mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2026-02-19 22:08:41 +01:00
merge from latest developer
This commit is contained in:
@@ -1,12 +1,13 @@
|
||||
|
||||
find_package (Python 3.10 COMPONENTS Interpreter Development REQUIRED)
|
||||
find_package (Python 3.10 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
set(PYBIND11_FINDPYTHON ON) # Needed for RH8
|
||||
|
||||
# Download or find pybind11 depending on configuration
|
||||
if(AARE_FETCH_PYBIND11)
|
||||
FetchContent_Declare(
|
||||
pybind11
|
||||
GIT_REPOSITORY https://github.com/pybind/pybind11
|
||||
GIT_TAG v2.13.0
|
||||
GIT_TAG v2.13.6
|
||||
)
|
||||
FetchContent_MakeAvailable(pybind11)
|
||||
else()
|
||||
@@ -28,6 +29,10 @@ target_link_libraries(_aare PRIVATE aare_core aare_compiler_flags)
|
||||
set( PYTHON_FILES
|
||||
aare/__init__.py
|
||||
aare/CtbRawFile.py
|
||||
aare/ClusterFinder.py
|
||||
aare/ClusterVector.py
|
||||
|
||||
aare/func.py
|
||||
aare/RawFile.py
|
||||
aare/transform.py
|
||||
aare/ScanParameters.py
|
||||
@@ -35,22 +40,6 @@ set( PYTHON_FILES
|
||||
)
|
||||
|
||||
|
||||
#HDF5
|
||||
if (AARE_HDF5)
|
||||
find_package(HDF5 1.10 COMPONENTS CXX REQUIRED)
|
||||
add_definitions(
|
||||
${HDF5_DEFINITIONS}
|
||||
)
|
||||
list(APPEND PYTHON_FILES
|
||||
aare/Hdf5File.py
|
||||
)
|
||||
if(HDF5_FOUND)
|
||||
add_definitions(-DHDF5_FOUND)
|
||||
target_link_libraries(_aare PUBLIC ${HDF5_LIBRARIES})
|
||||
target_include_directories(_aare PUBLIC ${HDF5_INCLUDE_DIRS})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Copy the python files to the build directory
|
||||
foreach(FILE ${PYTHON_FILES})
|
||||
configure_file(${FILE} ${CMAKE_BINARY_DIR}/${FILE} )
|
||||
@@ -60,17 +49,30 @@ set_target_properties(_aare PROPERTIES
|
||||
LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/aare
|
||||
)
|
||||
|
||||
set(PYTHON_EXAMPLES
|
||||
examples/play.py
|
||||
examples/fits.py
|
||||
)
|
||||
|
||||
|
||||
# Copy the examples/scripts to the build directory
|
||||
configure_file(examples/play.py ${CMAKE_BINARY_DIR}/play.py)
|
||||
# Copy the python examples to the build directory
|
||||
foreach(FILE ${PYTHON_EXAMPLES})
|
||||
configure_file(${FILE} ${CMAKE_BINARY_DIR}/${FILE} )
|
||||
message(STATUS "Copying ${FILE} to ${CMAKE_BINARY_DIR}/${FILE}")
|
||||
endforeach(FILE ${PYTHON_EXAMPLES})
|
||||
|
||||
|
||||
if(AARE_INSTALL_PYTHONEXT)
|
||||
install(TARGETS _aare
|
||||
install(
|
||||
TARGETS _aare
|
||||
EXPORT "${TARGETS_EXPORT_NAME}"
|
||||
LIBRARY DESTINATION aare
|
||||
COMPONENT python
|
||||
)
|
||||
|
||||
install(FILES ${PYTHON_FILES} DESTINATION aare)
|
||||
install(
|
||||
FILES ${PYTHON_FILES}
|
||||
DESTINATION aare
|
||||
COMPONENT python
|
||||
)
|
||||
endif()
|
||||
67
python/aare/ClusterFinder.py
Normal file
67
python/aare/ClusterFinder.py
Normal file
@@ -0,0 +1,67 @@
|
||||
|
||||
from ._aare import ClusterFinder_Cluster3x3i, ClusterFinder_Cluster2x2i, ClusterFinderMT_Cluster3x3i, ClusterFinderMT_Cluster2x2i, ClusterCollector_Cluster3x3i, ClusterCollector_Cluster2x2i
|
||||
|
||||
|
||||
from ._aare import ClusterFileSink_Cluster3x3i, ClusterFileSink_Cluster2x2i
|
||||
import numpy as np
|
||||
|
||||
def ClusterFinder(image_size, cluster_size, n_sigma=5, dtype = np.int32, capacity = 1024):
|
||||
"""
|
||||
Factory function to create a ClusterFinder object. Provides a cleaner syntax for
|
||||
the templated ClusterFinder in C++.
