merge from latest developer
All checks were successful
Build on RHEL9 / build (push) Successful in 2m21s
Build on RHEL8 / build (push) Successful in 2m40s

This commit is contained in:
2025-06-03 11:24:37 +02:00
135 changed files with 9254 additions and 1500 deletions

127
src/CalculateEta.test.cpp Normal file
View File

@@ -0,0 +1,127 @@
/************************************************
* @file CalculateEta.test.cpp
* @short test case to calculate_eta2
***********************************************/
#include "aare/CalculateEta.hpp"
#include "aare/Cluster.hpp"
#include "aare/ClusterFile.hpp"
// #include "catch.hpp"
#include <array>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
using namespace aare;
using ClusterTypes =
std::variant<Cluster<int, 2, 2>, Cluster<int, 3, 3>, Cluster<int, 5, 5>,
Cluster<int, 4, 2>, Cluster<int, 2, 3>>;
auto get_test_parameters() {
return GENERATE(
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 3, 1}}},
Eta2<int>{2. / 3, 3. / 4,
static_cast<int>(corner::cBottomLeft), 7}),
std::make_tuple(
ClusterTypes{Cluster<int, 3, 3>{0, 0, {1, 2, 3, 4, 5, 6, 1, 2, 7}}},
Eta2<int>{6. / 11, 2. / 7, static_cast<int>(corner::cTopRight),
20}),
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
0, 0, {1, 6, 7, 6, 5, 4, 3, 2, 1, 2, 8, 9, 8,
1, 4, 5, 6, 7, 8, 4, 1, 1, 1, 1, 1}}},
Eta2<int>{8. / 17, 7. / 15, 9, 30}),
std::make_tuple(
ClusterTypes{Cluster<int, 4, 2>{0, 0, {1, 4, 7, 2, 5, 6, 4, 3}}},
Eta2<int>{4. / 10, 4. / 11, 1, 21}),
std::make_tuple(
ClusterTypes{Cluster<int, 2, 3>{0, 0, {1, 3, 2, 3, 4, 2}}},
Eta2<int>{3. / 5, 2. / 5, 1, 11}));
}
TEST_CASE("compute_largest_2x2_subcluster", "[eta_calculation]") {
auto [cluster, expected_eta] = get_test_parameters();
auto [sum, index] = std::visit(
[](const auto &clustertype) { return clustertype.max_sum_2x2(); },
cluster);
CHECK(expected_eta.c == index);
CHECK(expected_eta.sum == sum);
}
TEST_CASE("calculate_eta2", "[eta_calculation]") {
auto [cluster, expected_eta] = get_test_parameters();
auto eta = std::visit(
[](const auto &clustertype) { return calculate_eta2(clustertype); },
cluster);
CHECK(eta.x == expected_eta.x);
CHECK(eta.y == expected_eta.y);
CHECK(eta.c == expected_eta.c);
CHECK(eta.sum == expected_eta.sum);
}
// 3x3 cluster layout (rotated to match the cBottomLeft enum):
// 6, 7, 8
// 3, 4, 5
// 0, 1, 2
TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
"the bottom left",
"[eta_calculation]") {
// Create a 3x3 cluster
Cluster<int32_t, 3, 3> cl;
cl.x = 0;
cl.y = 0;
cl.data[0] = 30;
cl.data[1] = 23;
cl.data[2] = 5;
cl.data[3] = 20;
cl.data[4] = 50;
cl.data[5] = 3;
cl.data[6] = 8;
cl.data[7] = 2;
cl.data[8] = 3;
// 8, 2, 3
// 20, 50, 3
// 30, 23, 5
auto eta = calculate_eta2(cl);
CHECK(eta.c == static_cast<int>(corner::cBottomLeft));
CHECK(eta.x == 50.0 / (20 + 50)); // 4/(3+4)
CHECK(eta.y == 50.0 / (23 + 50)); // 4/(1+4)
CHECK(eta.sum == 30 + 23 + 20 + 50);
}
TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
"the top left",
"[eta_calculation]") {
// Create a 3x3 cluster
Cluster<int32_t, 3, 3> cl;
cl.x = 0;
cl.y = 0;
cl.data[0] = 8;
cl.data[1] = 12;
cl.data[2] = 5;
cl.data[3] = 77;
cl.data[4] = 80;
cl.data[5] = 3;
cl.data[6] = 82;
cl.data[7] = 91;
cl.data[8] = 3;
// 82, 91, 3
// 77, 80, 3
// 8, 12, 5
auto eta = calculate_eta2(cl);
CHECK(eta.c == static_cast<int>(corner::cTopLeft));
CHECK(eta.x == 80. / (77 + 80)); // 4/(3+4)
CHECK(eta.y == 91.0 / (91 + 80)); // 7/(7+4)
CHECK(eta.sum == 77 + 80 + 82 + 91);
}

21
src/Cluster.test.cpp Normal file
View File

@@ -0,0 +1,21 @@
/************************************************
* @file test-Cluster.cpp
* @short test case for generic Cluster, ClusterVector, and calculate_eta2
***********************************************/
#include "aare/Cluster.hpp"
#include "aare/CalculateEta.hpp"
#include "aare/ClusterFile.hpp"
// #include "catch.hpp"
#include <array>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
using namespace aare;
TEST_CASE("Test sum of Cluster", "[.cluster]") {
Cluster<int, 2, 2> cluster{0, 0, {1, 2, 3, 4}};
CHECK(cluster.sum() == 10);
}

View File

@@ -1,34 +1,115 @@
#include "aare/ClusterFile.hpp"
#include <algorithm>
namespace aare {
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size): m_chunk_size(chunk_size) {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file: " + fname.string());
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
const std::string &mode)
: m_chunk_size(chunk_size), m_mode(mode) {
if (mode == "r") {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file for reading: " +
fname.string());
}
} else if (mode == "w") {
fp = fopen(fname.c_str(), "wb");
if (!fp) {
throw std::runtime_error("Could not open file for writing: " +
fname.string());
}
} else if (mode == "a") {
fp = fopen(fname.c_str(), "ab");
if (!fp) {
throw std::runtime_error("Could not open file for appending: " +
fname.string());
}
} else {
throw std::runtime_error("Unsupported mode: " + mode);
}
}
ClusterFile::~ClusterFile() {
close();
void ClusterFile::set_roi(ROI roi){
m_roi = roi;
}
void ClusterFile::close(){
if (fp){
void ClusterFile::set_noise_map(const NDView<int32_t, 2> noise_map){
m_noise_map = NDArray<int32_t, 2>(noise_map);
}
void ClusterFile::set_gain_map(const NDView<double, 2> gain_map){
m_gain_map = NDArray<double, 2>(gain_map);
// Gain map is passed as ADU/keV to avoid dividing in when applying the gain
// map we invert it here
for (auto &item : m_gain_map->view()) {
item = 1.0 / item;
}
}
ClusterFile::~ClusterFile() { close(); }
void ClusterFile::close() {
if (fp) {
fclose(fp);
fp = nullptr;
}
}
}
std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
std::vector<Cluster> clusters(n_clusters);
void ClusterFile::write_frame(const ClusterVector<int32_t> &clusters) {
if (m_mode != "w" && m_mode != "a") {
throw std::runtime_error("File not opened for writing");
}
if (!(clusters.cluster_size_x() == 3) &&
!(clusters.cluster_size_y() == 3)) {
throw std::runtime_error("Only 3x3 clusters are supported");
}
//First write the frame number - 4 bytes
int32_t frame_number = clusters.frame_number();
if(fwrite(&frame_number, sizeof(frame_number), 1, fp)!=1){
throw std::runtime_error(LOCATION + "Could not write frame number");
}
//Then write the number of clusters - 4 bytes
uint32_t n_clusters = clusters.size();
if(fwrite(&n_clusters, sizeof(n_clusters), 1, fp)!=1){
throw std::runtime_error(LOCATION + "Could not write number of clusters");
}
//Now write the clusters in the frame
if(fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp)!=clusters.size()){
throw std::runtime_error(LOCATION + "Could not write clusters");
}
}
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters){
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_noise_map || m_roi){
return read_clusters_with_cut(n_clusters);
}else{
return read_clusters_without_cut(n_clusters);
}
}
ClusterVector<int32_t> ClusterFile::read_clusters_without_cut(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<int32_t> clusters(3,3, n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
auto buf = reinterpret_cast<Cluster *>(clusters.data());
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
auto buf = clusters.data();
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
@@ -38,13 +119,15 @@ std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
} else {
nn = nph;
}
nph_read += fread(reinterpret_cast<void *>(buf + nph_read), sizeof(Cluster), nn, fp);
nph_read += fread((buf + nph_read*clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
clusters.set_frame_number(iframe);
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
@@ -52,8 +135,8 @@ std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
else
nn = nph;
nph_read +=
fread(reinterpret_cast<void *>(buf + nph_read), sizeof(Cluster), nn, fp);
nph_read += fread((buf + nph_read*clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
@@ -64,260 +147,256 @@ std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
if(m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
std::vector<Cluster> ClusterFile::read_frame(int32_t &out_fnum) {
ClusterVector<int32_t> ClusterFile::read_clusters_with_cut(size_t n_clusters) {
ClusterVector<int32_t> clusters(3,3);
clusters.reserve(n_clusters);
// if there are photons left from previous frame read them first
if (m_num_left) {
throw std::runtime_error("There are still photons left in the last frame");
while(m_num_left && clusters.size() < n_clusters){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
}
if (fread(&out_fnum, sizeof(out_fnum), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
// we did not have enough clusters left in the previous frame
// keep on reading frames until reaching n_clusters
if (clusters.size() < n_clusters) {
// sanity check
if (m_num_left) {
throw std::runtime_error(LOCATION + "Entered second loop with clusters left\n");
}
int32_t frame_number = 0; // frame number needs to be 4 bytes!
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
clusters.set_frame_number(frame_number); //cluster vector will hold the last frame number
while(m_num_left && clusters.size() < n_clusters){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
}
// we have enough clusters, break out of the outer while loop
if (clusters.size() >= n_clusters)
break;
}
}
if(m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
Cluster3x3 ClusterFile::read_one_cluster(){
Cluster3x3 c;
auto rc = fread(&c, sizeof(c), 1, fp);
if (rc != 1) {
throw std::runtime_error(LOCATION + "Could not read cluster");
}
--m_num_left;
return c;
}
ClusterVector<int32_t> ClusterFile::read_frame(){
if (m_mode != "r") {
throw std::runtime_error(LOCATION + "File not opened for reading");
}
if (m_noise_map || m_roi){
return read_frame_with_cut();
}else{
return read_frame_without_cut();
}
}
ClusterVector<int32_t> ClusterFile::read_frame_without_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read number of clusters");
}
ClusterVector<int32_t> clusters(3, 3, n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error(LOCATION + "Could not read clusters");
}
clusters.resize(n_clusters);
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_frame_with_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
}
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
std::vector<Cluster> clusters(n_clusters);
if (fread(clusters.data(), sizeof(Cluster), n_clusters, fp) != static_cast<size_t>(n_clusters)) {
throw std::runtime_error("Could not read clusters");
ClusterVector<int32_t> clusters(3, 3);
clusters.reserve(m_num_left);
clusters.set_frame_number(frame_number);
while(m_num_left){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
std::vector<Cluster> ClusterFile::read_cluster_with_cut(size_t n_clusters,
double *noise_map,
int nx, int ny) {
std::vector<Cluster> clusters(n_clusters);
// size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
// uint32_t *n_left, double *noise_map, int
// nx, int ny) {
int iframe = 0;
// uint32_t nph = *n_left;
uint32_t nph = m_num_left;
// uint32_t nn = *n_left;
uint32_t nn = m_num_left;
size_t nph_read = 0;
int32_t t2max, tot1;
int32_t tot3;
// Cluster *ptr = buf;
Cluster *ptr = clusters.data();
int good = 1;
double noise;
// read photons left from previous frame
if (noise_map)
printf("Using noise map\n");
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to
// read we read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
for (size_t iph = 0; iph < nn; iph++) {
// read photons 1 by 1
size_t n_read = fread(reinterpret_cast<void *>(ptr), sizeof(Cluster), 1, fp);
if (n_read != 1) {
clusters.resize(nph_read);
return clusters;
}
// TODO! error handling on read
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,
NULL);
noise = noise_map[ptr->y * nx + ptr->x];
if (tot1 > noise || t2max > 2 * noise || tot3 > 3 * noise) {
;
} else {
good = 0;
printf("%d %d %f %d %d %d\n", ptr->x, ptr->y, noise,
tot1, t2max, tot3);
}
} else {
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
good = 0;
}
}
if (good) {
ptr++;
nph_read++;
}
(m_num_left)--;
if (nph_read >= n_clusters)
break;
bool ClusterFile::is_selected(Cluster3x3 &cl) {
//Should fail fast
if (m_roi) {
if (!(m_roi->contains(cl.x, cl.y))) {
return false;
}
}
if (nph_read < n_clusters) {
// // keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// // printf("%d\n",nph_read);
if (m_noise_map){
int32_t sum_1x1 = cl.data[4]; // central pixel
int32_t sum_2x2 = cl.sum_2x2(); // highest sum of 2x2 subclusters
int32_t sum_3x3 = cl.sum(); // sum of all pixels
if (fread(&nph, sizeof(nph), 1, fp)) {
// // printf("** %d\n",nph);
m_num_left = nph;
for (size_t iph = 0; iph < nph; iph++) {
// // read photons 1 by 1
size_t n_read =
fread(reinterpret_cast<void *>(ptr), sizeof(Cluster), 1, fp);
if (n_read != 1) {
clusters.resize(nph_read);
return clusters;
// return nph_read;
}
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL,
NULL,
NULL, NULL, NULL);
// noise = noise_map[ptr->y * nx + ptr->x];
noise = noise_map[ptr->y + ny * ptr->x];
if (tot1 > noise || t2max > 2 * noise ||
tot3 > 3 * noise) {
;
} else
good = 0;
} else {
printf("Bad pixel number %d %d\n", ptr->x,
ptr->y); good = 0;
}
}
if (good) {
ptr++;
nph_read++;
}
(m_num_left)--;
if (nph_read >= n_clusters)
break;
}
}
if (nph_read >= n_clusters)
break;
}
auto noise = (*m_noise_map)(cl.y, cl.x); //TODO! check if this is correct
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise || sum_3x3 <= 3 * noise) {
return false;
}
// printf("%d\n",nph_read);
clusters.resize(nph_read);
return clusters;
}
//we passed all checks
return true;
}
int ClusterFile::analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
double *eta3y) {
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters) {
//TOTO! make work with 2x2 clusters
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster3x3>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster2x2>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
}else{
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported");
}
return eta2;
}
int ClusterFile::analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
/**
* @brief Calculate the eta2 values for a 3x3 cluster and return them in a Eta2 struct
* containing etay, etax and the corner of the cluster.
*/
Eta2 calculate_eta2(Cluster3x3 &cl) {
Eta2 eta{};
int ok = 1;
std::array<int32_t, 4> tot2;
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
int32_t tot2[4];
int32_t t2max = 0;
char c = 0;
int32_t val, tot3;
tot3 = 0;
for (int i = 0; i < 4; i++)
tot2[i] = 0;
for (int ix = 0; ix < 3; ix++) {
for (int iy = 0; iy < 3; iy++) {
val = data[iy * 3 + ix];
// printf ("%d ",data[iy * 3 + ix]);
tot3 += val;
if (ix <= 1 && iy <= 1)
tot2[cBottomLeft] += val;
if (ix >= 1 && iy <= 1)
tot2[cBottomRight] += val;
if (ix <= 1 && iy >= 1)
tot2[cTopLeft] += val;
if (ix >= 1 && iy >= 1)
tot2[cTopRight] += val;
}
// printf ("\n");
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
eta.sum = tot2[c];
switch (c) {
case cBottomLeft:
if ((cl.data[3] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomLeft;
break;
case cBottomRight:
if ((cl.data[2] + cl.data[5]) != 0)
eta.x =
static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomRight;
break;
case cTopLeft:
if ((cl.data[7] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopLeft;
break;
case cTopRight:
if ((cl.data[5] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopRight;
break;
// no default to allow compiler to warn about missing cases
}
// printf ("\n");
if (t2 || quad) {
t2max = tot2[0];
c = cBottomLeft;
for (int i = 1; i < 4; i++) {
if (tot2[i] > t2max) {
t2max = tot2[i];
c = i;
}
}
//printf("*** %d %d %d %d -- %d\n",tot2[0],tot2[1],tot2[2],tot2[3],t2max);
if (quad)
*quad = c;
if (t2)
*t2 = t2max;
}
if (t3)
*t3 = tot3;
if (eta2x || eta2y) {
if (eta2x)
*eta2x = 0;
if (eta2y)
*eta2y = 0;
switch (c) {
case cBottomLeft:
if (eta2x && (data[3] + data[4]) != 0)
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
break;
case cBottomRight:
if (eta2x && (data[2] + data[5]) != 0)
*eta2x = static_cast<double>(data[5]) / (data[4] + data[5]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
break;
case cTopLeft:
if (eta2x && (data[7] + data[4]) != 0)
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
if (eta2y && (data[7] + data[4]) != 0)
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
break;
case cTopRight:
if (eta2x && t2max != 0)
*eta2x = static_cast<double>(data[5]) / (data[5] + data[4]);
if (eta2y && t2max != 0)
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
break;
default:;
}
}
if (eta3x || eta3y) {
if (eta3x && (data[3] + data[4] + data[5]) != 0)
*eta3x = static_cast<double>(-data[3] + data[3 + 2]) /
(data[3] + data[4] + data[5]);
if (eta3y && (data[1] + data[4] + data[7]) != 0)
*eta3y = static_cast<double>(-data[1] + data[2 * 3 + 1]) /
(data[1] + data[4] + data[7]);
}
return ok;
return eta;
}
Eta2 calculate_eta2(Cluster2x2 &cl) {
Eta2 eta{};
if ((cl.data[0] + cl.data[1]) != 0)
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
if ((cl.data[0] + cl.data[2]) != 0)
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
eta.sum = cl.data[0] + cl.data[1] + cl.data[2]+ cl.data[3];
eta.c = cBottomLeft; //TODO! This is not correct, but need to put something
return eta;
}
} // namespace aare

