// REQUIRE(compare_floats<double>(cf.get_c3(), c3));
REQUIRE_THAT(cf.get_c2(), Catch::Matchers::WithinRel(c2, 1e-9));
REQUIRE_THAT(cf.get_c3(), Catch::Matchers::WithinRel(c3, 1e-9));
}
TEST_CASE("test cluster finder") {
aare::Pedestal pedestal(10, 10, 5);
NDArray<double, 2> frame({10, 10});
frame = 0;
ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1 threshold
auto clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
REQUIRE(clusters.size() == 0);
frame(5, 5) = 10;
clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
REQUIRE(clusters.size() == 1);
REQUIRE(clusters[0].x == 5);
REQUIRE(clusters[0].y == 5);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (i == 1 && j == 1)
REQUIRE(clusters[0].get<double>(i * 3 + j) == 10);
else
REQUIRE(clusters[0].get<double>(i * 3 + j) == 0);
}
}
}

103
src/Pedestal.test.cpp Normal file
View File

@ -0,0 +1,103 @@
#include "aare/Pedestal.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
#include <chrono>
#include <random>
using namespace aare;
TEST_CASE("test pedestal constructor") {
aare::Pedestal pedestal(10, 10, 5);
REQUIRE(pedestal.rows() == 10);
REQUIRE(pedestal.cols() == 10);
REQUIRE(pedestal.n_samples() == 5);
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
REQUIRE(pedestal.get_sum()(i, j) == 0);
REQUIRE(pedestal.get_sum2()(i, j) == 0);
REQUIRE(pedestal.cur_samples()(i, j) == 0);
}
}
}
TEST_CASE("test pedestal push") {
aare::Pedestal pedestal(10, 10, 5);
aare::Frame frame(10, 10, Dtype::UINT16);
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
frame.set<uint16_t>(i, j, i + j);
}
}
// test single push
pedestal.push<uint16_t>(frame);
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
REQUIRE(pedestal.get_sum()(i, j) == i + j);
REQUIRE(pedestal.get_sum2()(i, j) == (i + j) * (i + j));
REQUIRE(pedestal.cur_samples()(i, j) == 1);
}
}
// test clear
pedestal.clear();
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
REQUIRE(pedestal.get_sum()(i, j) == 0);
REQUIRE(pedestal.get_sum2()(i, j) == 0);
REQUIRE(pedestal.cur_samples()(i, j) == 0);
}
}
// test number of samples after multiple push
for (uint32_t k = 0; k < 50; k++) {
pedestal.push<uint16_t>(frame);
for (uint32_t i = 0; i < 10; i++) {
for (uint32_t j = 0; j < 10; j++) {
if (k < 5) {
REQUIRE(pedestal.cur_samples()(i, j) == k + 1);
REQUIRE(pedestal.get_sum()(i, j) == (k + 1) * (i + j));
REQUIRE(pedestal.get_sum2()(i, j) == (k + 1) * (i + j) * (i + j));
} else {
REQUIRE(pedestal.cur_samples()(i, j) == 5);
REQUIRE(pedestal.get_sum()(i, j) == 5 * (i + j));
REQUIRE(pedestal.get_sum2()(i, j) == 5 * (i + j) * (i + j));
}
REQUIRE(pedestal.mean(i, j) == (i + j));
REQUIRE(pedestal.variance(i, j) == 0);
REQUIRE(pedestal.standard_deviation(i, j) == 0);
}
}
}
}
TEST_CASE("test pedestal with normal distribution") {
const double MEAN = 5.0, STD = 2.0, VAR = STD * STD, TOLERANCE = 0.1;
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
std::default_random_engine generator(seed);
std::normal_distribution<double> distribution(MEAN, STD);
aare::Pedestal pedestal(3, 5, 10000);
for (int i = 0; i < 10000; i++) {
aare::Frame frame(3, 5, Dtype::DOUBLE);
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 5; k++) {
frame.set<double>(j, k, distribution(generator));
}
}
pedestal.push<double>(frame);
}
auto mean = pedestal.mean();
auto variance = pedestal.variance();
auto standard_deviation = pedestal.standard_deviation();
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 5; j++) {
REQUIRE_THAT(mean(i, j), Catch::Matchers::WithinAbs(MEAN, MEAN * TOLERANCE));
REQUIRE_THAT(variance(i, j), Catch::Matchers::WithinAbs(VAR, VAR * TOLERANCE));
REQUIRE_THAT(standard_deviation(i, j), Catch::Matchers::WithinAbs(STD, STD * TOLERANCE));
}
}
}

View File

@ -1,7 +1,12 @@
#pragma once #pragma once
#include <filesystem> #include <filesystem>
#include <cstdlib>
static constexpr auto test_data_path_str = "@TEST_FILE_PATH@";
inline auto test_data_path() { inline auto test_data_path(){
return std::filesystem::path(test_data_path_str); if(const char* env_p = std::getenv("AARE_TEST_DATA")){
return std::filesystem::path(env_p);
}else{
throw std::runtime_error("AARE_TEST_DATA_PATH not set");
}
} }