|
||||
"""
|
||||
if dtype == np.int32 and cluster_size == (3,3):
|
||||
return ClusterFinder_Cluster3x3i(image_size, n_sigma = n_sigma, capacity=capacity)
|
||||
elif dtype == np.int32 and cluster_size == (2,2):
|
||||
return ClusterFinder_Cluster2x2i(image_size, n_sigma = n_sigma, capacity=capacity)
|
||||
else:
|
||||
#TODO! add the other formats
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
||||
|
||||
|
||||
def ClusterFinderMT(image_size, cluster_size = (3,3), dtype=np.int32, n_sigma=5, capacity = 1024, n_threads = 3):
|
||||
"""
|
||||
Factory function to create a ClusterFinderMT object. Provides a cleaner syntax for
|
||||
the templated ClusterFinderMT in C++.
|
||||
"""
|
||||
|
||||
if dtype == np.int32 and cluster_size == (3,3):
|
||||
return ClusterFinderMT_Cluster3x3i(image_size, n_sigma = n_sigma,
|
||||
capacity = capacity, n_threads = n_threads)
|
||||
elif dtype == np.int32 and cluster_size == (2,2):
|
||||
return ClusterFinderMT_Cluster2x2i(image_size, n_sigma = n_sigma,
|
||||
capacity = capacity, n_threads = n_threads)
|
||||
else:
|
||||
#TODO! add the other formats
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
||||
|
||||
|
||||
def ClusterCollector(clusterfindermt, cluster_size = (3,3), dtype=np.int32):
|
||||
"""
|
||||
Factory function to create a ClusterCollector object. Provides a cleaner syntax for
|
||||
the templated ClusterCollector in C++.
|
||||
"""
|
||||
|
||||
if dtype == np.int32 and cluster_size == (3,3):
|
||||
return ClusterCollector_Cluster3x3i(clusterfindermt)
|
||||
elif dtype == np.int32 and cluster_size == (2,2):
|
||||
return ClusterCollector_Cluster2x2i(clusterfindermt)
|
||||
|
||||
else:
|
||||
#TODO! add the other formats
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
||||
|
||||
def ClusterFileSink(clusterfindermt, cluster_file, dtype=np.int32):
|
||||
"""
|
||||
Factory function to create a ClusterCollector object. Provides a cleaner syntax for
|
||||
the templated ClusterCollector in C++.