351
src/ClusterFile.test.cpp Normal file
View File

@@ -0,0 +1,351 @@
#include "aare/ClusterFile.hpp"
#include "test_config.hpp"
#include "aare/defs.hpp"
#include <algorithm>
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
using aare::Cluster;
using aare::ClusterFile;
using aare::ClusterVector;
TEST_CASE("Read one frame from a cluster file", "[.files]") {
//We know that the frame has 97 clusters
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_frame();
CHECK(clusters.size() == 97);
CHECK(clusters.frame_number() == 135);
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
TEST_CASE("Read one frame using ROI", "[.files]") {
// We know that the frame has 97 clusters
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 50;
roi.ymin = 200;
roi.ymax = 249;
f.set_roi(roi);
auto clusters = f.read_frame();
REQUIRE(clusters.size() == 49);
REQUIRE(clusters.frame_number() == 135);
// Check that all clusters are within the ROI
for (size_t i = 0; i < clusters.size(); i++) {
auto c = clusters[i];
REQUIRE(c.x >= roi.xmin);
REQUIRE(c.x <= roi.xmax);
REQUIRE(c.y >= roi.ymin);
REQUIRE(c.y <= roi.ymax);
}
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
TEST_CASE("Read clusters from single frame file", "[.files]") {
// frame_number, num_clusters [135] 97
// [ 1 200] [0 1 2 3 4 5 6 7 8]
// [ 2 201] [ 9 10 11 12 13 14 15 16 17]
// [ 3 202] [18 19 20 21 22 23 24 25 26]
// [ 4 203] [27 28 29 30 31 32 33 34 35]
// [ 5 204] [36 37 38 39 40 41 42 43 44]
// [ 6 205] [45 46 47 48 49 50 51 52 53]
// [ 7 206] [54 55 56 57 58 59 60 61 62]
// [ 8 207] [63 64 65 66 67 68 69 70 71]
// [ 9 208] [72 73 74 75 76 77 78 79 80]
// [ 10 209] [81 82 83 84 85 86 87 88 89]
// [ 11 210] [90 91 92 93 94 95 96 97 98]
// [ 12 211] [ 99 100 101 102 103 104 105 106 107]
// [ 13 212] [108 109 110 111 112 113 114 115 116]
// [ 14 213] [117 118 119 120 121 122 123 124 125]
// [ 15 214] [126 127 128 129 130 131 132 133 134]
// [ 16 215] [135 136 137 138 139 140 141 142 143]
// [ 17 216] [144 145 146 147 148 149 150 151 152]
// [ 18 217] [153 154 155 156 157 158 159 160 161]
// [ 19 218] [162 163 164 165 166 167 168 169 170]
// [ 20 219] [171 172 173 174 175 176 177 178 179]
// [ 21 220] [180 181 182 183 184 185 186 187 188]
// [ 22 221] [189 190 191 192 193 194 195 196 197]
// [ 23 222] [198 199 200 201 202 203 204 205 206]
// [ 24 223] [207 208 209 210 211 212 213 214 215]
// [ 25 224] [216 217 218 219 220 221 222 223 224]
// [ 26 225] [225 226 227 228 229 230 231 232 233]
// [ 27 226] [234 235 236 237 238 239 240 241 242]
// [ 28 227] [243 244 245 246 247 248 249 250 251]
// [ 29 228] [252 253 254 255 256 257 258 259 260]
// [ 30 229] [261 262 263 264 265 266 267 268 269]
// [ 31 230] [270 271 272 273 274 275 276 277 278]
// [ 32 231] [279 280 281 282 283 284 285 286 287]
// [ 33 232] [288 289 290 291 292 293 294 295 296]
// [ 34 233] [297 298 299 300 301 302 303 304 305]
// [ 35 234] [306 307 308 309 310 311 312 313 314]
// [ 36 235] [315 316 317 318 319 320 321 322 323]
// [ 37 236] [324 325 326 327 328 329 330 331 332]
// [ 38 237] [333 334 335 336 337 338 339 340 341]
// [ 39 238] [342 343 344 345 346 347 348 349 350]
// [ 40 239] [351 352 353 354 355 356 357 358 359]
// [ 41 240] [360 361 362 363 364 365 366 367 368]
// [ 42 241] [369 370 371 372 373 374 375 376 377]
// [ 43 242] [378 379 380 381 382 383 384 385 386]
// [ 44 243] [387 388 389 390 391 392 393 394 395]
// [ 45 244] [396 397 398 399 400 401 402 403 404]
// [ 46 245] [405 406 407 408 409 410 411 412 413]
// [ 47 246] [414 415 416 417 418 419 420 421 422]
// [ 48 247] [423 424 425 426 427 428 429 430 431]
// [ 49 248] [432 433 434 435 436 437 438 439 440]
// [ 50 249] [441 442 443 444 445 446 447 448 449]
// [ 51 250] [450 451 452 453 454 455 456 457 458]
// [ 52 251] [459 460 461 462 463 464 465 466 467]
// [ 53 252] [468 469 470 471 472 473 474 475 476]
// [ 54 253] [477 478 479 480 481 482 483 484 485]
// [ 55 254] [486 487 488 489 490 491 492 493 494]
// [ 56 255] [495 496 497 498 499 500 501 502 503]
// [ 57 256] [504 505 506 507 508 509 510 511 512]
// [ 58 257] [513 514 515 516 517 518 519 520 521]
// [ 59 258] [522 523 524 525 526 527 528 529 530]
// [ 60 259] [531 532 533 534 535 536 537 538 539]
// [ 61 260] [540 541 542 543 544 545 546 547 548]
// [ 62 261] [549 550 551 552 553 554 555 556 557]
// [ 63 262] [558 559 560 561 562 563 564 565 566]
// [ 64 263] [567 568 569 570 571 572 573 574 575]
// [ 65 264] [576 577 578 579 580 581 582 583 584]
// [ 66 265] [585 586 587 588 589 590 591 592 593]
// [ 67 266] [594 595 596 597 598 599 600 601 602]
// [ 68 267] [603 604 605 606 607 608 609 610 611]
// [ 69 268] [612 613 614 615 616 617 618 619 620]
// [ 70 269] [621 622 623 624 625 626 627 628 629]
// [ 71 270] [630 631 632 633 634 635 636 637 638]
// [ 72 271] [639 640 641 642 643 644 645 646 647]
// [ 73 272] [648 649 650 651 652 653 654 655 656]
// [ 74 273] [657 658 659 660 661 662 663 664 665]
// [ 75 274] [666 667 668 669 670 671 672 673 674]
// [ 76 275] [675 676 677 678 679 680 681 682 683]
// [ 77 276] [684 685 686 687 688 689 690 691 692]
// [ 78 277] [693 694 695 696 697 698 699 700 701]
// [ 79 278] [702 703 704 705 706 707 708 709 710]
// [ 80 279] [711 712 713 714 715 716 717 718 719]
// [ 81 280] [720 721 722 723 724 725 726 727 728]
// [ 82 281] [729 730 731 732 733 734 735 736 737]
// [ 83 282] [738 739 740 741 742 743 744 745 746]
// [ 84 283] [747 748 749 750 751 752 753 754 755]
// [ 85 284] [756 757 758 759 760 761 762 763 764]
// [ 86 285] [765 766 767 768 769 770 771 772 773]
// [ 87 286] [774 775 776 777 778 779 780 781 782]
// [ 88 287] [783 784 785 786 787 788 789 790 791]
// [ 89 288] [792 793 794 795 796 797 798 799 800]
// [ 90 289] [801 802 803 804 805 806 807 808 809]
// [ 91 290] [810 811 812 813 814 815 816 817 818]
// [ 92 291] [819 820 821 822 823 824 825 826 827]
// [ 93 292] [828 829 830 831 832 833 834 835 836]
// [ 94 293] [837 838 839 840 841 842 843 844 845]
// [ 95 294] [846 847 848 849 850 851 852 853 854]
// [ 96 295] [855 856 857 858 859 860 861 862 863]
// [ 97 296] [864 865 866 867 868 869 870 871 872]
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
SECTION("Read fewer clusters than available") {
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_clusters(50);
REQUIRE(clusters.size() == 50);
REQUIRE(clusters.frame_number() == 135);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
REQUIRE(clusters[0].x == 1);
REQUIRE(clusters[0].y == 200);
CHECK(std::equal(std::begin(clusters[0].data),
std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
SECTION("Read more clusters than available") {
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
// 100 is the maximum number of clusters read
auto clusters = f.read_clusters(100);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
REQUIRE(clusters[0].x == 1);
REQUIRE(clusters[0].y == 200);
CHECK(std::equal(std::begin(clusters[0].data),
std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
SECTION("Read all clusters") {
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_clusters(97);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
REQUIRE(clusters[0].x == 1);
REQUIRE(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data),
std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
}
TEST_CASE("Read clusters from single frame file with ROI", "[.files]") {
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 50;
roi.ymin = 200;
roi.ymax = 249;
f.set_roi(roi);
auto clusters = f.read_clusters(10);
CHECK(clusters.size() == 10);
CHECK(clusters.frame_number() == 135);
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
TEST_CASE("Read cluster from multiple frame file", "[.files]") {
using ClusterType = Cluster<double, 2, 2>;
auto fpath =
test_data_path() / "clust" / "Two_frames_2x2double_test_clusters.clust";
REQUIRE(std::filesystem::exists(fpath));
// Two_frames_2x2double_test_clusters.clust
// frame number, num_clusters 0, 4
//[10, 20], {0. ,0., 0., 0.}
//[11, 30], {1., 1., 1., 1.}
//[12, 40], {2., 2., 2., 2.}
//[13, 50], {3., 3., 3., 3.}
// 1,4
//[10, 20], {4., 4., 4., 4.}
//[11, 30], {5., 5., 5., 5.}
//[12, 40], {6., 6., 6., 6.}
//[13, 50], {7., 7., 7., 7.}
SECTION("Read clusters from both frames") {
ClusterFile<ClusterType> f(fpath);
auto clusters = f.read_clusters(2);
REQUIRE(clusters.size() == 2);
REQUIRE(clusters.frame_number() == 0);
auto clusters1 = f.read_clusters(3);
REQUIRE(clusters1.size() == 3);
REQUIRE(clusters1.frame_number() == 1);
}
SECTION("Read all clusters") {
ClusterFile<ClusterType> f(fpath);
auto clusters = f.read_clusters(8);
REQUIRE(clusters.size() == 8);
REQUIRE(clusters.frame_number() == 1);
}
SECTION("Read clusters from one frame") {
ClusterFile<ClusterType> f(fpath);
auto clusters = f.read_clusters(2);
REQUIRE(clusters.size() == 2);
REQUIRE(clusters.frame_number() == 0);
auto clusters1 = f.read_clusters(1);
REQUIRE(clusters1.size() == 1);
REQUIRE(clusters1.frame_number() == 0);
}
}
TEST_CASE("Write cluster with potential padding", "[.files][.ClusterFile]") {
using ClusterType = Cluster<double, 3, 3>;
REQUIRE(std::filesystem::exists(test_data_path() / "clust"));
auto fpath = test_data_path() / "clust" / "single_frame_2_clusters.clust";
ClusterFile<ClusterType> file(fpath, 1000, "w");
ClusterVector<ClusterType> clustervec(2);
int16_t coordinate = 5;
clustervec.push_back(ClusterType{
coordinate, coordinate, {0., 0., 0., 0., 0., 0., 0., 0., 0.}});
clustervec.push_back(ClusterType{
coordinate, coordinate, {0., 0., 0., 0., 0., 0., 0., 0., 0.}});
file.write_frame(clustervec);
file.close();
file.open("r");
auto read_cluster_vector = file.read_frame();
CHECK(read_cluster_vector.size() == 2);
CHECK(read_cluster_vector.frame_number() == 0);
CHECK(read_cluster_vector[0].x == clustervec[0].x);
CHECK(read_cluster_vector[0].y == clustervec[0].y);
CHECK(std::equal(
clustervec[0].data.begin(), clustervec[0].data.end(),
read_cluster_vector[0].data.begin(), [](double a, double b) {
return std::abs(a - b) < std::numeric_limits<double>::epsilon();
}));
CHECK(read_cluster_vector[1].x == clustervec[1].x);
CHECK(read_cluster_vector[1].y == clustervec[1].y);
CHECK(std::equal(
clustervec[1].data.begin(), clustervec[1].data.end(),
read_cluster_vector[1].data.begin(), [](double a, double b) {
return std::abs(a - b) < std::numeric_limits<double>::epsilon();
}));
}
TEST_CASE("Read frame and modify cluster data", "[.files][.ClusterFile]") {
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_frame();
CHECK(clusters.size() == 97);
CHECK(clusters.frame_number() == 135);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
clusters.push_back(
Cluster<int32_t, 3, 3>{0, 0, {0, 1, 2, 3, 4, 5, 6, 7, 8}});
CHECK(clusters.size() == 98);
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}

