mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-16 09:17:12 +02:00
Merge branch 'developer' into fix/open-files
This commit is contained in:
@ -1,12 +1,17 @@
|
||||
cmake_minimum_required(VERSION 3.15)
|
||||
|
||||
project(aare
|
||||
VERSION 1.0.0
|
||||
DESCRIPTION "Data processing library for PSI detectors"
|
||||
HOMEPAGE_URL "https://github.com/slsdetectorgroup/aare"
|
||||
LANGUAGES C CXX
|
||||
)
|
||||
|
||||
# Read VERSION file into project version
|
||||
set(VERSION_FILE "${CMAKE_CURRENT_SOURCE_DIR}/VERSION")
|
||||
file(READ "${VERSION_FILE}" VERSION_CONTENT)
|
||||
string(STRIP "${VERSION_CONTENT}" PROJECT_VERSION_STRING)
|
||||
set(PROJECT_VERSION ${PROJECT_VERSION_STRING})
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
@ -404,6 +409,9 @@ target_include_directories(aare_core PUBLIC
|
||||
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
|
||||
)
|
||||
|
||||
set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
target_link_libraries(
|
||||
aare_core
|
||||
PUBLIC
|
||||
@ -412,6 +420,7 @@ target_link_libraries(
|
||||
${STD_FS_LIB} # from helpers.cmake
|
||||
PRIVATE
|
||||
aare_compiler_flags
|
||||
Threads::Threads
|
||||
$<BUILD_INTERFACE:lmfit>
|
||||
|
||||
)
|
||||
|
@ -1,6 +1,10 @@
|
||||
source:
|
||||
path: ../
|
||||
|
||||
{% set version = load_file_regex(load_file = 'VERSION', regex_pattern = '(\d+(?:\.\d+)*(?:[\+\w\.]+))').group(1) %}
|
||||
package:
|
||||
name: aare
|
||||
version: 2025.4.22 #TODO! how to not duplicate this?
|
||||
version: {{version}}
|
||||
|
||||
source:
|
||||
path: ..
|
||||
|
@ -15,6 +15,12 @@ NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par);
|
||||
double pol1(const double x, const double *par);
|
||||
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
double scurve(const double x, const double *par);
|
||||
NDArray<double, 1> scurve(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
double scurve2(const double x, const double *par);
|
||||
NDArray<double, 1> scurve2(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
} // namespace func
|
||||
|
||||
|
||||
@ -25,6 +31,9 @@ std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<doub
|
||||
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
|
||||
std::array<double, 6> scurve_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
|
||||
static constexpr int DEFAULT_NUM_THREADS = 4;
|
||||
|
||||
/**
|
||||
@ -38,7 +47,7 @@ NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y);
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian to each pixel. Data layout [row, col, values]
|
||||
* @param x x values
|
||||
* @param y y vales, layout [row, col, values]
|
||||
* @param y y values, layout [row, col, values]
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
|
||||
@ -51,7 +60,7 @@ NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian with error estimates
|
||||
* @param x x values
|
||||
* @param y y vales, layout [row, col, values]
|
||||
* @param y y values, layout [row, col, values]
|
||||
* @param y_err error in y, layout [row, col, values]
|
||||
* @param par_out output parameters
|
||||
* @param par_err_out output error parameters
|
||||
@ -64,7 +73,7 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout
|
||||
* [row, col, values]
|
||||
* @param x x values
|
||||
* @param y y vales, layout [row, col, values]
|
||||
* @param y y values, layout [row, col, values]
|
||||
* @param y_err error in y, layout [row, col, values]
|
||||
* @param par_out output parameters, layout [row, col, values]
|
||||
* @param par_err_out output parameter errors, layout [row, col, values]
|
||||
@ -88,5 +97,19 @@ void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,NDView<double, 2> chi2_out,
|
||||
int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
NDArray<double, 1> fit_scurve(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y, int n_threads);
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads);
|
||||
|
||||
NDArray<double, 1> fit_scurve2(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, int n_threads);
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads);
|
||||
} // namespace aare
|
@ -1,10 +1,16 @@
|
||||