|
||||
"""
|
||||
|
||||
if dtype == np.int32 and clusterfindermt.cluster_size == (3,3):
|
||||
return ClusterFileSink_Cluster3x3i(clusterfindermt, cluster_file)
|
||||
elif dtype == np.int32 and clusterfindermt.cluster_size == (2,2):
|
||||
return ClusterFileSink_Cluster2x2i(clusterfindermt, cluster_file)
|
||||
|
||||
else:
|
||||
#TODO! add the other formats
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
||||
11
python/aare/ClusterVector.py
Normal file
11
python/aare/ClusterVector.py
Normal file
@@ -0,0 +1,11 @@
|
||||
|
||||
|
||||
from ._aare import ClusterVector_Cluster3x3i
|
||||
import numpy as np
|
||||
|
||||
def ClusterVector(cluster_size, dtype = np.int32):
|
||||
|
||||
if dtype == np.int32 and cluster_size == (3,3):
|
||||
return ClusterVector_Cluster3x3i()
|
||||
else:
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
||||
@@ -2,15 +2,33 @@
|
||||
from . import _aare
|
||||
|
||||
|
||||
from ._aare import File, RawMasterFile, RawSubFile, Hdf5MasterFile
|
||||
from ._aare import Pedestal, ClusterFinder, VarClusterFinder
|
||||
from ._aare import File, RawMasterFile, RawSubFile, Hdf5MasterFile, JungfrauDataFile
|
||||
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder_Cluster3x3i, VarClusterFinder
|
||||
from ._aare import DetectorType
|
||||
from ._aare import ClusterFile
|
||||
from ._aare import ClusterFile_Cluster3x3i as ClusterFile
|
||||
from ._aare import hitmap
|
||||
from ._aare import ROI
|
||||
|
||||
# from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
|
||||
|
||||
from .ClusterFinder import ClusterFinder, ClusterCollector, ClusterFinderMT, ClusterFileSink
|
||||
from .ClusterVector import ClusterVector
|
||||
|
||||
|
||||
from ._aare import fit_gaus, fit_pol1, fit_scurve, fit_scurve2
|
||||
from ._aare import Interpolator
|
||||
from ._aare import calculate_eta2
|
||||
|
||||
|
||||
from ._aare import apply_custom_weights
|
||||
|
||||
from .CtbRawFile import CtbRawFile
|
||||
from .RawFile import RawFile
|
||||
from .Hdf5File import Hdf5File
|
||||
from .ScanParameters import ScanParameters
|
||||
|
||||
from .utils import random_pixels, random_pixel
|
||||
from .utils import random_pixels, random_pixel, flat_list, add_colorbar
|
||||
|
||||
|
||||
#make functions available in the top level API
|
||||
from .func import *
|
||||
|
||||
1
python/aare/func.py
Normal file
1
python/aare/func.py
Normal file
@@ -0,0 +1 @@
|
||||
from ._aare import gaus, pol1, scurve, scurve2
|
||||
@@ -2,6 +2,14 @@ import numpy as np
|
||||
from . import _aare
|
||||
|
||||
|
||||
class AdcSar04Transform64to16:
|
||||
def __call__(self, data):
|
||||
return _aare.adc_sar_04_decode64to16(data)
|
||||
|
||||
class AdcSar05Transform64to16:
|
||||
def __call__(self, data):
|
||||
return _aare.adc_sar_05_decode64to16(data)
|
||||
|
||||
class Moench05Transform:
|
||||
#Could be moved to C++ without changing the interface
|
||||
def __init__(self):
|
||||
@@ -45,4 +53,6 @@ class Matterhorn02Transform:
|
||||
moench05 = Moench05Transform()
|
||||
moench05_1g = Moench05Transform1g()
|
||||
moench05_old = Moench05TransformOld()
|
||||
matterhorn02 = Matterhorn02Transform()
|
||||
matterhorn02 = Matterhorn02Transform()
|
||||
adc_sar_04_64to16 = AdcSar04Transform64to16()
|
||||
adc_sar_05_64to16 = AdcSar05Transform64to16()
|
||||
@@ -1,4 +1,6 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
||||
|
||||
def random_pixels(n_pixels, xmin=0, xmax=512, ymin=0, ymax=1024):
|
||||
"""Return a list of random pixels.
|
||||
@@ -20,4 +22,15 @@ def random_pixel(xmin=0, xmax=512, ymin=0, ymax=1024):
|
||||
Returns:
|
||||
tuple: (row, col)
|
||||
"""
|
||||
return random_pixels(1, xmin, xmax, ymin, ymax)[0]
|
||||
return random_pixels(1, xmin, xmax, ymin, ymax)[0]
|
||||
|
||||
def flat_list(xss):
|
||||
"""Flatten a list of lists."""
|
||||
return [x for xs in xss for x in xs]
|
||||
|
||||
def add_colorbar(ax, im, size="5%", pad=0.05):
|
||||
"""Add a colorbar with the same height as the image."""