View File

@@ -1,19 +1,18 @@
#include "aare/ClusterFinder.hpp"
#include "aare/Pedestal.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <chrono>
#include <random>
using namespace aare;
//TODO! Find a way to test the cluster finder
// TODO! Find a way to test the cluster finder
// class ClusterFinderUnitTest : public ClusterFinder {
// public:
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma = 5.0, double threshold = 0.0)
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma
// = 5.0, double threshold = 0.0)
// : ClusterFinder(cluster_sizeX, cluster_sizeY, nSigma, threshold) {}
// double get_c2() { return c2; }
// double get_c3() { return c3; }
@@ -37,8 +36,8 @@ using namespace aare;
// REQUIRE_THAT(cf.get_c3(), Catch::Matchers::WithinRel(c3, 1e-9));
// }
TEST_CASE("Construct a cluster finder"){
ClusterFinder clusterFinder({400,400}, {3,3});
TEST_CASE("Construct a cluster finder") {
ClusterFinder clusterFinder({400, 400});
// REQUIRE(clusterFinder.get_cluster_sizeX() == 3);
// REQUIRE(clusterFinder.get_cluster_sizeY() == 3);
// REQUIRE(clusterFinder.get_threshold() == 1);
@@ -49,16 +48,17 @@ TEST_CASE("Construct a cluster finder"){
// aare::Pedestal pedestal(10, 10, 5);
// NDArray<double, 2> frame({10, 10});
// frame = 0;
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1 threshold
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1
// threshold
// auto clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// auto clusters =
// clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// REQUIRE(clusters.size() == 0);
// frame(5, 5) = 10;
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// REQUIRE(clusters.size() == 1);
// REQUIRE(clusters[0].x == 5);
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(),
// pedestal); REQUIRE(clusters.size() == 1); REQUIRE(clusters[0].x == 5);
// REQUIRE(clusters[0].y == 5);
// for (int i = 0; i < 3; i++) {
// for (int j = 0; j < 3; j++) {

View File

@@ -0,0 +1,99 @@
#include "aare/ClusterFinderMT.hpp"
#include "aare/Cluster.hpp"
#include "aare/ClusterCollector.hpp"
#include "aare/File.hpp"
#include "test_config.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
#include <memory>
using namespace aare;
// wrapper function to access private member variables for testing
template <typename ClusterType, typename FRAME_TYPE = uint16_t,
typename PEDESTAL_TYPE = double>
class ClusterFinderMTWrapper
: public ClusterFinderMT<ClusterType, FRAME_TYPE, PEDESTAL_TYPE> {
public:
ClusterFinderMTWrapper(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 2000, size_t n_threads = 3)
: ClusterFinderMT<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>(
image_size, nSigma, capacity, n_threads) {}
size_t get_m_input_queues_size() const {
return this->m_input_queues.size();
}
size_t get_m_output_queues_size() const {
return this->m_output_queues.size();
}
size_t get_m_cluster_finders_size() const {
return this->m_cluster_finders.size();
}
bool m_output_queues_are_empty() const {
for (auto &queue : this->m_output_queues) {
if (!queue->isEmpty())
return false;
}
return true;
}
bool m_input_queues_are_empty() const {
for (auto &queue : this->m_input_queues) {
if (!queue->isEmpty())
return false;
}
return true;
}
bool m_sink_is_empty() const { return this->m_sink.isEmpty(); }
size_t m_sink_size() const { return this->m_sink.sizeGuess(); }
};
TEST_CASE("multithreaded cluster finder", "[.files][.ClusterFinder]") {
auto fpath = "/mnt/sls_det_storage/matterhorn_data/aare_test_data/"
"Moench03new/cu_half_speed_master_4.json";
File file(fpath);
size_t n_threads = 2;
size_t n_frames_pd = 10;
using ClusterType = Cluster<int32_t, 3, 3>;
ClusterFinderMTWrapper<ClusterType> cf(
{static_cast<int64_t>(file.rows()), static_cast<int64_t>(file.cols())},
5, 2000, n_threads); // no idea what frame type is!!! default uint16_t
CHECK(cf.get_m_input_queues_size() == n_threads);
CHECK(cf.get_m_output_queues_size() == n_threads);
CHECK(cf.get_m_cluster_finders_size() == n_threads);
CHECK(cf.m_output_queues_are_empty() == true);
CHECK(cf.m_input_queues_are_empty() == true);
for (size_t i = 0; i < n_frames_pd; ++i) {
cf.find_clusters(file.read_frame().view<uint16_t>());
}
cf.stop();
CHECK(cf.m_output_queues_are_empty() == true);
CHECK(cf.m_input_queues_are_empty() == true);
CHECK(cf.m_sink_size() == n_frames_pd);
ClusterCollector<ClusterType> clustercollector(&cf);
clustercollector.stop();
CHECK(cf.m_sink_size() == 0);
auto clustervec = clustercollector.steal_clusters();
// CHECK(clustervec.size() == ) //dont know how many clusters to expect
}

268
src/ClusterVector.test.cpp Normal file
View File

@@ -0,0 +1,268 @@
#include "aare/ClusterVector.hpp"
#include <cstdint>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
using aare::Cluster;
using aare::ClusterVector;
TEST_CASE("item_size return the size of the cluster stored") {
using C1 = Cluster<int32_t, 2, 2>;
ClusterVector<C1> cv(4);
CHECK(cv.item_size() == sizeof(C1));
// Sanity check
// 2*2*4 = 16 bytes of data for the cluster
// 2*2 = 4 bytes for the x and y coordinates
REQUIRE(cv.item_size() == 20);
using C2 = Cluster<int32_t, 3, 3>;
ClusterVector<C2> cv2(4);
CHECK(cv2.item_size() == sizeof(C2));
using C3 = Cluster<double, 2, 3>;
ClusterVector<C3> cv3(4);
CHECK(cv3.item_size() == sizeof(C3));
using C4 = Cluster<char, 10, 5>;
ClusterVector<C4> cv4(4);
CHECK(cv4.item_size() == sizeof(C4));
using C5 = Cluster<int32_t, 2, 3>;
ClusterVector<C5> cv5(4);
CHECK(cv5.item_size() == sizeof(C5));
using C6 = Cluster<double, 5, 5>;
ClusterVector<C6> cv6(4);
CHECK(cv6.item_size() == sizeof(C6));
using C7 = Cluster<double, 3, 3>;
ClusterVector<C7> cv7(4);
CHECK(cv7.item_size() == sizeof(C7));
}
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv(4);
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
REQUIRE(cv.cluster_size_y() == 2);
// int16_t, int16_t, 2x2 int32_t = 20 bytes
REQUIRE(cv.item_size() == 20);
// Create a cluster and push back into the vector
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1);
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 4);
auto c2 = cv[0];
// Check that the data is the same
REQUIRE(c1.x == c2.x);
REQUIRE(c1.y == c2.y);
for (size_t i = 0; i < 4; i++) {
REQUIRE(c1.data[i] == c2.data[i]);
}
}
TEST_CASE("Summing 3x1 clusters of int64", "[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 3, 1>> cv(2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 3);
REQUIRE(cv.cluster_size_y() == 1);
// Create a cluster and push back into the vector
Cluster<int32_t, 3, 1> c1 = {1, 2, {3, 4, 5}};
cv.push_back(c1);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 1);
Cluster<int32_t, 3, 1> c2 = {6, 7, {8, 9, 10}};
cv.push_back(c2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 2);
Cluster<int32_t, 3, 1> c3 = {11, 12, {13, 14, 15}};
cv.push_back(c3);
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 3);
/*
auto sums = cv.sum();
REQUIRE(sums.size() == 3);
REQUIRE(sums[0] == 12);
REQUIRE(sums[1] == 27);
REQUIRE(sums[2] == 42);
*/
}
TEST_CASE("Storing floats", "[.ClusterVector]") {
ClusterVector<Cluster<float, 2, 4>> cv(10);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
REQUIRE(cv.cluster_size_y() == 4);
// Create a cluster and push back into the vector
Cluster<float, 2, 4> c1 = {1, 2, {3.0, 4.0, 5.0, 6.0, 3.0, 4.0, 5.0, 6.0}};
cv.push_back(c1);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 1);
Cluster<float, 2, 4> c2 = {
6, 7, {8.0, 9.0, 10.0, 11.0, 8.0, 9.0, 10.0, 11.0}};
cv.push_back(c2);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 2);
/*
auto sums = cv.sum();
REQUIRE(sums.size() == 2);
REQUIRE_THAT(sums[0], Catch::Matchers::WithinAbs(36.0, 1e-6));
REQUIRE_THAT(sums[1], Catch::Matchers::WithinAbs(76.0, 1e-6));
*/
}
TEST_CASE("Push back more than initial capacity", "[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv(2);
auto initial_data = cv.data();
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1);
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 2);
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv.push_back(c2);
REQUIRE(cv.size() == 2);
REQUIRE(cv.capacity() == 2);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv.push_back(c3);
REQUIRE(cv.size() == 3);
REQUIRE(cv.capacity() == 4);
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
REQUIRE(ptr[1].y == 7);
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
// We should have allocated a new buffer, since we outgrew the initial
// capacity
REQUIRE(initial_data != cv.data());
}
TEST_CASE("Concatenate two cluster vectors where the first has enough capacity",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv1(12);
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1);
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2);
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3);
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4);
cv1 += cv2;
REQUIRE(cv1.size() == 4);
REQUIRE(cv1.capacity() == 12);
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
REQUIRE(ptr[1].y == 7);
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
REQUIRE(ptr[3].x == 16);
REQUIRE(ptr[3].y == 17);
}
TEST_CASE("Concatenate two cluster vectors where we need to allocate",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv1(2);
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1);
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2);
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3);
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4);
cv1 += cv2;
REQUIRE(cv1.size() == 4);
REQUIRE(cv1.capacity() == 4);
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
REQUIRE(ptr[1].y == 7);
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
REQUIRE(ptr[3].x == 16);
REQUIRE(ptr[3].y == 17);
}
struct ClusterTestData {
uint8_t ClusterSizeX;
uint8_t ClusterSizeY;
std::vector<int64_t> index_map_x;
std::vector<int64_t> index_map_y;
};
TEST_CASE("Gain Map Calculation Index Map", "[.ClusterVector][.gain_map]") {
auto clustertestdata = GENERATE(
ClusterTestData{3,
3,
{-1, 0, 1, -1, 0, 1, -1, 0, 1},
{-1, -1, -1, 0, 0, 0, 1, 1, 1}},
ClusterTestData{
4,
4,
{-2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1},
{-2, -2, -2, -2, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1}},
ClusterTestData{2, 2, {-1, 0, -1, 0}, {-1, -1, 0, 0}},
ClusterTestData{5,
5,
{-2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0,
1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2},
{-2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2}});
uint8_t ClusterSizeX = clustertestdata.ClusterSizeX;
uint8_t ClusterSizeY = clustertestdata.ClusterSizeY;
std::vector<int64_t> index_map_x(ClusterSizeX * ClusterSizeY);
std::vector<int64_t> index_map_y(ClusterSizeX * ClusterSizeY);
int64_t index_cluster_center_x = ClusterSizeX / 2;
int64_t index_cluster_center_y = ClusterSizeY / 2;
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
index_map_x[j] = j % ClusterSizeX - index_cluster_center_x;
index_map_y[j] = j / ClusterSizeX - index_cluster_center_y;
}
CHECK(index_map_x == clustertestdata.index_map_x);
CHECK(index_map_y == clustertestdata.index_map_y);
}

View File

@@ -70,7 +70,7 @@ uint8_t Dtype::bitdepth() const {
/**
* @brief Get the number of bytes of the data type
*/
size_t Dtype::bytes() const { return bitdepth() / 8; }
size_t Dtype::bytes() const { return bitdepth() / bits_per_byte; }
/**
* @brief Construct a DType object from a TypeIndex

View File

@@ -2,6 +2,7 @@
#ifdef HDF5_FOUND
#include "aare/Hdf5File.hpp"
#endif
#include "aare/JungfrauDataFile.hpp"
#include "aare/NumpyFile.hpp"
#include "aare/RawFile.hpp"
@@ -40,7 +41,9 @@ File::File(const std::filesystem::path &fname, const std::string &mode,
throw std::runtime_error("Enable HDF5 compile option: AARE_HDF5=ON");
}
#endif
else {
else if(fname.extension() == ".dat"){
file_impl = std::make_unique<JungfrauDataFile>(fname);
} else {
throw std::runtime_error("Unsupported file type");
}
}
@@ -58,6 +61,8 @@ File& File::operator=(File &&other) noexcept {
return *this;
}
// void File::close() { file_impl->close(); }
Frame File::read_frame() { return file_impl->read_frame(); }
Frame File::read_frame(size_t frame_index) {
return file_impl->read_frame(frame_index);
@@ -71,6 +76,8 @@ void File::read_into(std::byte *image_buf) { file_impl->read_into(image_buf); }
void File::read_into(std::byte *image_buf, size_t n_frames) {
file_impl->read_into(image_buf, n_frames);
}
size_t File::frame_number() { return file_impl->frame_number(tell()); }
size_t File::frame_number(size_t frame_index) {
return file_impl->frame_number(frame_index);
}
@@ -82,7 +89,7 @@ size_t File::tell() const { return file_impl->tell(); }
size_t File::rows() const { return file_impl->rows(); }
size_t File::cols() const { return file_impl->cols(); }
size_t File::bitdepth() const { return file_impl->bitdepth(); }
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / 8; }
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / bits_per_byte; }
DetectorType File::detector_type() const { return file_impl->detector_type(); }

44
src/FilePtr.cpp Normal file
View File

@@ -0,0 +1,44 @@
#include "aare/FilePtr.hpp"
#include <fmt/format.h>
#include <stdexcept>
#include <utility>
namespace aare {
FilePtr::FilePtr(const std::filesystem::path& fname, const std::string& mode = "rb") {
fp_ = fopen(fname.c_str(), mode.c_str());
if (!fp_)
throw std::runtime_error(fmt::format("Could not open: {}", fname.c_str()));
}
FilePtr::FilePtr(FilePtr &&other) { std::swap(fp_, other.fp_); }
FilePtr &FilePtr::operator=(FilePtr &&other) {
std::swap(fp_, other.fp_);
return *this;
}
FILE *FilePtr::get() { return fp_; }
ssize_t FilePtr::tell() {
auto pos = ftell(fp_);
if (pos == -1)
throw std::runtime_error(fmt::format("Error getting file position: {}", error_msg()));
return pos;
}
FilePtr::~FilePtr() {
if (fp_)
fclose(fp_); // check?
}
std::string FilePtr::error_msg(){
if (feof(fp_)) {
return "End of file reached";
}
if (ferror(fp_)) {
return fmt::format("Error reading file: {}", std::strerror(errno));
}
return "";
}
} // namespace aare