[tool.scikit-build.metadata.version]
|
||||
provider = "scikit_build_core.metadata.regex"
|
||||
input = "VERSION"
|
||||
regex = '^(?P<version>\d+(?:\.\d+)*(?:[\.\+\w]+)?)$'
|
||||
result = "{version}"
|
||||
|
||||
[build-system]
|
||||
requires = ["scikit-build-core>=0.10", "pybind11", "numpy"]
|
||||
build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "aare"
|
||||
version = "2025.4.22"
|
||||
dynamic = ["version"]
|
||||
requires-python = ">=3.11"
|
||||
dependencies = [
|
||||
"numpy",
|
||||
|
@ -15,7 +15,7 @@ from .ClusterFinder import ClusterFinder, ClusterCollector, ClusterFinderMT, Clu
|
||||
from .ClusterVector import ClusterVector
|
||||
|
||||
|
||||
from ._aare import fit_gaus, fit_pol1
|
||||
from ._aare import fit_gaus, fit_pol1, fit_scurve, fit_scurve2
|
||||
from ._aare import Interpolator
|
||||
from ._aare import calculate_eta2
|
||||
|
||||
|
@ -1 +1 @@
|
||||
from ._aare import gaus, pol1
|
||||
from ._aare import gaus, pol1, scurve, scurve2
|
@ -55,6 +55,47 @@ void define_fit_bindings(py::module &m) {
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"scurve",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y = new NDArray<double, 1>{aare::func::scurve(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D scurve function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the scurve function.
|
||||
par : array_like
|
||||
The parameters of the scurve function. The first element is the background slope, the second element is the background intercept, the third element is the mean, the fourth element is the standard deviation, the fifth element is inflexion point count number, and the sixth element is C.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"scurve2",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y = new NDArray<double, 1>{aare::func::scurve2(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D scurve2 function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the scurve function.
|
||||
par : array_like
|
||||
The parameters of the scurve2 function. The first element is the background slope, the second element is the background intercept, the third element is the mean, the fourth element is the standard deviation, the fifth element is inflexion point count number, and the sixth element is C.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"fit_gaus",
|
||||
@ -235,6 +276,180 @@ n_threads : int, optional
|
||||
R"(
|
||||
Fit a 1D polynomial to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
//=========
|
||||
m.def(
|
||||
"fit_scurve",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_3d(y);
|
||||
*par = aare::fit_scurve(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_1d(y);
|
||||
*par = aare::fit_scurve(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_scurve",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_scurve(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({2});
|
||||
auto par_err = new NDArray<double, 1>({2});
|
||||
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_scurve(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
Fit a 1D polynomial to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
|
||||
m.def(
|
||||
"fit_scurve2",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_3d(y);
|
||||
*par = aare::fit_scurve2(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_1d(y);
|
||||
*par = aare::fit_scurve2(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_scurve2",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_scurve2(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({6});
|
||||
auto par_err = new NDArray<double, 1>({6});
|
||||
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_scurve2(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
Fit a 1D polynomial to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
|
249
src/Fit.cpp
249
src/Fit.cpp
@ -34,6 +34,30 @@ NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
return y;
|
||||
}
|
||||
|
||||
double scurve(const double x, const double * par) {
|
||||
return (par[0] + par[1] * x) + 0.5 * (1 + erf((x - par[2]) / (sqrt(2) * par[3]))) * (par[4] + par[5] * (x - par[2]));
|
||||
}
|
||||
|
||||