|
||||
divider = make_axes_locatable(ax)
|
||||
cax = divider.append_axes("right", size=size, pad=pad)
|
||||
plt.colorbar(im, cax=cax)
|
||||
return ax, im, cax
|
||||
79
python/examples/fits.py
Normal file
79
python/examples/fits.py
Normal file
@@ -0,0 +1,79 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from aare import fit_gaus, fit_pol1
|
||||
from aare import gaus, pol1
|
||||
|
||||
textpm = f"±" #
|
||||
textmu = f"μ" #
|
||||
textsigma = f"σ" #
|
||||
|
||||
|
||||
|
||||
# ================================= Gauss fit =================================
|
||||
# Parameters
|
||||
mu = np.random.uniform(1, 100) # Mean of Gaussian
|
||||
sigma = np.random.uniform(4, 20) # Standard deviation
|
||||
num_points = 10000 # Number of points for smooth distribution
|
||||
noise_sigma = 100
|
||||
|
||||
# Generate Gaussian distribution
|
||||
data = np.random.normal(mu, sigma, num_points)
|
||||
|
||||
# Generate errors for each point
|
||||
errors = np.abs(np.random.normal(0, sigma, num_points)) # Errors with mean 0, std 0.5
|
||||
|
||||
# Create subplot
|
||||
fig0, ax0 = plt.subplots(1, 1, num=0, figsize=(12, 8))
|
||||
|
||||
x = np.histogram(data, bins=30)[1][:-1] + 0.05
|
||||
y = np.histogram(data, bins=30)[0]
|
||||
yerr = errors[:30]
|
||||
|
||||
|
||||
# Add the errors as error bars in the step plot
|
||||
ax0.errorbar(x, y, yerr=yerr, fmt=". ", capsize=5)
|
||||
ax0.grid()
|
||||
|
||||
par, err = fit_gaus(x, y, yerr)
|
||||
print(par, err)
|
||||
|
||||
x = np.linspace(x[0], x[-1], 1000)
|
||||
ax0.plot(x, gaus(x, par), marker="")
|
||||
ax0.set(xlabel="x", ylabel="Counts", title=f"A0 = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n"
|
||||
f"{textmu} = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n"
|
||||
f"{textsigma} = {par[2]:0.2f}{textpm}{err[2]:0.2f}\n"
|
||||
f"(init: {textmu}: {mu:0.2f}, {textsigma}: {sigma:0.2f})")
|
||||
fig0.tight_layout()
|
||||
|
||||
|
||||
|
||||
# ================================= pol1 fit =================================
|
||||
# Parameters
|
||||
n_points = 40
|
||||
|
||||
# Generate random slope and intercept (origin)
|
||||
slope = np.random.uniform(-10, 10) # Random slope between 0.5 and 2.0
|
||||
intercept = np.random.uniform(-10, 10) # Random intercept between -10 and 10
|
||||
|
||||
# Generate random x values
|
||||
x_values = np.random.uniform(-10, 10, n_points)
|
||||
|
||||
# Calculate y values based on the linear function y = mx + b + error
|
||||
errors = np.abs(np.random.normal(0, np.random.uniform(1, 5), n_points))
|
||||
var_points = np.random.normal(0, np.random.uniform(0.1, 2), n_points)
|
||||
y_values = slope * x_values + intercept + var_points
|
||||
|
||||
fig1, ax1 = plt.subplots(1, 1, num=1, figsize=(12, 8))
|
||||
ax1.errorbar(x_values, y_values, yerr=errors, fmt=". ", capsize=5)
|
||||
par, err = fit_pol1(x_values, y_values, errors)
|
||||
|
||||
|
||||
x = np.linspace(np.min(x_values), np.max(x_values), 1000)
|
||||
ax1.plot(x, pol1(x, par), marker="")
|
||||
ax1.set(xlabel="x", ylabel="y", title=f"a = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n"
|
||||
f"b = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n"
|
||||
f"(init: {slope:0.2f}, {intercept:0.2f})")
|
||||
fig1.tight_layout()
|
||||
|
||||
plt.show()
|
||||
|
||||
@@ -1,15 +1,89 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
plt.ion()
|
||||
import sys
|
||||
sys.path.append('/home/l_msdetect/erik/aare/build')
|
||||
|
||||
|
||||
from aare import RawSubFile, DetectorType, RawFile
|
||||
|
||||
from pathlib import Path
|
||||
from aare import ClusterFile
|
||||
path = Path("/home/l_msdetect/erik/data/aare-test-data/raw/jungfrau/")
|
||||
f = RawSubFile(path/"jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16)
|
||||
|
||||
base = Path('~/data/aare_test_data/clusters').expanduser()