525
src/Fit.cpp Normal file
View File

@@ -0,0 +1,525 @@
#include "aare/Fit.hpp"
#include "aare/utils/task.hpp"
#include "aare/utils/par.hpp"
#include <lmcurve2.h>
#include <lmfit.hpp>
#include <thread>
#include <array>
namespace aare {
namespace func {
double gaus(const double x, const double *par) {
return par[0] * exp(-pow(x - par[1], 2) / (2 * pow(par[2], 2)));
}
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape(0)}, 0);
for (ssize_t i = 0; i < x.size(); i++) {
y(i) = gaus(x(i), par.data());
}
return y;
}
double pol1(const double x, const double *par) { return par[0] * x + par[1]; }
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape()}, 0);
for (ssize_t i = 0; i < x.size(); i++) {
y(i) = pol1(x(i), par.data());
}
return y;
}
double scurve(const double x, const double * par) {
return (par[0] + par[1] * x) + 0.5 * (1 + erf((x - par[2]) / (sqrt(2) * par[3]))) * (par[4] + par[5] * (x - par[2]));
}
NDArray<double, 1> scurve(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape()}, 0);
for (ssize_t i = 0; i < x.size(); i++) {
y(i) = scurve(x(i), par.data());
}
return y;
}
double scurve2(const double x, const double * par) {
return (par[0] + par[1] * x) + 0.5 * (1 - erf((x - par[2]) / (sqrt(2) * par[3]))) * (par[4] + par[5] * (x - par[2]));
}
NDArray<double, 1> scurve2(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape()}, 0);
for (ssize_t i = 0; i < x.size(); i++) {
y(i) = scurve2(x(i), par.data());
}
return y;
}
} // namespace func
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y) {
NDArray<double, 1> result = gaus_init_par(x, y);
lm_status_struct status;
lmcurve(result.size(), result.data(), x.size(), x.data(), y.data(),
aare::func::gaus, &lm_control_double, &status);
return result;
}
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
int n_threads) {
NDArray<double, 3> result({y.shape(0), y.shape(1), 3}, 0);
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
auto res = fit_gaus(x, values);
result(row, col, 0) = res(0);
result(row, col, 1) = res(1);
result(row, col, 2) = res(2);
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
return result;
}
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y) {
std::array<double, 3> start_par{0, 0, 0};
auto e = std::max_element(y.begin(), y.end());
auto idx = std::distance(y.begin(), e);
start_par[0] = *e; // For amplitude we use the maximum value
start_par[1] =
x[idx]; // For the mean we use the x value of the maximum value
// For sigma we estimate the fwhm and divide by 2.35
// assuming equally spaced x values
auto delta = x[1] - x[0];
start_par[2] =
std::count_if(y.begin(), y.end(),
[e](double val) { return val > *e / 2; }) *
delta / 2.35;
return start_par;
}
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
// Estimate the initial parameters for the fit
std::array<double, 2> start_par{0, 0};
auto y2 = std::max_element(y.begin(), y.end());
auto x2 = x[std::distance(y.begin(), y2)];
auto y1 = std::min_element(y.begin(), y.end());
auto x1 = x[std::distance(y.begin(), y1)];
start_par[0] =
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
start_par[1] =
*y1 - ((*y2 - *y1) / (x2 - x1)) *
x1; // For the mean we use the x value of the maximum value
return start_par;
}
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
double &chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 3 || par_err_out.size() != 3) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 3");
}
// /* Collection of output parameters for status info. */
// typedef struct {
// double fnorm; /* norm of the residue vector fvec. */
// int nfev; /* actual number of iterations. */
// int outcome; /* Status indicator. Nonnegative values are used as
// index
// for the message text lm_infmsg, set in lmmin.c. */
// int userbreak; /* Set when function evaluation requests termination.
// */
// } lm_status_struct;
lm_status_struct status;
par_out = gaus_init_par(x, y);
std::array<double, 9> cov{0, 0, 0, 0, 0, 0, 0 , 0 , 0};
// void lmcurve2( const int n_par, double *par, double *parerr, double *covar, const int m_dat, const double *t, const double *y, const double *dy, double (*f)( const double ti, const double *par ), const lm_control_struct *control, lm_status_struct *status);
// n_par - Number of free variables. Length of parameter vector par.
// par - Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||r||.
// parerr - Parameter uncertainties vector. Array of length n_par or NULL. On output, unless it or covar is NULL, it contains the weighted parameter uncertainties for the found parameters.
// covar - Covariance matrix. Array of length n_par * n_par or NULL. On output, unless it is NULL, it contains the covariance matrix.
// m_dat - Number of data points. Length of vectors t, y, dy. Must statisfy n_par <= m_dat.
// t - Array of length m_dat. Contains the abcissae (time, or "x") for which function f will be evaluated.
// y - Array of length m_dat. Contains the ordinate values that shall be fitted.
// dy - Array of length m_dat. Contains the standard deviations of the values y.
// f - A user-supplied parametric function f(ti;par).
// control - Parameter collection for tuning the fit procedure. In most cases, the default &lm_control_double is adequate. If f is only computed with single-precision accuracy, &lm_control_float should be used. Parameters are explained in lmmin2(3).
// status - A record used to return information about the minimization process: For details, see lmmin2(3).
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::gaus,
&lm_control_double, &status);
// Calculate chi2
chi2 = 0;
for (ssize_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_gaus(x, y_view, y_err_view, par_out_view, par_err_out_view,
chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
}
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 2 || par_err_out.size() != 2) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 2");
}
lm_status_struct status;
par_out = pol1_init_par(x, y);
std::array<double, 4> cov{0, 0, 0, 0};
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::pol1,
&lm_control_double, &status);
// Calculate chi2
chi2 = 0;
for (ssize_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
}
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y) {
// // Check that we have the correct sizes
// if (y.size() != x.size() || y.size() != y_err.size() ||
// par_out.size() != 2 || par_err_out.size() != 2) {
// throw std::runtime_error("Data, x, data_err must have the same size "
// "and par_out, par_err_out must have size 2");
// }
NDArray<double, 1> par = pol1_init_par(x, y);
lm_status_struct status;
lmcurve(par.size(), par.data(), x.size(), x.data(), y.data(),
aare::func::pol1, &lm_control_double, &status);
return par;
}
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
int n_threads) {
NDArray<double, 3> result({y.shape(0), y.shape(1), 2}, 0);
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
auto res = fit_pol1(x, values);
result(row, col, 0) = res(0);
result(row, col, 1) = res(1);
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
return result;
}
// ~~ S-CURVES ~~
// SCURVE --
std::array<double, 6> scurve_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
// Estimate the initial parameters for the fit
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
auto ymax = std::max_element(y.begin(), y.end());
auto ymin = std::min_element(y.begin(), y.end());
start_par[4] = *ymin + (*ymax - *ymin) / 2;
// Find the first x where the corresponding y value is above the threshold (start_par[4])
for (ssize_t i = 0; i < y.size(); ++i) {
if (y[i] >= start_par[4]) {
start_par[2] = x[i];
break; // Exit the loop after finding the first valid x
}
}
start_par[3] = 2 * sqrt(start_par[2]);
start_par[0] = 100;
start_par[1] = 0.25;
start_par[5] = 1;
return start_par;
}
// - No error
NDArray<double, 1> fit_scurve(NDView<double, 1> x, NDView<double, 1> y) {
NDArray<double, 1> result = scurve_init_par(x, y);
lm_status_struct status;
lmcurve(result.size(), result.data(), x.size(), x.data(), y.data(),
aare::func::scurve, &lm_control_double, &status);
return result;
}
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y, int n_threads) {
NDArray<double, 3> result({y.shape(0), y.shape(1), 6}, 0);
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
auto res = fit_scurve(x, values);
result(row, col, 0) = res(0);
result(row, col, 1) = res(1);
result(row, col, 2) = res(2);
result(row, col, 3) = res(3);
result(row, col, 4) = res(4);
result(row, col, 5) = res(5);
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
return result;
}
// - Error
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 6 || par_err_out.size() != 6) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 6");
}
lm_status_struct status;
par_out = scurve_init_par(x, y);
std::array<double, 36> cov = {0}; // size 6x6
// std::array<double, 4> cov{0, 0, 0, 0};
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::scurve,
&lm_control_double, &status);
// Calculate chi2
chi2 = 0;
for (ssize_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_scurve(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
}
// SCURVE2 ---
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
// Estimate the initial parameters for the fit
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
auto ymax = std::max_element(y.begin(), y.end());
auto ymin = std::min_element(y.begin(), y.end());
start_par[4] = *ymin + (*ymax - *ymin) / 2;
// Find the first x where the corresponding y value is above the threshold (start_par[4])
for (ssize_t i = 0; i < y.size(); ++i) {
if (y[i] <= start_par[4]) {
start_par[2] = x[i];
break; // Exit the loop after finding the first valid x
}
}
start_par[3] = 2 * sqrt(start_par[2]);
start_par[0] = 100;
start_par[1] = 0.25;
start_par[5] = -1;
return start_par;
}
// - No error
NDArray<double, 1> fit_scurve2(NDView<double, 1> x, NDView<double, 1> y) {
NDArray<double, 1> result = scurve2_init_par(x, y);
lm_status_struct status;
lmcurve(result.size(), result.data(), x.size(), x.data(), y.data(),
aare::func::scurve2, &lm_control_double, &status);
return result;
}
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, int n_threads) {
NDArray<double, 3> result({y.shape(0), y.shape(1), 6}, 0);
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
auto res = fit_scurve2(x, values);
result(row, col, 0) = res(0);
result(row, col, 1) = res(1);
result(row, col, 2) = res(2);
result(row, col, 3) = res(3);
result(row, col, 4) = res(4);
result(row, col, 5) = res(5);
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
return result;
}
// - Error
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 6 || par_err_out.size() != 6) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 6");
}
lm_status_struct status;
par_out = scurve2_init_par(x, y);
std::array<double, 36> cov = {0}; // size 6x6
// std::array<double, 4> cov{0, 0, 0, 0};
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::scurve2,
&lm_control_double, &status);
// Calculate chi2
chi2 = 0;
for (ssize_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_scurve2(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
}
} // namespace aare

View File

@@ -19,7 +19,7 @@ TEST_CASE("Construct a frame") {
// data should be initialized to 0
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint8_t *data = (uint8_t *)frame.pixel_ptr(i, j);
uint8_t *data = reinterpret_cast<uint8_t *>(frame.pixel_ptr(i, j));
REQUIRE(data != nullptr);
REQUIRE(*data == 0);
}
@@ -40,7 +40,7 @@ TEST_CASE("Set a value in a 8 bit frame") {
// only the value we did set should be non-zero
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint8_t *data = (uint8_t *)frame.pixel_ptr(i, j);
uint8_t *data = reinterpret_cast<uint8_t *>(frame.pixel_ptr(i, j));
REQUIRE(data != nullptr);
if (i == 5 && j == 7) {
REQUIRE(*data == value);
@@ -65,7 +65,7 @@ TEST_CASE("Set a value in a 64 bit frame") {
// only the value we did set should be non-zero
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint64_t *data = (uint64_t *)frame.pixel_ptr(i, j);
uint64_t *data = reinterpret_cast<uint64_t *>(frame.pixel_ptr(i, j));
REQUIRE(data != nullptr);
if (i == 5 && j == 7) {
REQUIRE(*data == value);
@@ -149,4 +149,5 @@ TEST_CASE("test explicit copy constructor") {
REQUIRE(frame2.bitdepth() == bitdepth);
REQUIRE(frame2.bytes() == rows * cols * bitdepth / 8);
REQUIRE(frame2.data() != data);
}
}

56
src/Interpolator.cpp Normal file
View File

@@ -0,0 +1,56 @@
#include "aare/Interpolator.hpp"
namespace aare {
Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins)
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins),
m_energy_bins(ebins) {
if (etacube.shape(0) != xbins.size() || etacube.shape(1) != ybins.size() ||
etacube.shape(2) != ebins.size()) {
throw std::invalid_argument(
"The shape of the etacube does not match the shape of the bins");
}
// Cumulative sum in the x direction
for (ssize_t i = 1; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
m_ietax(i, j, k) += m_ietax(i - 1, j, k);
}
}
}
// Normalize by the highest row, if norm less than 1 don't do anything
for (ssize_t i = 0; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
auto val = m_ietax(m_ietax.shape(0) - 1, j, k);
double norm = val < 1 ? 1 : val;
m_ietax(i, j, k) /= norm;
}
}
}
// Cumulative sum in the y direction
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
for (ssize_t j = 1; j < m_ietay.shape(1); j++) {
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
m_ietay(i, j, k) += m_ietay(i, j - 1, k);
}
}
}
// Normalize by the highest column, if norm less than 1 don't do anything
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
for (ssize_t j = 0; j < m_ietay.shape(1); j++) {
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
auto val = m_ietay(i, m_ietay.shape(1) - 1, k);
double norm = val < 1 ? 1 : val;
m_ietay(i, j, k) /= norm;
}
}
}
}
} // namespace aare