NDArray<double, 1> scurve(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
NDArray<double, 1> y({x.shape()}, 0);
|
||||
for (ssize_t i = 0; i < x.size(); i++) {
|
||||
y(i) = scurve(x(i), par.data());
|
||||
}
|
||||
return y;
|
||||
}
|
||||
|
||||
double scurve2(const double x, const double * par) {
|
||||
return (par[0] + par[1] * x) + 0.5 * (1 - erf((x - par[2]) / (sqrt(2) * par[3]))) * (par[4] + par[5] * (x - par[2]));
|
||||
}
|
||||
|
||||
NDArray<double, 1> scurve2(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
NDArray<double, 1> y({x.shape()}, 0);
|
||||
for (ssize_t i = 0; i < x.size(); i++) {
|
||||
y(i) = scurve2(x(i), par.data());
|
||||
}
|
||||
return y;
|
||||
}
|
||||
|
||||
} // namespace func
|
||||
|
||||
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
@ -273,4 +297,229 @@ NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
|
||||
return result;
|
||||
}
|
||||
|
||||
// ~~ S-CURVES ~~
|
||||
|
||||
// SCURVE --
|
||||
std::array<double, 6> scurve_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
|
||||
|
||||
auto ymax = std::max_element(y.begin(), y.end());
|
||||
auto ymin = std::min_element(y.begin(), y.end());
|
||||
start_par[4] = *ymin + (*ymax - *ymin) / 2;
|
||||
|
||||
// Find the first x where the corresponding y value is above the threshold (start_par[4])
|
||||
for (ssize_t i = 0; i < y.size(); ++i) {
|
||||
if (y[i] >= start_par[4]) {
|
||||
start_par[2] = x[i];
|
||||
break; // Exit the loop after finding the first valid x
|
||||
}
|
||||
}
|
||||
|
||||
start_par[3] = 2 * sqrt(start_par[2]);
|
||||
start_par[0] = 100;
|
||||
start_par[1] = 0.25;
|
||||
start_par[5] = 1;
|
||||
return start_par;
|
||||
}
|
||||
|
||||
// - No error
|
||||
NDArray<double, 1> fit_scurve(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
NDArray<double, 1> result = scurve_init_par(x, y);
|
||||
lm_status_struct status;
|
||||
|
||||
lmcurve(result.size(), result.data(), x.size(), x.data(), y.data(),
|
||||
aare::func::scurve, &lm_control_double, &status);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y, int n_threads) {
|
||||
NDArray<double, 3> result({y.shape(0), y.shape(1), 6}, 0);
|
||||
|
||||
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
for (ssize_t col = 0; col < y.shape(1); col++) {
|
||||
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
|
||||
auto res = fit_scurve(x, values);
|
||||
result(row, col, 0) = res(0);
|
||||
result(row, col, 1) = res(1);
|
||||
result(row, col, 2) = res(2);
|
||||
result(row, col, 3) = res(3);
|
||||
result(row, col, 4) = res(4);
|
||||
result(row, col, 5) = res(5);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
return result;
|
||||
}
|
||||
|
||||
// - Error
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
|
||||
|
||||
// Check that we have the correct sizes
|
||||
if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
par_out.size() != 6 || par_err_out.size() != 6) {
|
||||
throw std::runtime_error("Data, x, data_err must have the same size "
|
||||
"and par_out, par_err_out must have size 6");
|
||||
}
|
||||
|
||||
lm_status_struct status;
|
||||
par_out = scurve_init_par(x, y);
|
||||
std::array<double, 36> cov = {0}; // size 6x6
|
||||
// std::array<double, 4> cov{0, 0, 0, 0};
|
||||
|
||||
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
|
||||
x.size(), x.data(), y.data(), y_err.data(), aare::func::scurve,
|
||||
&lm_control_double, &status);
|
||||
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
for (ssize_t col = 0; col < y.shape(1); col++) {
|
||||
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
|
||||
NDView<double, 1> y_err_view(&y_err(row, col, 0),
|
||||
{y_err.shape(2)});
|
||||
NDView<double, 1> par_out_view(&par_out(row, col, 0),
|
||||
{par_out.shape(2)});
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
fit_scurve(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
|
||||
}
|
||||
|
||||
// SCURVE2 ---
|
||||
|
||||
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
|
||||
|
||||
auto ymax = std::max_element(y.begin(), y.end());
|
||||
auto ymin = std::min_element(y.begin(), y.end());
|
||||
start_par[4] = *ymin + (*ymax - *ymin) / 2;