|
||||
|
||||
f = ClusterFile(base / 'beam_En700eV_-40deg_300V_10us_d0_f0_100.clust')
|
||||
# f = ClusterFile(base / 'single_frame_97_clustrers.clust')
|
||||
# f = RawFile(path/"jungfrau_single_master_0.json")
|
||||
|
||||
|
||||
for i in range(10):
|
||||
fn, cl = f.read_frame()
|
||||
print(fn, cl.size)
|
||||
# from aare._aare import ClusterVector_i, Interpolator
|
||||
|
||||
# import pickle
|
||||
# import numpy as np
|
||||
# import matplotlib.pyplot as plt
|
||||
# import boost_histogram as bh
|
||||
# import torch
|
||||
# import math
|
||||
# import time
|
||||
|
||||
|
||||
|
||||
# def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
|
||||
# """
|
||||
# Generate a 2D gaussian as position mx, my, with sigma=sigma.
|
||||
# The gaussian is placed on a 2x2 pixel matrix with resolution
|
||||
# res in one dimesion.
|
||||
# """
|
||||
# x = torch.linspace(0, pixel_size*grid_size, res)
|
||||
# x,y = torch.meshgrid(x,x, indexing="ij")
|
||||
# return 1 / (2*math.pi*sigma**2) * \
|
||||
# torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
|
||||
|
||||
# scale = 1000 #Scale factor when converting to integer
|
||||
# pixel_size = 25 #um
|
||||
# grid = 2
|
||||
# resolution = 100
|
||||
# sigma_um = 10
|
||||
# xa = np.linspace(0,grid*pixel_size,resolution)
|
||||
# ticks = [0, 25, 50]
|
||||
|
||||
# hit = np.array((20,20))
|
||||
# etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
|
||||
|
||||
# local_resolution = 99
|
||||
# grid_size = 3
|
||||
# xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
|
||||
# t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
|
||||
# pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
|
||||
# pixels = pixels.numpy()
|
||||
# pixels = (pixels*scale).astype(np.int32)
|
||||
# v = ClusterVector_i(3,3)
|
||||
# v.push_back(1,1, pixels)
|
||||
|
||||
# with open(etahist_fname, "rb") as f:
|
||||
# hist = pickle.load(f)
|
||||
# eta = hist.view().copy()
|
||||
# etabinsx = np.array(hist.axes.edges.T[0].flat)
|
||||
# etabinsy = np.array(hist.axes.edges.T[1].flat)
|
||||
# ebins = np.array(hist.axes.edges.T[2].flat)
|
||||
# p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
|
||||
|
||||
|
||||
|
||||
|
||||
# #Generate the hit
|
||||
|
||||
|
||||
|
||||
|
||||
# tmp = p.interpolate(v)
|
||||
# print(f'tmp:{tmp}')
|
||||
# pos = np.array((tmp['x'], tmp['y']))*25
|
||||
|
||||
|
||||
# print(pixels)
|
||||
# fig, ax = plt.subplots(figsize = (7,7))
|
||||
# ax.pcolormesh(xaxis, xaxis, t)
|
||||
# ax.plot(*pos, 'o')
|
||||
# ax.set_xticks([0,25,50,75])
|
||||
# ax.set_yticks([0,25,50,75])
|
||||
# ax.set_xlim(0,75)
|
||||
# ax.set_ylim(0,75)
|
||||
# ax.grid()
|
||||
# print(f'{hit=}')
|
||||
# print(f'{pos=}')
|
||||
64
python/src/bind_Cluster.hpp
Normal file
64
python/src/bind_Cluster.hpp
Normal file
@@ -0,0 +1,64 @@
|
||||
#include "aare/Cluster.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <fmt/format.h>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
void define_Cluster(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("Cluster{}", typestr);
|
||||
|
||||
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>>(
|
||||
m, class_name.c_str(), py::buffer_protocol())
|
||||
|
||||
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
|
||||
py::buffer_info buf_info = data.request();
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType> cluster;
|
||||
cluster.x = x;
|
||||
cluster.y = y;
|
||||
auto r = data.template unchecked<1>(); // no bounds checks
|
||||
for (py::ssize_t i = 0; i < data.size(); ++i) {
|
||||
cluster.data[i] = r(i);
|
||||
}
|
||||
return cluster;
|
||||
}));
|
||||
|
||||
/*
|
||||
//TODO! Review if to keep or not
|
||||
.def_property(
|
||||
"data",
|
||||
[](ClusterType &c) -> py::array {
|
||||