238
src/JungfrauDataFile.cpp Normal file
View File

@@ -0,0 +1,238 @@
#include "aare/JungfrauDataFile.hpp"
#include "aare/algorithm.hpp"
#include "aare/defs.hpp"
#include <cerrno>
#include <fmt/format.h>
namespace aare {
JungfrauDataFile::JungfrauDataFile(const std::filesystem::path &fname) {
if (!std::filesystem::exists(fname)) {
throw std::runtime_error(LOCATION +
"File does not exist: " + fname.string());
}
find_frame_size(fname);
parse_fname(fname);
scan_files();
open_file(m_current_file_index);
}
// FileInterface
Frame JungfrauDataFile::read_frame(){
Frame f(rows(), cols(), Dtype::UINT16);
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
return f;
}
Frame JungfrauDataFile::read_frame(size_t frame_number){
seek(frame_number);
Frame f(rows(), cols(), Dtype::UINT16);
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
return f;
}
std::vector<Frame> JungfrauDataFile::read_n(size_t n_frames) {
std::vector<Frame> frames;
for(size_t i = 0; i < n_frames; ++i){
frames.push_back(read_frame());
}
return frames;
}
void JungfrauDataFile::read_into(std::byte *image_buf) {
read_into(image_buf, nullptr);
}
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames) {
read_into(image_buf, n_frames, nullptr);
}
size_t JungfrauDataFile::frame_number(size_t frame_index) {
seek(frame_index);
return read_header().framenum;
}
std::array<ssize_t, 2> JungfrauDataFile::shape() const {
return {static_cast<ssize_t>(rows()), static_cast<ssize_t>(cols())};
}
DetectorType JungfrauDataFile::detector_type() const { return DetectorType::Jungfrau; }
std::string JungfrauDataFile::base_name() const { return m_base_name; }
size_t JungfrauDataFile::bytes_per_frame() { return m_bytes_per_frame; }
size_t JungfrauDataFile::pixels_per_frame() { return m_rows * m_cols; }
size_t JungfrauDataFile::bytes_per_pixel() const { return sizeof(pixel_type); }
size_t JungfrauDataFile::bitdepth() const {
return bytes_per_pixel() * bits_per_byte;
}
void JungfrauDataFile::seek(size_t frame_index) {
if (frame_index >= m_total_frames) {
throw std::runtime_error(LOCATION + "Frame index out of range: " +
std::to_string(frame_index));
}
m_current_frame_index = frame_index;
auto file_index = first_larger(m_last_frame_in_file, frame_index);
if (file_index != m_current_file_index)
open_file(file_index);
auto frame_offset = (file_index)
? frame_index - m_last_frame_in_file[file_index - 1]
: frame_index;
auto byte_offset = frame_offset * (m_bytes_per_frame + header_size);
m_fp.seek(byte_offset);
}
size_t JungfrauDataFile::tell() { return m_current_frame_index; }
size_t JungfrauDataFile::total_frames() const { return m_total_frames; }
size_t JungfrauDataFile::rows() const { return m_rows; }
size_t JungfrauDataFile::cols() const { return m_cols; }
size_t JungfrauDataFile::n_files() const { return m_last_frame_in_file.size(); }
void JungfrauDataFile::find_frame_size(const std::filesystem::path &fname) {
static constexpr size_t module_data_size =
header_size + sizeof(pixel_type) * 512 * 1024;
static constexpr size_t half_data_size =
header_size + sizeof(pixel_type) * 256 * 1024;
static constexpr size_t chip_data_size =
header_size + sizeof(pixel_type) * 256 * 256;
auto file_size = std::filesystem::file_size(fname);
if (file_size == 0) {
throw std::runtime_error(LOCATION +
"Cannot guess frame size: file is empty");
}
if (file_size % module_data_size == 0) {
m_rows = 512;
m_cols = 1024;
m_bytes_per_frame = module_data_size - header_size;
} else if (file_size % half_data_size == 0) {
m_rows = 256;
m_cols = 1024;
m_bytes_per_frame = half_data_size - header_size;
} else if (file_size % chip_data_size == 0) {
m_rows = 256;
m_cols = 256;
m_bytes_per_frame = chip_data_size - header_size;
} else {
throw std::runtime_error(LOCATION +
"Cannot find frame size: file size is not a "
"multiple of any known frame size");
}
}
void JungfrauDataFile::parse_fname(const std::filesystem::path &fname) {
m_path = fname.parent_path();
m_base_name = fname.stem();
// find file index, then remove if from the base name
if (auto pos = m_base_name.find_last_of('_'); pos != std::string::npos) {
m_offset = std::stoul(m_base_name.substr(pos + 1));
m_base_name.erase(pos);
}
}
void JungfrauDataFile::scan_files() {
// find how many files we have and the number of frames in each file
m_last_frame_in_file.clear();
size_t file_index = m_offset;
while (std::filesystem::exists(fpath(file_index))) {
auto n_frames = std::filesystem::file_size(fpath(file_index)) /
(m_bytes_per_frame + header_size);
m_last_frame_in_file.push_back(n_frames);
++file_index;
}
// find where we need to open the next file and total number of frames
m_last_frame_in_file = cumsum(m_last_frame_in_file);
m_total_frames = m_last_frame_in_file.back();
}
void JungfrauDataFile::read_into(std::byte *image_buf,
JungfrauDataHeader *header) {
// read header if not passed nullptr
if (header) {
if (auto rc = fread(header, sizeof(JungfrauDataHeader), 1, m_fp.get());
rc != 1) {
throw std::runtime_error(
LOCATION +
"Could not read header from file:" + m_fp.error_msg());
}
} else {
m_fp.seek(header_size, SEEK_CUR);
}
// read data
if (auto rc = fread(image_buf, 1, m_bytes_per_frame, m_fp.get());
rc != m_bytes_per_frame) {
throw std::runtime_error(LOCATION + "Could not read image from file" +
m_fp.error_msg());
}
// prepare for next read
// if we are at the end of the file, open the next file
++m_current_frame_index;
if (m_current_frame_index >= m_last_frame_in_file[m_current_file_index] &&
(m_current_frame_index < m_total_frames)) {
++m_current_file_index;
open_file(m_current_file_index);
}
}
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames,
JungfrauDataHeader *header) {
if (header) {
for (size_t i = 0; i < n_frames; ++i)
read_into(image_buf + i * m_bytes_per_frame, header + i);
}else{
for (size_t i = 0; i < n_frames; ++i)
read_into(image_buf + i * m_bytes_per_frame, nullptr);
}
}
void JungfrauDataFile::read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header) {
if(image->shape()!=shape()){
throw std::runtime_error(LOCATION +
"Image shape does not match file size: " + std::to_string(rows()) + "x" + std::to_string(cols()));
}
read_into(reinterpret_cast<std::byte *>(image->data()), header);
}
JungfrauDataHeader JungfrauDataFile::read_header() {
JungfrauDataHeader header;
if (auto rc = fread(&header, 1, sizeof(header), m_fp.get());
rc != sizeof(header)) {
throw std::runtime_error(LOCATION + "Could not read header from file" +
m_fp.error_msg());
}
m_fp.seek(-header_size, SEEK_CUR);
return header;
}
void JungfrauDataFile::open_file(size_t file_index) {
// fmt::print(stderr, "Opening file: {}\n",
// fpath(file_index+m_offset).string());
m_fp = FilePtr(fpath(file_index + m_offset), "rb");
m_current_file_index = file_index;
}
std::filesystem::path JungfrauDataFile::fpath(size_t file_index) const {
auto fname = fmt::format("{}_{:0{}}.dat", m_base_name, file_index,
n_digits_in_file_index);
return m_path / fname;
}
} // namespace aare

View File

@@ -0,0 +1,114 @@
#include "aare/JungfrauDataFile.hpp"
#include <catch2/catch_test_macros.hpp>
#include "test_config.hpp"
using aare::JungfrauDataFile;
using aare::JungfrauDataHeader;
TEST_CASE("Open a Jungfrau data file", "[.files]") {
//we know we have 4 files with 7, 7, 7, and 3 frames
//firs frame number if 1 and the bunch id is frame_number**2
//so we can check the header
auto fpath = test_data_path() / "dat" / "AldoJF500k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
REQUIRE(f.rows() == 512);
REQUIRE(f.cols() == 1024);
REQUIRE(f.bytes_per_frame() == 1048576);
REQUIRE(f.pixels_per_frame() == 524288);
REQUIRE(f.bytes_per_pixel() == 2);
REQUIRE(f.bitdepth() == 16);
REQUIRE(f.base_name() == "AldoJF500k");
REQUIRE(f.n_files() == 4);
REQUIRE(f.tell() == 0);
REQUIRE(f.total_frames() == 24);
REQUIRE(f.current_file() == fpath);
//Check that the frame number and buch id is read correctly
for (size_t i = 0; i < 24; ++i) {
JungfrauDataHeader header;
aare::NDArray<uint16_t> image(f.shape());
f.read_into(&image, &header);
REQUIRE(header.framenum == i + 1);
REQUIRE(header.bunchid == (i + 1) * (i + 1));
REQUIRE(image.shape(0) == 512);
REQUIRE(image.shape(1) == 1024);
}
}
TEST_CASE("Seek in a JungfrauDataFile", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
//The file should have 113 frames
f.seek(19);
REQUIRE(f.tell() == 19);
auto h = f.read_header();
REQUIRE(h.framenum == 19+1);
//Reading again does not change the file pointer
auto h2 = f.read_header();
REQUIRE(h2.framenum == 19+1);
f.seek(59);
REQUIRE(f.tell() == 59);
auto h3 = f.read_header();
REQUIRE(h3.framenum == 59+1);
JungfrauDataHeader h4;
aare::NDArray<uint16_t> image(f.shape());
f.read_into(&image, &h4);
REQUIRE(h4.framenum == 59+1);
//now we should be on the next frame
REQUIRE(f.tell() == 60);
REQUIRE(f.read_header().framenum == 60+1);
REQUIRE_THROWS(f.seek(86356)); //out of range
}
TEST_CASE("Open a Jungfrau data file with non zero file index", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000003.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
//18 files per data file, opening the 3rd file we ignore the first 3
REQUIRE(f.total_frames() == 113-18*3);
REQUIRE(f.tell() == 0);
//Frame numbers start at 1 in the first file
REQUIRE(f.read_header().framenum == 18*3+1);
// moving relative to the third file
f.seek(5);
REQUIRE(f.read_header().framenum == 18*3+1+5);
// ignoring the first 3 files
REQUIRE(f.n_files() == 4);
REQUIRE(f.current_file().stem() == "AldoJF65k_000003");
}
TEST_CASE("Read into throws if size doesn't match", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
aare::NDArray<uint16_t> image({39, 85});
JungfrauDataHeader header;
REQUIRE_THROWS(f.read_into(&image, &header));
REQUIRE_THROWS(f.read_into(&image, nullptr));
REQUIRE_THROWS(f.read_into(&image));
REQUIRE(f.tell() == 0);
}

View File

@@ -2,6 +2,7 @@
#include <array>
#include <catch2/benchmark/catch_benchmark.hpp>
#include <catch2/catch_test_macros.hpp>
#include <numeric>
using aare::NDArray;
using aare::NDView;
@@ -34,8 +35,26 @@ TEST_CASE("Construct from an NDView") {
}
}
TEST_CASE("3D NDArray from NDView"){
std::vector<int> data(27);
std::iota(data.begin(), data.end(), 0);
NDView<int, 3> view(data.data(), Shape<3>{3, 3, 3});
NDArray<int, 3> image(view);
REQUIRE(image.shape() == view.shape());
REQUIRE(image.size() == view.size());
REQUIRE(image.data() != view.data());
for(ssize_t i=0; i<image.shape(0); i++){
for(ssize_t j=0; j<image.shape(1); j++){
for(ssize_t k=0; k<image.shape(2); k++){
REQUIRE(image(i, j, k) == view(i, j, k));
}
}
}
}
TEST_CASE("1D image") {
std::array<int64_t, 1> shape{{20}};
std::array<ssize_t, 1> shape{{20}};
NDArray<short, 1> img(shape, 3);
REQUIRE(img.size() == 20);
REQUIRE(img(5) == 3);
@@ -52,7 +71,7 @@ TEST_CASE("Accessing a const object") {
}
TEST_CASE("Indexing of a 2D image") {
std::array<int64_t, 2> shape{{3, 7}};
std::array<ssize_t, 2> shape{{3, 7}};
NDArray<long> img(shape, 5);
for (uint32_t i = 0; i != img.size(); ++i) {
REQUIRE(img(i) == 5);
@@ -95,7 +114,7 @@ TEST_CASE("Divide double by int") {
}
TEST_CASE("Elementwise multiplication of 3D image") {
std::array<int64_t, 3> shape{3, 4, 2};
std::array<ssize_t, 3> shape{3, 4, 2};
NDArray<double, 3> a{shape};
NDArray<double, 3> b{shape};
for (uint32_t i = 0; i != a.size(); ++i) {
@@ -160,18 +179,18 @@ TEST_CASE("Compare two images") {
}
TEST_CASE("Size and shape matches") {
int64_t w = 15;
int64_t h = 75;
std::array<int64_t, 2> shape{w, h};
ssize_t w = 15;
ssize_t h = 75;
std::array<ssize_t, 2> shape{w, h};
NDArray<double> a{shape};
REQUIRE(a.size() == static_cast<uint64_t>(w * h));
REQUIRE(a.size() == w * h);
REQUIRE(a.shape() == shape);
}
TEST_CASE("Initial value matches for all elements") {
double v = 4.35;
NDArray<double> a{{5, 5}, v};
for (uint32_t i = 0; i < a.size(); ++i) {
for (int i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == v);
}
}
@@ -205,7 +224,7 @@ TEST_CASE("Bitwise and on data") {
TEST_CASE("Elementwise operations on images") {
std::array<int64_t, 2> shape{5, 5};
std::array<ssize_t, 2> shape{5, 5};
double a_val = 3.0;
double b_val = 8.0;
@@ -379,4 +398,32 @@ TEST_CASE("Elementwise operations on images") {
REQUIRE(A(i) == a_val);
}
}
}
TEST_CASE("Assign an std::array to a 1D NDArray") {
NDArray<int, 1> a{{5}, 0};
std::array<int, 5> b{1, 2, 3, 4, 5};
a = b;
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Assign an std::array to a 1D NDArray of a different size") {
NDArray<int, 1> a{{3}, 0};
std::array<int, 5> b{1, 2, 3, 4, 5};
a = b;
REQUIRE(a.size() == 5);
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Construct an NDArray from an std::array") {
std::array<int, 5> b{1, 2, 3, 4, 5};
NDArray<int, 1> a(b);
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}

View File

@@ -3,6 +3,7 @@
#include <iostream>
#include <vector>
#include <numeric>
using aare::NDView;
using aare::Shape;
@@ -21,10 +22,8 @@ TEST_CASE("Element reference 1D") {
}
TEST_CASE("Element reference 2D") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
REQUIRE(vec.size() == static_cast<size_t>(data.size()));
@@ -58,10 +57,8 @@ TEST_CASE("Element reference 3D") {
}
TEST_CASE("Plus and miuns with single value") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
data += 5;
int i = 0;
@@ -116,10 +113,8 @@ TEST_CASE("elementwise assign") {
}
TEST_CASE("iterators") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 1> data(vec.data(), Shape<1>{12});
int i = 0;
for (const auto item : data) {
@@ -147,7 +142,7 @@ TEST_CASE("iterators") {
// for (int i = 0; i != 12; ++i) {
// vec.push_back(i);
// }
// std::vector<int64_t> shape{3, 4};
// std::vector<ssize_t> shape{3, 4};
// NDView<int, 2> data(vec.data(), shape);
// }
@@ -156,8 +151,8 @@ TEST_CASE("divide with another span") {
std::vector<int> vec1{3, 2, 1};
std::vector<int> result{3, 6, 3};
NDView<int, 1> data0(vec0.data(), Shape<1>{static_cast<int64_t>(vec0.size())});
NDView<int, 1> data1(vec1.data(), Shape<1>{static_cast<int64_t>(vec1.size())});
NDView<int, 1> data0(vec0.data(), Shape<1>{static_cast<ssize_t>(vec0.size())});
NDView<int, 1> data1(vec1.data(), Shape<1>{static_cast<ssize_t>(vec1.size())});
data0 /= data1;
@@ -167,27 +162,31 @@ TEST_CASE("divide with another span") {
}
TEST_CASE("Retrieve shape") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
REQUIRE(data.shape()[0] == 3);
REQUIRE(data.shape()[1] == 4);
}
TEST_CASE("compare two views") {
std::vector<int> vec1;
for (int i = 0; i != 12; ++i) {
vec1.push_back(i);
}
std::vector<int> vec1(12);
std::iota(vec1.begin(), vec1.end(), 0);
NDView<int, 2> view1(vec1.data(), Shape<2>{3, 4});
std::vector<int> vec2;
for (int i = 0; i != 12; ++i) {
vec2.push_back(i);
}
std::vector<int> vec2(12);
std::iota(vec2.begin(), vec2.end(), 0);
NDView<int, 2> view2(vec2.data(), Shape<2>{3, 4});
REQUIRE((view1 == view2));
}
TEST_CASE("Create a view over a vector"){
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
auto v = aare::make_view(vec);
REQUIRE(v.shape()[0] == 12);
REQUIRE(v[0] == 0);
REQUIRE(v[11] == 11);
}

View File

@@ -197,4 +197,4 @@ void NumpyFile::load_metadata() {
m_header = {dtype, fortran_order, shape};
}
} // namespace aare
} // namespace aare