|
||||
|
||||
// Find the first x where the corresponding y value is above the threshold (start_par[4])
|
||||
for (ssize_t i = 0; i < y.size(); ++i) {
|
||||
if (y[i] <= start_par[4]) {
|
||||
start_par[2] = x[i];
|
||||
break; // Exit the loop after finding the first valid x
|
||||
}
|
||||
}
|
||||
|
||||
start_par[3] = 2 * sqrt(start_par[2]);
|
||||
start_par[0] = 100;
|
||||
start_par[1] = 0.25;
|
||||
start_par[5] = -1;
|
||||
return start_par;
|
||||
}
|
||||
|
||||
// - No error
|
||||
NDArray<double, 1> fit_scurve2(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
NDArray<double, 1> result = scurve2_init_par(x, y);
|
||||
lm_status_struct status;
|
||||
|
||||
lmcurve(result.size(), result.data(), x.size(), x.data(), y.data(),
|
||||
aare::func::scurve2, &lm_control_double, &status);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, int n_threads) {
|
||||
NDArray<double, 3> result({y.shape(0), y.shape(1), 6}, 0);
|
||||
|
||||
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
for (ssize_t col = 0; col < y.shape(1); col++) {
|
||||
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
|
||||
auto res = fit_scurve2(x, values);
|
||||
result(row, col, 0) = res(0);
|
||||
result(row, col, 1) = res(1);
|
||||
result(row, col, 2) = res(2);
|
||||
result(row, col, 3) = res(3);
|
||||
result(row, col, 4) = res(4);
|
||||
result(row, col, 5) = res(5);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
return result;
|
||||
}
|
||||
|
||||
// - Error
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
|
||||
|
||||
// Check that we have the correct sizes
|
||||
if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
par_out.size() != 6 || par_err_out.size() != 6) {
|
||||
throw std::runtime_error("Data, x, data_err must have the same size "
|
||||
"and par_out, par_err_out must have size 6");
|
||||
}
|
||||
|
||||
lm_status_struct status;
|
||||
par_out = scurve2_init_par(x, y);
|
||||
std::array<double, 36> cov = {0}; // size 6x6
|
||||
// std::array<double, 4> cov{0, 0, 0, 0};
|
||||
|
||||
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
|
||||
x.size(), x.data(), y.data(), y_err.data(), aare::func::scurve2,
|
||||
&lm_control_double, &status);
|
||||
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
for (ssize_t col = 0; col < y.shape(1); col++) {
|
||||
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
|
||||
NDView<double, 1> y_err_view(&y_err(row, col, 0),
|
||||
{y_err.shape(2)});
|
||||
NDView<double, 1> par_out_view(&par_out(row, col, 0),
|
||||
{par_out.shape(2)});
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
fit_scurve2(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -89,7 +89,7 @@ void JungfrauDataFile::seek(size_t frame_index) {
|
||||
: frame_index;
|
||||
auto byte_offset = frame_offset * (m_bytes_per_frame + header_size);
|
||||
m_fp.seek(byte_offset);
|
||||
};
|
||||
}
|
||||
|
||||
size_t JungfrauDataFile::tell() { return m_current_frame_index; }
|
||||
size_t JungfrauDataFile::total_frames() const { return m_total_frames; }
|
||||
@ -235,4 +235,4 @@ std::filesystem::path JungfrauDataFile::fpath(size_t file_index) const {
|
||||
return m_path / fname;
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
} // namespace aare
|
||||
|
@ -72,8 +72,8 @@ void NumpyFile::get_frame_into(size_t frame_number, std::byte *image_buf) {
|
||||
}
|
||||
}
|
||||
|
||||
size_t NumpyFile::pixels_per_frame() { return m_pixels_per_frame; };
|
||||
size_t NumpyFile::bytes_per_frame() { return m_bytes_per_frame; };
|
||||
size_t NumpyFile::pixels_per_frame() { return m_pixels_per_frame; }
|
||||
size_t NumpyFile::bytes_per_frame() { return m_bytes_per_frame; }
|
||||
|
||||
std::vector<Frame> NumpyFile::read_n(size_t n_frames) {
|
||||
// TODO: implement this in a more efficient way
|
||||
@ -197,4 +197,4 @@ void NumpyFile::load_metadata() {
|
||||
m_header = {dtype, fortran_order, shape};
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
} // namespace aare
|
||||
|
@ -26,7 +26,7 @@ RawFile::RawFile(const std::filesystem::path &fname, const std::string &mode)
|
||||
}
|
||||
}
|
||||
|
||||
Frame RawFile::read_frame() { return get_frame(m_current_frame++); };