return py::array(py::buffer_info(
|
||||
c.data, sizeof(Type),
|
||||
py::format_descriptor<Type>::format(), // Type
|
||||
// format
|
||||
1, // Number of dimensions
|
||||
{static_cast<ssize_t>(ClusterSizeX *
|
||||
ClusterSizeY)}, // Shape (flattened)
|
||||
{sizeof(Type)} // Stride (step size between elements)
|
||||
));
|
||||
},
|
||||
[](ClusterType &c, py::array_t<Type> arr) {
|
||||
py::buffer_info buf_info = arr.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
|
||||
c.data); // TODO dont iterate over centers!!!
|
||||
|
||||
});
|
||||
*/
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
46
python/src/bind_ClusterCollector.hpp
Normal file
46
python/src/bind_ClusterCollector.hpp
Normal file
@@ -0,0 +1,46 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterCollector(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterCollector_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterCollector<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *>())
|
||||
.def("stop", &ClusterCollector<ClusterType>::stop)
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterCollector<ClusterType> &self) {
|
||||
auto v = new std::vector<ClusterVector<ClusterType>>(
|
||||
self.steal_clusters());
|
||||
return v; // TODO change!!!
|
||||
},
|
||||
py::return_value_policy::take_ownership);
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
94
python/src/bind_ClusterFile.hpp
Normal file
94
python/src/bind_ClusterFile.hpp
Normal file
@@ -0,0 +1,94 @@
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
// Disable warnings for unused parameters, as we ignore some
|
||||
// in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFile(py::module &m,
|
||||
const std::string &typestr) {
|
||||
|
||||
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
||||
|
||||
auto class_name = fmt::format("ClusterFile_{}", typestr);
|
||||
|
||||
py::class_<ClusterFile<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<const std::filesystem::path &, size_t,
|
||||
const std::string &>(),
|
||||
py::arg(), py::arg("chunk_size") = 1000, py::arg("mode") = "r")
|
||||
.def(
|
||||
"read_clusters",
|
||||
[](ClusterFile<ClusterType> &self, size_t n_clusters) {
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.read_clusters(n_clusters));
|
||||
return v;
|
||||
},
|
||||
py::return_value_policy::take_ownership)
|
||||
.def("read_frame",
|
||||
[](ClusterFile<ClusterType> &self) {
|
||||
auto v = new ClusterVector<ClusterType>(self.read_frame());
|
||||
return v;
|
||||
})
|
||||
.def("set_roi", &ClusterFile<ClusterType>::set_roi)
|
||||
.def(
|
||||
"set_noise_map",
|
||||
[](ClusterFile<ClusterType> &self, py::array_t<int32_t> noise_map) {
|
||||
auto view = make_view_2d(noise_map);
|
||||
self.set_noise_map(view);
|
||||
})
|
||||
|
||||
.def("set_gain_map",
|
||||
[](ClusterFile<ClusterType> &self, py::array_t<double> gain_map) {
|
||||
auto view = make_view_2d(gain_map);
|
||||
self.set_gain_map(view);
|
||||
})
|
||||
|
||||
.def("close", &ClusterFile<ClusterType>::close)
|
||||
.def("write_frame", &ClusterFile<ClusterType>::write_frame)
|
||||
.def("__enter__", [](ClusterFile<ClusterType> &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](ClusterFile<ClusterType> &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
self.close();
|
||||
})
|
||||
.def("__iter__", [](ClusterFile<ClusterType> &self) { return &self; })
|
||||
.def("__next__", [](ClusterFile<ClusterType> &self) {
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.read_clusters(self.chunk_size()));
|
||||
if (v->size() == 0) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
return v;
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void register_calculate_eta(py::module &m) {
|
||||
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
||||
m.def("calculate_eta2",