View File

@@ -1,6 +1,9 @@
#include "aare/RawFile.hpp"
#include "aare/algorithm.hpp"
#include "aare/PixelMap.hpp"
#include "aare/defs.hpp"
#include "aare/logger.hpp"
#include "aare/geo_helpers.hpp"
#include <fmt/format.h>
#include <nlohmann/json.hpp>
@@ -13,20 +16,14 @@ RawFile::RawFile(const std::filesystem::path &fname, const std::string &mode)
: m_master(fname) {
m_mode = mode;
if (mode == "r") {
n_subfiles = find_number_of_subfiles(); // f0,f1...fn
n_subfile_parts =
m_master.geometry().col * m_master.geometry().row; // d0,d1...dn
find_geometry();
update_geometry_with_roi();
if (m_master.roi()){
m_geometry = update_geometry_with_roi(m_geometry, m_master.roi().value());
}
open_subfiles();
} else {
throw std::runtime_error(LOCATION +
"Unsupported mode. Can only read RawFiles.");
" Unsupported mode. Can only read RawFiles.");
}
}
@@ -63,18 +60,21 @@ void RawFile::read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *h
this->get_frame_into(m_current_frame++, image_buf, header);
image_buf += bytes_per_frame();
if(header)
header+=n_mod();
header+=n_modules();
}
}
size_t RawFile::n_mod() const { return n_subfile_parts; }
size_t RawFile::n_modules() const { return m_master.n_modules(); }
size_t RawFile::bytes_per_frame() {
return m_rows * m_cols * m_master.bitdepth() / 8;
return m_geometry.pixels_x * m_geometry.pixels_y * m_master.bitdepth() / bits_per_byte;
}
size_t RawFile::pixels_per_frame() {
// return m_rows * m_cols;
return m_geometry.pixels_x * m_geometry.pixels_y;
}
size_t RawFile::pixels_per_frame() { return m_rows * m_cols; }
DetectorType RawFile::detector_type() const { return m_master.detector_type(); }
@@ -92,24 +92,18 @@ void RawFile::seek(size_t frame_index) {
size_t RawFile::tell() { return m_current_frame; }
size_t RawFile::total_frames() const { return m_master.frames_in_file(); }
size_t RawFile::rows() const { return m_rows; }
size_t RawFile::cols() const { return m_cols; }
size_t RawFile::rows() const { return m_geometry.pixels_y; }
size_t RawFile::cols() const { return m_geometry.pixels_x; }
size_t RawFile::bitdepth() const { return m_master.bitdepth(); }
xy RawFile::geometry() { return m_master.geometry(); }
void RawFile::open_subfiles() {
if (m_mode == "r")
for (size_t i = 0; i != n_subfiles; ++i) {
auto v = std::vector<RawSubFile *>(n_subfile_parts);
for (size_t j = 0; j != n_subfile_parts; ++j) {
auto pos = m_module_pixel_0[j];
v[j] = new RawSubFile(m_master.data_fname(j, i),
m_master.detector_type(), pos.height,
pos.width, m_master.bitdepth(),
positions[j].row, positions[j].col);
}
subfiles.push_back(v);
for (size_t i = 0; i != n_modules(); ++i) {
auto pos = m_geometry.module_pixel_0[i];
m_subfiles.emplace_back(std::make_unique<RawSubFile>(
m_master.data_fname(i, 0), m_master.detector_type(), pos.height,
pos.width, m_master.bitdepth(), pos.row_index, pos.col_index));
}
else {
throw std::runtime_error(LOCATION +
@@ -134,127 +128,52 @@ DetectorHeader RawFile::read_header(const std::filesystem::path &fname) {
return h;
}
int RawFile::find_number_of_subfiles() {
int n_files = 0;
// f0,f1...fn How many files is the data split into?
while (std::filesystem::exists(m_master.data_fname(0, n_files)))
n_files++; // increment after test
#ifdef AARE_VERBOSE
fmt::print("Found: {} subfiles\n", n_files);
#endif
return n_files;
}
RawMasterFile RawFile::master() const { return m_master; }
/**
* @brief Find the geometry of the detector by opening all the subfiles and
* reading the headers.
*/
void RawFile::find_geometry() {
//Hold the maximal row and column number found
//Later used for calculating the total number of rows and columns
uint16_t r{};
uint16_t c{};
for (size_t i = 0; i < n_subfile_parts; i++) {
auto h = this->read_header(m_master.data_fname(i, 0));
for (size_t i = 0; i < n_modules(); i++) {
auto h = read_header(m_master.data_fname(i, 0));
r = std::max(r, h.row);
c = std::max(c, h.column);
positions.push_back({h.row, h.column});
// positions.push_back({h.row, h.column});
ModuleGeometry g;
g.x = h.column * m_master.pixels_x();
g.y = h.row * m_master.pixels_y();
g.origin_x = h.column * m_master.pixels_x();
g.origin_y = h.row * m_master.pixels_y();
g.row_index = h.row;
g.col_index = h.column;
g.width = m_master.pixels_x();
g.height = m_master.pixels_y();
m_module_pixel_0.push_back(g);
m_geometry.module_pixel_0.push_back(g);
}
r++;
c++;
m_rows = (r * m_master.pixels_y());
m_cols = (c * m_master.pixels_x());
m_rows += static_cast<size_t>((r - 1) * cfg.module_gap_row);
#ifdef AARE_VERBOSE
fmt::print("\nRawFile::find_geometry()\n");
for (size_t i = 0; i < m_module_pixel_0.size(); i++) {
fmt::print("Module {} at position: (r:{},c:{})\n", i,
m_module_pixel_0[i].y, m_module_pixel_0[i].x);
}
fmt::print("Image size: {}x{}\n\n", m_rows, m_cols);
#endif
}
void RawFile::update_geometry_with_roi() {
// TODO! implement this
if (m_master.roi()) {
auto roi = m_master.roi().value();
// TODO! can we do this cleaner?
int pos_y = 0;
int pos_y_increment = 0;
for (size_t row = 0; row < m_master.geometry().row; row++) {
int pos_x = 0;
for (size_t col = 0; col < m_master.geometry().col; col++) {
auto &m = m_module_pixel_0[row * m_master.geometry().col + col];
auto original_height = m.height;
auto original_width = m.width;
// module is to the left of the roi
if (m.x + m.width < roi.xmin) {
m.width = 0;
// roi is in module
} else {
// here we only arrive when the roi is in or to the left of
// the module
if (roi.xmin > m.x) {
m.width -= roi.xmin - m.x;
}
if (roi.xmax < m.x + m.width) {
m.width -= m.x + original_width - roi.xmax;
}
m.x = pos_x;
pos_x += m.width;
}
if (m.y + m.height < roi.ymin) {
m.height = 0;
} else {
if ((roi.ymin > m.y) && (roi.ymin < m.y + m.height)) {
m.height -= roi.ymin - m.y;
}
if (roi.ymax < m.y + m.height) {
m.height -= m.y + original_height - roi.ymax;
}
m.y = pos_y;
pos_y_increment = m.height;
}
}
// increment pos_y
pos_y += pos_y_increment;
}
m_rows = roi.height();
m_cols = roi.width();
}
#ifdef AARE_VERBOSE
fmt::print("RawFile::update_geometry_with_roi()\n");
for (const auto &m : m_module_pixel_0) {
fmt::print("Module at position: (r:{}, c:{}, h:{}, w:{})\n", m.y, m.x,
m.height, m.width);
}
fmt::print("Updated image size: {}x{}\n\n", m_rows, m_cols);
fmt::print("\n");
#endif
m_geometry.pixels_y = (r * m_master.pixels_y());
m_geometry.pixels_x = (c * m_master.pixels_x());
m_geometry.modules_x = c;
m_geometry.modules_y = r;
m_geometry.pixels_y += static_cast<size_t>((r - 1) * cfg.module_gap_row);
}
Frame RawFile::get_frame(size_t frame_index) {
auto f = Frame(m_rows, m_cols, Dtype::from_bitdepth(m_master.bitdepth()));
auto f = Frame(m_geometry.pixels_y, m_geometry.pixels_x, Dtype::from_bitdepth(m_master.bitdepth()));
std::byte *frame_buffer = f.data();
get_frame_into(frame_index, frame_buffer);
return f;
@@ -266,62 +185,58 @@ size_t RawFile::bytes_per_pixel() const {
}
void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, DetectorHeader *header) {
LOG(logDEBUG) << "RawFile::get_frame_into(" << frame_index << ")";
if (frame_index >= total_frames()) {
throw std::runtime_error(LOCATION + "Frame number out of range");
}
std::vector<size_t> frame_numbers(n_subfile_parts);
std::vector<size_t> frame_indices(n_subfile_parts, frame_index);
std::vector<size_t> frame_numbers(n_modules());
std::vector<size_t> frame_indices(n_modules(), frame_index);
// sync the frame numbers
if (n_subfile_parts != 1) {
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
auto subfile_id = frame_index / m_master.max_frames_per_file();
frame_numbers[part_idx] =
subfiles[subfile_id][part_idx]->frame_number(
frame_index % m_master.max_frames_per_file());
if (n_modules() != 1) { //if we have more than one module
for (size_t part_idx = 0; part_idx != n_modules(); ++part_idx) {
frame_numbers[part_idx] = m_subfiles[part_idx]->frame_number(frame_index);
}
// 1. if frame number vector is the same break
while (std::adjacent_find(frame_numbers.begin(), frame_numbers.end(),
std::not_equal_to<>()) !=
frame_numbers.end()) {
while (!all_equal(frame_numbers)) {
// 2. find the index of the minimum frame number,
auto min_frame_idx = std::distance(
frame_numbers.begin(),
std::min_element(frame_numbers.begin(), frame_numbers.end()));
// 3. increase its index and update its respective frame number
frame_indices[min_frame_idx]++;
// 4. if we can't increase its index => throw error
if (frame_indices[min_frame_idx] >= total_frames()) {
throw std::runtime_error(LOCATION +
"Frame number out of range");
}
auto subfile_id =
frame_indices[min_frame_idx] / m_master.max_frames_per_file();
frame_numbers[min_frame_idx] =
subfiles[subfile_id][min_frame_idx]->frame_number(
frame_indices[min_frame_idx] %
m_master.max_frames_per_file());
m_subfiles[min_frame_idx]->frame_number(frame_indices[min_frame_idx]);
}
}
if (m_master.geometry().col == 1) {
// get the part from each subfile and copy it to the frame
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
for (size_t part_idx = 0; part_idx != n_modules(); ++part_idx) {
auto corrected_idx = frame_indices[part_idx];
auto subfile_id = corrected_idx / m_master.max_frames_per_file();
// This is where we start writing
auto offset = (m_module_pixel_0[part_idx].y * m_cols +
m_module_pixel_0[part_idx].x)*m_master.bitdepth()/8;
auto offset = (m_geometry.module_pixel_0[part_idx].origin_y * m_geometry.pixels_x +
m_geometry.module_pixel_0[part_idx].origin_x)*m_master.bitdepth()/8;
if (m_module_pixel_0[part_idx].x!=0)
throw std::runtime_error(LOCATION + "Implementation error. x pos not 0.");
if (m_geometry.module_pixel_0[part_idx].origin_x!=0)
throw std::runtime_error(LOCATION + " Implementation error. x pos not 0.");
//TODO! Risk for out of range access
subfiles[subfile_id][part_idx]->seek(corrected_idx % m_master.max_frames_per_file());
subfiles[subfile_id][part_idx]->read_into(frame_buffer + offset, header);
//TODO! What if the files don't match?
m_subfiles[part_idx]->seek(corrected_idx);
m_subfiles[part_idx]->read_into(frame_buffer + offset, header);
if (header)
++header;
}
@@ -330,31 +245,30 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
//TODO! should we read row by row?
// create a buffer large enough to hold a full module
auto bytes_per_part = m_master.pixels_y() * m_master.pixels_x() *
m_master.bitdepth() /
8; // TODO! replace with image_size_in_bytes
auto *part_buffer = new std::byte[bytes_per_part];
// TODO! if we have many submodules we should reorder them on the module
// level
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
auto pos = m_module_pixel_0[part_idx];
for (size_t part_idx = 0; part_idx != n_modules(); ++part_idx) {
auto pos = m_geometry.module_pixel_0[part_idx];
auto corrected_idx = frame_indices[part_idx];
auto subfile_id = corrected_idx / m_master.max_frames_per_file();
subfiles[subfile_id][part_idx]->seek(corrected_idx % m_master.max_frames_per_file());
subfiles[subfile_id][part_idx]->read_into(part_buffer, header);
m_subfiles[part_idx]->seek(corrected_idx);
m_subfiles[part_idx]->read_into(part_buffer, header);
if(header)
++header;
for (size_t cur_row = 0; cur_row < static_cast<size_t>(pos.height);
cur_row++) {
auto irow = (pos.y + cur_row);
auto icol = pos.x;
auto dest = (irow * this->m_cols + icol);
auto irow = (pos.origin_y + cur_row);
auto icol = pos.origin_x;
auto dest = (irow * this->m_geometry.pixels_x + icol);
dest = dest * m_master.bitdepth() / 8;
memcpy(frame_buffer + dest,
part_buffer + cur_row * pos.width *
@@ -365,6 +279,7 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
}
delete[] part_buffer;
}
}
std::vector<Frame> RawFile::read_n(size_t n_frames) {
@@ -381,23 +296,8 @@ size_t RawFile::frame_number(size_t frame_index) {
if (frame_index >= m_master.frames_in_file()) {
throw std::runtime_error(LOCATION + " Frame number out of range");
}
size_t subfile_id = frame_index / m_master.max_frames_per_file();
if (subfile_id >= subfiles.size()) {
throw std::runtime_error(
LOCATION + " Subfile out of range. Possible missing data.");
}
return subfiles[subfile_id][0]->frame_number(
frame_index % m_master.max_frames_per_file());
return m_subfiles[0]->frame_number(frame_index);
}
RawFile::~RawFile() {
// TODO! Fix this, for file closing
for (auto &vec : subfiles) {
for (auto *subfile : vec) {
delete subfile;
}
}
}
} // namespace aare
} // namespace aare

View File

@@ -1,10 +1,13 @@
#include "aare/File.hpp"
#include "aare/RawMasterFile.hpp" //needed for ROI
#include "aare/RawFile.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
#include "test_config.hpp"
using aare::File;
TEST_CASE("Read number of frames from a jungfrau raw file", "[.integration]") {
@@ -96,11 +99,11 @@ TEST_CASE("Read frame numbers from a raw file", "[.integration]") {
}
}
TEST_CASE("Compare reading from a numpy file with a raw file", "[.integration]") {
auto fpath_raw = test_data_path() / "jungfrau" / "jungfrau_single_master_0.json";
TEST_CASE("Compare reading from a numpy file with a raw file", "[.files]") {
auto fpath_raw = test_data_path() / "raw/jungfrau" / "jungfrau_single_master_0.json";
REQUIRE(std::filesystem::exists(fpath_raw));
auto fpath_npy = test_data_path() / "jungfrau" / "jungfrau_single_0.npy";
auto fpath_npy = test_data_path() / "raw/jungfrau" / "jungfrau_single_0.npy";
REQUIRE(std::filesystem::exists(fpath_npy));
File raw(fpath_raw, "r");
@@ -110,6 +113,7 @@ TEST_CASE("Compare reading from a numpy file with a raw file", "[.integration]")
CHECK(npy.total_frames() == 10);
for (size_t i = 0; i < 10; ++i) {
CHECK(raw.tell() == i);
auto raw_frame = raw.read_frame();
auto npy_frame = npy.read_frame();
CHECK((raw_frame.view<uint16_t>() == npy_frame.view<uint16_t>()));
@@ -148,3 +152,5 @@ TEST_CASE("Read file with unordered frames", "[.integration]") {
File f(fpath);
REQUIRE_THROWS((f.read_frame()));
}

View File

@@ -140,6 +140,10 @@ std::optional<size_t> RawMasterFile::number_of_rows() const {
xy RawMasterFile::geometry() const { return m_geometry; }
size_t RawMasterFile::n_modules() const {
return m_geometry.row * m_geometry.col;
}
std::optional<uint8_t> RawMasterFile::quad() const { return m_quad; }
// optional values, these may or may not be present in the master file
@@ -417,4 +421,4 @@ void RawMasterFile::parse_raw(const std::filesystem::path &fpath) {
if(m_frames_in_file==0)
m_frames_in_file = m_total_frames_expected;
}
} // namespace aare
} // namespace aare