|
||||
Frame RawFile::read_frame() { return get_frame(m_current_frame++); }
|
||||
|
||||
Frame RawFile::read_frame(size_t frame_number) {
|
||||
seek(frame_number);
|
||||
@ -44,13 +44,13 @@ void RawFile::read_into(std::byte *image_buf, size_t n_frames) {
|
||||
|
||||
void RawFile::read_into(std::byte *image_buf) {
|
||||
return get_frame_into(m_current_frame++, image_buf);
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
void RawFile::read_into(std::byte *image_buf, DetectorHeader *header) {
|
||||
|
||||
return get_frame_into(m_current_frame++, image_buf, header);
|
||||
};
|
||||
}
|
||||
|
||||
void RawFile::read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header) {
|
||||
// return get_frame_into(m_current_frame++, image_buf, header);
|
||||
@ -62,7 +62,7 @@ void RawFile::read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *h
|
||||
header+=n_modules();
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
size_t RawFile::n_modules() const { return m_master.n_modules(); }
|
||||
|
||||
@ -86,9 +86,9 @@ void RawFile::seek(size_t frame_index) {
|
||||
frame_index, total_frames()));
|
||||
}
|
||||
m_current_frame = frame_index;
|
||||
};
|
||||
}
|
||||
|
||||
size_t RawFile::tell() { return m_current_frame; };
|
||||
size_t RawFile::tell() { return m_current_frame; }
|
||||
|
||||
size_t RawFile::total_frames() const { return m_master.frames_in_file(); }
|
||||
size_t RawFile::rows() const { return m_geometry.pixels_y; }
|
||||
@ -301,4 +301,4 @@ size_t RawFile::frame_number(size_t frame_index) {
|
||||
}
|
||||
|
||||
|
||||
} // namespace aare
|
||||
} // namespace aare
|
||||
|
@ -87,7 +87,7 @@ int ScanParameters::start() const { return m_start; }
|
||||
int ScanParameters::stop() const { return m_stop; }
|
||||
void ScanParameters::increment_stop(){
|
||||
m_stop += 1;
|
||||
};
|
||||
}
|
||||
int ScanParameters::step() const { return m_step; }
|
||||
const std::string &ScanParameters::dac() const { return m_dac; }
|
||||
bool ScanParameters::enabled() const { return m_enabled; }
|
||||
@ -421,4 +421,4 @@ void RawMasterFile::parse_raw(const std::filesystem::path &fpath) {
|
||||
if(m_frames_in_file==0)
|
||||
m_frames_in_file = m_total_frames_expected;
|
||||
}
|
||||
} // namespace aare
|
||||
} // namespace aare
|
||||
|
57
update_version.py
Normal file
57
update_version.py
Normal file
@ -0,0 +1,57 @@
|
||||
# SPDX-License-Identifier: LGPL-3.0-or-other
|
||||
# Copyright (C) 2021 Contributors to the Aare Package
|
||||
"""
|
||||
Script to update VERSION file with semantic versioning if provided as an argument, or with 0.0.0 if no argument is provided.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
import re
|
||||
|
||||
from packaging.version import Version, InvalidVersion
|
||||
|
||||
|
||||
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
def is_integer(value):
|
||||
try:
|
||||
int(value)
|
||||
except ValueError:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def get_version():
|
||||
|
||||
# Check at least one argument is passed
|
||||
if len(sys.argv) < 2:
|
||||
return "0.0.0"
|
||||
|
||||
version = sys.argv[1]
|
||||
|
||||
try:
|
||||
v = Version(version) # normalize check if version follows PEP 440 specification
|
||||
|
||||
version_normalized = version.replace("-", ".")
|
||||
|
||||
version_normalized = re.sub(r'0*(\d+)', lambda m : str(int(m.group(0))), version_normalized) #remove leading zeros
|
||||
|
||||
return version_normalized
|
||||
|
||||
except InvalidVersion as e:
|
||||
print(f"Invalid version {version}. Version format must follow semantic versioning format of python PEP 440 version identification specification.")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def write_version_to_file(version):
|
||||
version_file_path = os.path.join(SCRIPT_DIR, "VERSION")
|
||||
with open(version_file_path, "w") as version_file:
|
||||
version_file.write(version)
|
||||
print(f"Version {version} written to VERSION file.")
|
||||
|
||||
# Main script
|
||||
if __name__ == "__main__":
|
||||
|
||||
version = get_version()
|
||||
write_version_to_file(version)
|
Reference in New Issue
Block a user