|
||||
[](const aare::ClusterVector<ClusterType> &clusters) {
|
||||
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
|
||||
return return_image_data(eta2);
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
44
python/src/bind_ClusterFileSink.hpp
Normal file
44
python/src/bind_ClusterFileSink.hpp
Normal file
@@ -0,0 +1,44 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFileSink(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFileSink_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFileSink<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *,
|
||||
const std::filesystem::path &>())
|
||||
.def("stop", &ClusterFileSink<ClusterType>::stop);
|
||||
}
|
||||
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
77
python/src/bind_ClusterFinder.hpp
Normal file
77
python/src/bind_ClusterFinder.hpp
Normal file
@@ -0,0 +1,77 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFinder(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinder_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t>(), py::arg("image_size"),
|
||||
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinder<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def_property_readonly(
|
||||
"pedestal",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal();
|
||||
return return_image_data(pd);
|
||||
})
|
||||
.def_property_readonly(
|
||||
"noise",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise();
|
||||
return return_image_data(arr);
|
||||
})
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
bool realloc_same_capacity) {
|
||||
ClusterVector<ClusterType> clusters =
|
||||
self.steal_clusters(realloc_same_capacity);
|
||||
return clusters;
|
||||
},
|
||||
py::arg("realloc_same_capacity") = false)
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0);
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
81
python/src/bind_ClusterFinderMT.hpp
Normal file
81
python/src/bind_ClusterFinderMT.hpp
Normal file
@@ -0,0 +1,81 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFinderMT(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinderMT_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
|
||||
py::arg("image_size"), py::arg("n_sigma") = 5.0,
|
||||
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0)
|
||||
.def_property_readonly("cluster_size", [](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self){
|
||||
return py::make_tuple(ClusterSizeX, ClusterSizeY);
|
||||
})
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinderMT<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def("sync", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::sync)
|
||||
.def("stop", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::stop)
|
||||
.def("start", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::start)
|
||||
.def(
|
||||
"pedestal",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal(thread_index);
|
||||
return return_image_data(pd);
|
||||
},
|
||||
py::arg("thread_index") = 0)
|
||||
.def(
|
||||
"noise",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise(thread_index);
|
||||
return return_image_data(arr);
|
||||
},
|
||||
py::arg("thread_index") = 0);
|
||||
}
|
||||
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
106
python/src/bind_ClusterVector.hpp
Normal file
106
python/src/bind_ClusterVector.hpp
Normal file
@@ -0,0 +1,106 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterVector(py::module &m, const std::string &typestr) {
|
||||
using ClusterType = Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
auto class_name = fmt::format("ClusterVector_{}", typestr);
|
||||
|
||||
py::class_<ClusterVector<
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>, void>>(
|
||||
m, class_name.c_str(),
|
||||
py::buffer_protocol())
|
||||
|
||||
.def(py::init()) // TODO change!!!