View File

@@ -1,87 +1,136 @@
#include "aare/RawSubFile.hpp"
#include "aare/PixelMap.hpp"
#include "aare/algorithm.hpp"
#include "aare/utils/ifstream_helpers.hpp"
#include "aare/logger.hpp"
#include <cstring> // memcpy
#include <fmt/core.h>
#include <iostream>
#include <regex>
namespace aare {
RawSubFile::RawSubFile(const std::filesystem::path &fname,
DetectorType detector, size_t rows, size_t cols,
size_t bitdepth, uint32_t pos_row, uint32_t pos_col)
: m_detector_type(detector), m_bitdepth(bitdepth), m_fname(fname), m_rows(rows), m_cols(cols),
m_bytes_per_frame((m_bitdepth / 8) * m_rows * m_cols), m_pos_row(pos_row), m_pos_col(pos_col) {
: m_detector_type(detector), m_bitdepth(bitdepth),
m_rows(rows), m_cols(cols),
m_bytes_per_frame((m_bitdepth / 8) * m_rows * m_cols), m_pos_row(pos_row),
m_pos_col(pos_col) {
LOG(logDEBUG) << "RawSubFile::RawSubFile()";
if (m_detector_type == DetectorType::Moench03_old) {
m_pixel_map = GenerateMoench03PixelMap();
}else if(m_detector_type == DetectorType::Eiger && m_pos_row % 2 == 0){
} else if (m_detector_type == DetectorType::Eiger && m_pos_row % 2 == 0) {
m_pixel_map = GenerateEigerFlipRowsPixelMap();
}
if (std::filesystem::exists(fname)) {
n_frames = std::filesystem::file_size(fname) /
(sizeof(DetectorHeader) + rows * cols * bitdepth / 8);
} else {
throw std::runtime_error(
LOCATION + fmt::format("File {} does not exist", m_fname.string()));
}
// fp = fopen(m_fname.string().c_str(), "rb");
m_file.open(m_fname, std::ios::binary);
if (!m_file.is_open()) {
throw std::runtime_error(
LOCATION + fmt::format("Could not open file {}", m_fname.string()));
}
#ifdef AARE_VERBOSE
fmt::print("Opened file: {} with {} frames\n", m_fname.string(), n_frames);
fmt::print("m_rows: {}, m_cols: {}, m_bitdepth: {}\n", m_rows, m_cols,
m_bitdepth);
fmt::print("file size: {}\n", std::filesystem::file_size(fname));
#endif
parse_fname(fname);
scan_files();
open_file(m_current_file_index); // open the first file
}
void RawSubFile::seek(size_t frame_index) {
if (frame_index >= n_frames) {
throw std::runtime_error("Frame number out of range");
LOG(logDEBUG) << "RawSubFile::seek(" << frame_index << ")";
if (frame_index >= m_total_frames) {
throw std::runtime_error(LOCATION + " Frame index out of range: " +
std::to_string(frame_index));
}
m_file.seekg((sizeof(DetectorHeader) + bytes_per_frame()) * frame_index);
m_current_frame_index = frame_index;
auto file_index = first_larger(m_last_frame_in_file, frame_index);
if (file_index != m_current_file_index)
open_file(file_index);
auto frame_offset = (file_index)
? frame_index - m_last_frame_in_file[file_index - 1]
: frame_index;
auto byte_offset = frame_offset * (m_bytes_per_frame + sizeof(DetectorHeader));
m_file.seekg(byte_offset);
}
size_t RawSubFile::tell() {
return m_file.tellg() / (sizeof(DetectorHeader) + bytes_per_frame());
LOG(logDEBUG) << "RawSubFile::tell():" << m_current_frame_index;
return m_current_frame_index;
}
void RawSubFile::read_into(std::byte *image_buf, DetectorHeader *header) {
if(header){
m_file.read(reinterpret_cast<char *>(header), sizeof(DetectorHeader));
LOG(logDEBUG) << "RawSubFile::read_into()";
if (header) {
m_file.read(reinterpret_cast<char *>(header), sizeof(DetectorHeader));
} else {
m_file.seekg(sizeof(DetectorHeader), std::ios::cur);
}
//TODO! expand support for different bitdepths
if(m_pixel_map){
if (m_file.fail()){
throw std::runtime_error(LOCATION + ifstream_error_msg(m_file));
}
// TODO! expand support for different bitdepths
if (m_pixel_map) {
// read into a temporary buffer and then copy the data to the buffer
// in the correct order
// currently this only supports 16 bit data!
auto part_buffer = new std::byte[bytes_per_frame()];
m_file.read(reinterpret_cast<char *>(part_buffer), bytes_per_frame());
auto *data = reinterpret_cast<uint16_t *>(image_buf);
auto *part_data = reinterpret_cast<uint16_t *>(part_buffer);
for (size_t i = 0; i < pixels_per_frame(); i++) {
data[i] = part_data[(*m_pixel_map)(i)];
// TODO! add 4 bit support
if(m_bitdepth == 8){
read_with_map<uint8_t>(image_buf);
}else if (m_bitdepth == 16) {
read_with_map<uint16_t>(image_buf);
} else if (m_bitdepth == 32) {
read_with_map<uint32_t>(image_buf);
}else{
throw std::runtime_error("Unsupported bitdepth for read with pixel map");
}
delete[] part_buffer;
} else {
// read directly into the buffer
m_file.read(reinterpret_cast<char *>(image_buf), bytes_per_frame());
}
if (m_file.fail()){
throw std::runtime_error(LOCATION + ifstream_error_msg(m_file));
}
++ m_current_frame_index;
if (m_current_frame_index >= m_last_frame_in_file[m_current_file_index] &&
(m_current_frame_index < m_total_frames)) {
++m_current_file_index;
open_file(m_current_file_index);
}
}
void RawSubFile::read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header) {
for (size_t i = 0; i < n_frames; i++) {
read_into(image_buf, header);
image_buf += bytes_per_frame();
if (header) {
++header;
}
}
}
template <typename T>
void RawSubFile::read_with_map(std::byte *image_buf) {
auto part_buffer = new std::byte[bytes_per_frame()];
m_file.read(reinterpret_cast<char *>(part_buffer), bytes_per_frame());
auto *data = reinterpret_cast<T *>(image_buf);
auto *part_data = reinterpret_cast<T *>(part_buffer);
for (size_t i = 0; i < pixels_per_frame(); i++) {
data[i] = part_data[(*m_pixel_map)(i)];
}
delete[] part_buffer;
}
size_t RawSubFile::rows() const { return m_rows; }
size_t RawSubFile::cols() const { return m_cols; }
void RawSubFile::get_part(std::byte *buffer, size_t frame_index) {
seek(frame_index);
read_into(buffer, nullptr);
@@ -94,5 +143,69 @@ size_t RawSubFile::frame_number(size_t frame_index) {
return h.frameNumber;
}
void RawSubFile::parse_fname(const std::filesystem::path &fname) {
LOG(logDEBUG) << "RawSubFile::parse_fname()";
// data has the format: /path/too/data/jungfrau_single_d0_f1_0.raw
// d0 is the module index, will not change for this file
// f1 is the file index - thi is the one we need
// 0 is the measurement index, will not change
m_path = fname.parent_path();
m_base_name = fname.filename();
// Regex to extract numbers after 'd' and 'f'
std::regex pattern(R"(^(.*_d)(\d+)(_f)(\d+)(_\d+\.raw)$)");
std::smatch match;
if (std::regex_match(m_base_name, match, pattern)) {
m_offset = std::stoi(match[4].str()); // find the first file index in case of a truncated series
m_base_name = match[1].str() + match[2].str() + match[3].str() + "{}" + match[5].str();
LOG(logDEBUG) << "Base name: " << m_base_name;
LOG(logDEBUG) << "Offset: " << m_offset;
LOG(logDEBUG) << "Path: " << m_path.string();
} else {
throw std::runtime_error(
LOCATION + fmt::format("Could not parse file name {}", fname.string()));
}
}
std::filesystem::path RawSubFile::fpath(size_t file_index) const {
auto fname = fmt::format(m_base_name, file_index);
return m_path / fname;
}
void RawSubFile::open_file(size_t file_index) {
m_file.close();
auto fname = fpath(file_index+m_offset);
LOG(logDEBUG) << "RawSubFile::open_file(): " << fname.string();
m_file.open(fname, std::ios::binary);
if (!m_file.is_open()) {
throw std::runtime_error(
LOCATION + fmt::format("Could not open file {}", fpath(file_index).string()));
}
m_current_file_index = file_index;
}
void RawSubFile::scan_files() {
LOG(logDEBUG) << "RawSubFile::scan_files()";
// find how many files we have and the number of frames in each file
m_last_frame_in_file.clear();
size_t file_index = m_offset;
while (std::filesystem::exists(fpath(file_index))) {
auto n_frames = std::filesystem::file_size(fpath(file_index)) /
(m_bytes_per_frame + sizeof(DetectorHeader));
m_last_frame_in_file.push_back(n_frames);
LOG(logDEBUG) << "Found: " << n_frames << " frames in file: " << fpath(file_index).string();
++file_index;
}
// find where we need to open the next file and total number of frames
m_last_frame_in_file = cumsum(m_last_frame_in_file);
if(m_last_frame_in_file.empty()){
m_total_frames = 0;
}else{
m_total_frames = m_last_frame_in_file.back();
}
}
} // namespace aare

76
src/RawSubFile.test.cpp Normal file
View File

@@ -0,0 +1,76 @@
#include "aare/RawSubFile.hpp"
#include "aare/File.hpp"
#include "aare/NDArray.hpp"
#include <catch2/catch_test_macros.hpp>
#include "test_config.hpp"
using namespace aare;
TEST_CASE("Read frames directly from a RawSubFile", "[.files]"){
auto fpath_raw = test_data_path() / "raw/jungfrau" / "jungfrau_single_d0_f0_0.raw";
REQUIRE(std::filesystem::exists(fpath_raw));
RawSubFile f(fpath_raw, DetectorType::Jungfrau, 512, 1024, 16);
REQUIRE(f.rows() == 512);
REQUIRE(f.cols() == 1024);
REQUIRE(f.pixels_per_frame() == 512 * 1024);
REQUIRE(f.bytes_per_frame() == 512 * 1024 * 2);
REQUIRE(f.bytes_per_pixel() == 2);
auto fpath_npy = test_data_path() / "raw/jungfrau" / "jungfrau_single_0.npy";
REQUIRE(std::filesystem::exists(fpath_npy));
//Numpy file with the same data to use as reference
File npy(fpath_npy, "r");
CHECK(f.frames_in_file() == 10);
CHECK(npy.total_frames() == 10);
DetectorHeader header{};
NDArray<uint16_t, 2> image({static_cast<ssize_t>(f.rows()), static_cast<ssize_t>(f.cols())});
for (size_t i = 0; i < 10; ++i) {
CHECK(f.tell() == i);
f.read_into(image.buffer(), &header);
auto npy_frame = npy.read_frame();
CHECK((image.view() == npy_frame.view<uint16_t>()));
}
}
TEST_CASE("Read frames directly from a RawSubFile starting at the second file", "[.files]"){
// we know this file has 10 frames with frame numbers 1 to 10
// f0 1,2,3
// f1 4,5,6 <-- starting here
// f2 7,8,9
// f3 10
auto fpath_raw = test_data_path() / "raw/jungfrau" / "jungfrau_single_d0_f1_0.raw";
REQUIRE(std::filesystem::exists(fpath_raw));
RawSubFile f(fpath_raw, DetectorType::Jungfrau, 512, 1024, 16);
auto fpath_npy = test_data_path() / "raw/jungfrau" / "jungfrau_single_0.npy";
REQUIRE(std::filesystem::exists(fpath_npy));
//Numpy file with the same data to use as reference
File npy(fpath_npy, "r");
npy.seek(3);
CHECK(f.frames_in_file() == 7);
CHECK(npy.total_frames() == 10);
DetectorHeader header{};
NDArray<uint16_t, 2> image({static_cast<ssize_t>(f.rows()), static_cast<ssize_t>(f.cols())});
for (size_t i = 0; i < 7; ++i) {
CHECK(f.tell() == i);
f.read_into(image.buffer(), &header);
// frame numbers start at 1 frame index at 0
// adding 3 + 1 to verify the frame number
CHECK(header.frameNumber == i + 4);
auto npy_frame = npy.read_frame();
CHECK((image.view() == npy_frame.view<uint16_t>()));
}
}

195
src/algorithm.test.cpp Normal file
View File

@@ -0,0 +1,195 @@
#include <aare/algorithm.hpp>
#include <catch2/catch_test_macros.hpp>
TEST_CASE("Find the closed index in a 1D array", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::nearest_index(arr, 2.3) == 2);
REQUIRE(aare::nearest_index(arr, 2.6) == 3);
REQUIRE(aare::nearest_index(arr, 45.0) == 4);
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
REQUIRE(aare::nearest_index(arr, -1.0) == 0);
}
TEST_CASE("Passing integers to nearest_index works", "[algorithm]") {
aare::NDArray<int, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::nearest_index(arr, 2) == 2);
REQUIRE(aare::nearest_index(arr, 3) == 3);
REQUIRE(aare::nearest_index(arr, 45) == 4);
REQUIRE(aare::nearest_index(arr, 0) == 0);
REQUIRE(aare::nearest_index(arr, -1) == 0);
}
TEST_CASE("nearest_index works with std::vector", "[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(vec, 2.123) == 2);
REQUIRE(aare::nearest_index(vec, 2.66) == 3);
REQUIRE(aare::nearest_index(vec, 4555555.0) == 4);
REQUIRE(aare::nearest_index(vec, 0.0) == 0);
REQUIRE(aare::nearest_index(vec, -10.0) == 0);
}
TEST_CASE("nearest index works with std::array", "[algorithm]") {
std::array<double, 5> arr = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(arr, 2.123) == 2);
REQUIRE(aare::nearest_index(arr, 2.501) == 3);
REQUIRE(aare::nearest_index(arr, 4555555.0) == 4);
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
REQUIRE(aare::nearest_index(arr, -10.0) == 0);
}
TEST_CASE("nearest index when there is no different uses the first element",
"[algorithm]") {
std::vector<int> vec = {5, 5, 5, 5, 5};
REQUIRE(aare::nearest_index(vec, 5) == 0);
}
TEST_CASE("nearest index when there is no different uses the first element "
"also when all smaller",
"[algorithm]") {
std::vector<int> vec = {5, 5, 5, 5, 5};
REQUIRE(aare::nearest_index(vec, 10) == 0);
}
TEST_CASE("last smaller", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, -10.0) == 0);
REQUIRE(aare::last_smaller(arr, 0.0) == 0);
REQUIRE(aare::last_smaller(arr, 2.3) == 2);
REQUIRE(aare::last_smaller(arr, 253.) == 4);
}
TEST_CASE("returns last bin strictly smaller", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, 2.0) == 1);
}
TEST_CASE("last_smaller with all elements smaller returns last element",
"[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, 50.) == 4);
}
TEST_CASE("last_smaller with all elements bigger returns first element",
"[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, -50.) == 0);
}
TEST_CASE("last smaller with all elements equal returns the first element",
"[algorithm]") {
std::vector<int> vec = {5, 5, 5, 5, 5, 5, 5};
REQUIRE(aare::last_smaller(vec, 5) == 0);
}
TEST_CASE("first_lager with vector", "[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, 2.5) == 3);
}
TEST_CASE("first_lager with all elements smaller returns last element",
"[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, 50.) == 4);
}
TEST_CASE("first_lager with all elements bigger returns first element",
"[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, -50.) == 0);
}
TEST_CASE("first_lager with all elements the same as the check returns last",
"[algorithm]") {
std::vector<int> vec = {14, 14, 14, 14, 14};
REQUIRE(aare::first_larger(vec, 14) == 4);
}
TEST_CASE("first larger with the same element", "[algorithm]") {
std::vector<int> vec = {7, 8, 9, 10, 11};
REQUIRE(aare::first_larger(vec, 9) == 3);
}
TEST_CASE("cumsum works", "[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == vec.size());
REQUIRE(result[0] == 0);
REQUIRE(result[1] == 1);
REQUIRE(result[2] == 3);
REQUIRE(result[3] == 6);
REQUIRE(result[4] == 10);
}
TEST_CASE("cumsum works with empty vector", "[algorithm]") {
std::vector<double> vec = {};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == 0);
}
TEST_CASE("cumsum works with negative numbers", "[algorithm]") {
std::vector<double> vec = {0, -1, -2, -3, -4};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == vec.size());
REQUIRE(result[0] == 0);
REQUIRE(result[1] == -1);
REQUIRE(result[2] == -3);
REQUIRE(result[3] == -6);
REQUIRE(result[4] == -10);
}
TEST_CASE("cumsum on an empty vector", "[algorithm]") {
std::vector<double> vec = {};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == 0);
}
TEST_CASE("All equal on an empty vector is false", "[algorithm]") {
std::vector<int> vec = {};
REQUIRE(aare::all_equal(vec) == false);
}
TEST_CASE("All equal on a vector with 1 element is true", "[algorithm]") {
std::vector<int> vec = {1};
REQUIRE(aare::all_equal(vec) == true);
}
TEST_CASE("All equal on a vector with 2 elements is true", "[algorithm]") {
std::vector<int> vec = {1, 1};
REQUIRE(aare::all_equal(vec) == true);
}
TEST_CASE("All equal on a vector with two different elements is false", "[algorithm]") {
std::vector<int> vec = {1, 2};
REQUIRE(aare::all_equal(vec) == false);
}
TEST_CASE("Last element is different", "[algorithm]") {
std::vector<int> vec = {1, 1, 1, 1, 2};
REQUIRE(aare::all_equal(vec) == false);
}

102
src/decode.cpp Normal file
View File

@@ -0,0 +1,102 @@
#include "aare/decode.hpp"
#include <cmath>
namespace aare {
uint16_t adc_sar_05_decode64to16(uint64_t input){
//we want bits 29,19,28,18,31,21,27,20,24,23,25,22 and then pad to 16
uint16_t output = 0;
output |= ((input >> 22) & 1) << 11;
output |= ((input >> 25) & 1) << 10;
output |= ((input >> 23) & 1) << 9;
output |= ((input >> 24) & 1) << 8;
output |= ((input >> 20) & 1) << 7;
output |= ((input >> 27) & 1) << 6;
output |= ((input >> 21) & 1) << 5;
output |= ((input >> 31) & 1) << 4;
output |= ((input >> 18) & 1) << 3;
output |= ((input >> 28) & 1) << 2;
output |= ((input >> 19) & 1) << 1;
output |= ((input >> 29) & 1) << 0;
return output;
}
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
for(ssize_t i = 0; i < input.shape(0); i++){
for(ssize_t j = 0; j < input.shape(1); j++){
output(i,j) = adc_sar_05_decode64to16(input(i,j));
}
}
}
uint16_t adc_sar_04_decode64to16(uint64_t input){
// bit_map = array([15,17,19,21,23,4,6,8,10,12,14,16] LSB->MSB
uint16_t output = 0;
output |= ((input >> 16) & 1) << 11;
output |= ((input >> 14) & 1) << 10;
output |= ((input >> 12) & 1) << 9;
output |= ((input >> 10) & 1) << 8;
output |= ((input >> 8) & 1) << 7;
output |= ((input >> 6) & 1) << 6;
output |= ((input >> 4) & 1) << 5;
output |= ((input >> 23) & 1) << 4;
output |= ((input >> 21) & 1) << 3;
output |= ((input >> 19) & 1) << 2;
output |= ((input >> 17) & 1) << 1;
output |= ((input >> 15) & 1) << 0;
return output;
}
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
for(ssize_t i = 0; i < input.shape(0); i++){
for(ssize_t j = 0; j < input.shape(1); j++){
output(i,j) = adc_sar_04_decode64to16(input(i,j));
}
}
}
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights) {
if(weights.size() > 16){
throw std::invalid_argument("weights size must be less than or equal to 16");
}
double result = 0.0;
for (ssize_t i = 0; i < weights.size(); ++i) {
result += ((input >> i) & 1) * std::pow(weights[i], i);
}
return result;
}
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output, const NDView<double,1> weights) {
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
//Calculate weights to avoid repeatedly calling std::pow
std::vector<double> weights_powers(weights.size());
for (ssize_t i = 0; i < weights.size(); ++i) {
weights_powers[i] = std::pow(weights[i], i);
}
// Apply custom weights to each element in the input array
for (ssize_t i = 0; i < input.shape(0); i++) {
double result = 0.0;
for (size_t bit_index = 0; bit_index < weights_powers.size(); ++bit_index) {
result += ((input(i) >> bit_index) & 1) * weights_powers[bit_index];
}
output(i) = result;
}
}
} // namespace aare

80
src/decode.test.cpp Normal file
View File

@@ -0,0 +1,80 @@
#include "aare/decode.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
#include "aare/NDArray.hpp"
using Catch::Matchers::WithinAbs;
#include <vector>
TEST_CASE("test_adc_sar_05_decode64to16"){
uint64_t input = 0;
uint16_t output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 0);
// bit 29 on th input is bit 0 on the output
input = 1UL << 29;
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 1);
// test all bits by iteratting through the bitlist
std::vector<int> bitlist = {29, 19, 28, 18, 31, 21, 27, 20, 24, 23, 25, 22};
for (size_t i = 0; i < bitlist.size(); i++) {
input = 1UL << bitlist[i];
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == (1 << i));
}
// test a few "random" values
input = 0;
input |= (1UL << 29);
input |= (1UL << 19);
input |= (1UL << 28);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 7UL);
input = 0;
input |= (1UL << 18);
input |= (1UL << 27);
input |= (1UL << 25);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 1096UL);
input = 0;
input |= (1UL << 25);
input |= (1UL << 22);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 3072UL);
}
TEST_CASE("test_apply_custom_weights") {
uint16_t input = 1;
aare::NDArray<double, 1> weights_data({3}, 0.0);
weights_data(0) = 1.7;
weights_data(1) = 2.1;
weights_data(2) = 1.8;
auto weights = weights_data.view();
double output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(1.0, 0.001));
input = 1 << 1;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(2.1, 0.001));
input = 1 << 2;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(3.24, 0.001));
input = 0b111;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(6.34, 0.001));
}

71
src/geo_helpers.cpp Normal file
View File

@@ -0,0 +1,71 @@
#include "aare/geo_helpers.hpp"
#include "fmt/core.h"
namespace aare{
DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi) {
#ifdef AARE_VERBOSE
fmt::println("update_geometry_with_roi() called with ROI: {} {} {} {}",
roi.xmin, roi.xmax, roi.ymin, roi.ymax);
fmt::println("Geometry: {} {} {} {} {} {}",
geo.modules_x, geo.modules_y, geo.pixels_x, geo.pixels_y, geo.module_gap_row, geo.module_gap_col);
#endif
int pos_y = 0;
int pos_y_increment = 0;
for (int row = 0; row < geo.modules_y; row++) {
int pos_x = 0;
for (int col = 0; col < geo.modules_x; col++) {
auto &m = geo.module_pixel_0[row * geo.modules_x + col];
auto original_height = m.height;
auto original_width = m.width;
// module is to the left of the roi
if (m.origin_x + m.width < roi.xmin) {
m.width = 0;
// roi is in module
} else {
// here we only arrive when the roi is in or to the left of
// the module
if (roi.xmin > m.origin_x) {
m.width -= roi.xmin - m.origin_x;
}
if (roi.xmax < m.origin_x + original_width) {
m.width -= m.origin_x + original_width - roi.xmax;
}
m.origin_x = pos_x;
pos_x += m.width;
}
if (m.origin_y + m.height < roi.ymin) {
m.height = 0;
} else {
if ((roi.ymin > m.origin_y) && (roi.ymin < m.origin_y + m.height)) {
m.height -= roi.ymin - m.origin_y;
}
if (roi.ymax < m.origin_y + original_height) {
m.height -= m.origin_y + original_height - roi.ymax;
}
m.origin_y = pos_y;
pos_y_increment = m.height;
}
#ifdef AARE_VERBOSE
fmt::println("Module {} {} {} {}", m.origin_x, m.origin_y, m.width, m.height);
#endif
}
// increment pos_y
pos_y += pos_y_increment;
}
// m_rows = roi.height();
// m_cols = roi.width();
geo.pixels_x = roi.width();
geo.pixels_y = roi.height();
return geo;
}
} // namespace aare

230
src/geo_helpers.test.cpp Normal file
View File

@@ -0,0 +1,230 @@
#include "aare/File.hpp"
#include "aare/RawMasterFile.hpp" //needed for ROI
#include "aare/RawFile.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
#include "aare/geo_helpers.hpp"
#include "test_config.hpp"
TEST_CASE("Simple ROIs on one module"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 1024;
geo.pixels_y = 512;
geo.modules_x = 1;
geo.modules_y = 1;
geo.module_pixel_0.push_back(mod);
SECTION("ROI is the whole module"){
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 1024;
roi.ymin = 0;
roi.ymax = 512;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 1024);
REQUIRE(updated_geo.pixels_y == 512);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 512);
REQUIRE(updated_geo.module_pixel_0[0].width == 1024);
}
SECTION("ROI is the top left corner of the module"){
aare::ROI roi;
roi.xmin = 100;
roi.xmax = 200;
roi.ymin = 150;
roi.ymax = 200;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 100);
REQUIRE(updated_geo.pixels_y == 50);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 50);
REQUIRE(updated_geo.module_pixel_0[0].width == 100);
}
SECTION("ROI is a small square"){
aare::ROI roi;
roi.xmin = 1000;
roi.xmax = 1010;
roi.ymin = 500;
roi.ymax = 510;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 10);
REQUIRE(updated_geo.pixels_y == 10);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 10);
REQUIRE(updated_geo.module_pixel_0[0].width == 10);
}
SECTION("ROI is a few columns"){
aare::ROI roi;
roi.xmin = 750;
roi.xmax = 800;
roi.ymin = 0;
roi.ymax = 512;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 50);
REQUIRE(updated_geo.pixels_y == 512);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 512);
REQUIRE(updated_geo.module_pixel_0[0].width == 50);
}
}
TEST_CASE("Two modules side by side"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 2048;
geo.pixels_y = 512;
geo.modules_x = 2;
geo.modules_y = 1;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
SECTION("ROI is the whole image"){
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 2048;
roi.ymin = 0;
roi.ymax = 512;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 2048);
REQUIRE(updated_geo.pixels_y == 512);
REQUIRE(updated_geo.modules_x == 2);
REQUIRE(updated_geo.modules_y == 1);
}
SECTION("rectangle on both modules"){
aare::ROI roi;
roi.xmin = 800;
roi.xmax = 1300;
roi.ymin = 200;
roi.ymax = 499;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 500);
REQUIRE(updated_geo.pixels_y == 299);
REQUIRE(updated_geo.modules_x == 2);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 299);
REQUIRE(updated_geo.module_pixel_0[0].width == 224);
REQUIRE(updated_geo.module_pixel_0[1].height == 299);
REQUIRE(updated_geo.module_pixel_0[1].width == 276);
}
}
TEST_CASE("Three modules side by side"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ROI roi;
roi.xmin = 700;
roi.xmax = 2500;
roi.ymin = 0;
roi.ymax = 123;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 3072;
geo.pixels_y = 512;
geo.modules_x = 3;
geo.modules_y = 1;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 2048;
geo.module_pixel_0.push_back(mod);
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 1800);
REQUIRE(updated_geo.pixels_y == 123);
REQUIRE(updated_geo.modules_x == 3);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 123);
REQUIRE(updated_geo.module_pixel_0[0].width == 324);
REQUIRE(updated_geo.module_pixel_0[1].height == 123);
REQUIRE(updated_geo.module_pixel_0[1].width == 1024);
REQUIRE(updated_geo.module_pixel_0[2].height == 123);
REQUIRE(updated_geo.module_pixel_0[2].width == 452);
}
TEST_CASE("Four modules as a square"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ROI roi;
roi.xmin = 500;
roi.xmax = 2000;
roi.ymin = 500;
roi.ymax = 600;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 2048;
geo.pixels_y = 1024;
geo.modules_x = 2;
geo.modules_y = 2;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 0;
mod.origin_y = 512;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 1500);
REQUIRE(updated_geo.pixels_y == 100);
REQUIRE(updated_geo.modules_x == 2);
REQUIRE(updated_geo.modules_y == 2);
REQUIRE(updated_geo.module_pixel_0[0].height == 12);
REQUIRE(updated_geo.module_pixel_0[0].width == 524);
REQUIRE(updated_geo.module_pixel_0[1].height == 12);
REQUIRE(updated_geo.module_pixel_0[1].width == 976);
REQUIRE(updated_geo.module_pixel_0[2].height == 88);
REQUIRE(updated_geo.module_pixel_0[2].width == 524);
REQUIRE(updated_geo.module_pixel_0[3].height == 88);
REQUIRE(updated_geo.module_pixel_0[3].width == 976);
}

View File

@@ -0,0 +1,18 @@
#include "aare/utils/ifstream_helpers.hpp"
namespace aare {
std::string ifstream_error_msg(std::ifstream &ifs) {
std::ios_base::iostate state = ifs.rdstate();
if (state & std::ios_base::eofbit) {
return " End of file reached";
} else if (state & std::ios_base::badbit) {
return " Bad file stream";
} else if (state & std::ios_base::failbit) {
return " File read failed";
}else{
return " Unknown/no error";
}
}
} // namespace aare

30
src/utils/task.cpp Normal file
View File

@@ -0,0 +1,30 @@
#include "aare/utils/task.hpp"
namespace aare {
std::vector<std::pair<int, int>> split_task(int first, int last,
int n_threads) {
std::vector<std::pair<int, int>> vec;
vec.reserve(n_threads);
int n_frames = last - first;
if (n_threads >= n_frames) {
for (int i = 0; i != n_frames; ++i) {
vec.push_back({i, i + 1});
}
return vec;
}
int step = (n_frames) / n_threads;
for (int i = 0; i != n_threads; ++i) {
int start = step * i;
int stop = step * (i + 1);
if (i == n_threads - 1)
stop = last;
vec.push_back({start, stop});
}
return vec;
}
} // namespace aare

32
src/utils/task.test.cpp Normal file
View File

@@ -0,0 +1,32 @@
#include "aare/utils/task.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
TEST_CASE("Split a range into multiple tasks"){
auto tasks = aare::split_task(0, 10, 3);
REQUIRE(tasks.size() == 3);
REQUIRE(tasks[0].first == 0);
REQUIRE(tasks[0].second == 3);
REQUIRE(tasks[1].first == 3);
REQUIRE(tasks[1].second == 6);
REQUIRE(tasks[2].first == 6);
REQUIRE(tasks[2].second == 10);
tasks = aare::split_task(0, 10, 1);
REQUIRE(tasks.size() == 1);
REQUIRE(tasks[0].first == 0);
REQUIRE(tasks[0].second == 10);
tasks = aare::split_task(0, 10, 10);
REQUIRE(tasks.size() == 10);
for (int i = 0; i < 10; i++){
REQUIRE(tasks[i].first == i);
REQUIRE(tasks[i].second == i+1);
}
}