|
||||
|
||||
.def("push_back",
|
||||
[](ClusterVector<ClusterType> &self, const ClusterType &cluster) {
|
||||
self.push_back(cluster);
|
||||
})
|
||||
|
||||
.def("sum",
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<Type>(self.sum());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("sum_2x2", [](ClusterVector<ClusterType> &self){
|
||||
auto *vec = new std::vector<Type>(self.sum_2x2());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def_property_readonly("size", &ClusterVector<ClusterType>::size)
|
||||
.def("item_size", &ClusterVector<ClusterType>::item_size)
|
||||
.def_property_readonly("fmt",
|
||||
[typestr](ClusterVector<ClusterType> &self) {
|
||||
return fmt_format<ClusterType>;
|
||||
})
|
||||
|
||||
.def_property_readonly("cluster_size_x",
|
||||
&ClusterVector<ClusterType>::cluster_size_x)
|
||||
.def_property_readonly("cluster_size_y",
|
||||
&ClusterVector<ClusterType>::cluster_size_y)
|
||||
.def_property_readonly("capacity",
|
||||
&ClusterVector<ClusterType>::capacity)
|
||||
.def_property("frame_number", &ClusterVector<ClusterType>::frame_number,
|
||||
&ClusterVector<ClusterType>::set_frame_number)
|
||||
.def_buffer(
|
||||
[typestr](ClusterVector<ClusterType> &self) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
self.data(), /* Pointer to buffer */
|
||||
self.item_size(), /* Size of one scalar */
|
||||
fmt_format<ClusterType>, /* Format descriptor */
|
||||
1, /* Number of dimensions */
|
||||
{self.size()}, /* Buffer dimensions */
|
||||
{self.item_size()} /* Strides (in bytes) for each index */
|
||||
);
|
||||
});
|
||||
|
||||
// Free functions using ClusterVector
|
||||
m.def("hitmap",
|
||||
[](std::array<size_t, 2> image_size, ClusterVector<ClusterType> &cv) {
|
||||
// Create a numpy array to hold the hitmap
|
||||
// The shape of the array is (image_size[0], image_size[1])
|
||||
// note that the python array is passed as [row, col] which
|
||||
// is the opposite of the clusters [x,y]
|
||||
py::array_t<int32_t> hitmap(image_size);
|
||||
auto r = hitmap.mutable_unchecked<2>();
|
||||
|
||||
// Initialize hitmap to 0
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
r(i, j) = 0;
|
||||
|
||||
// Loop over the clusters and increment the hitmap
|
||||
// Skip out of bound clusters
|
||||
for (const auto &cluster : cv) {
|
||||
auto x = cluster.x;
|
||||
auto y = cluster.y;
|
||||
if (x < image_size[1] && y < image_size[0])
|
||||
r(cluster.y, cluster.x) += 1;
|
||||
}
|
||||
|
||||
return hitmap;
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
@@ -1,52 +0,0 @@
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
void define_cluster_finder_bindings(py::module &m) {
|
||||
py::class_<ClusterFinder<uint16_t, double>>(m, "ClusterFinder")
|
||||
.def(py::init<Shape<2>, Shape<2>>())
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinder<uint16_t, double> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def("pedestal",
|
||||
[](ClusterFinder<uint16_t, double> &self) {
|
||||
auto pd = new NDArray<double, 2>{};
|
||||
*pd = self.pedestal();
|
||||
return return_image_data(pd);
|
||||
})
|
||||
.def("find_clusters_without_threshold",
|
||||
[](ClusterFinder<uint16_t, double> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
auto clusters = self.find_clusters_without_threshold(view);
|
||||
return clusters;
|
||||
});
|
||||
|
||||
py::class_<DynamicCluster>(m, "DynamicCluster", py::buffer_protocol())
|
||||
.def(py::init<int, int, Dtype>())
|
||||
.def("size", &DynamicCluster::size)
|
||||
.def("begin", &DynamicCluster::begin)
|
||||
.def("end", &DynamicCluster::end)
|
||||
.def_readwrite("x", &DynamicCluster::x)
|
||||
.def_readwrite("y", &DynamicCluster::y)
|
||||
.def_buffer([](DynamicCluster &c) -> py::buffer_info {
|
||||
return py::buffer_info(c.data(), c.dt.bytes(), c.dt.format_descr(),
|
||||
1, {c.size()}, {c.dt.bytes()});
|
||||
})
|
||||
|
||||
.def("__repr__", [](const DynamicCluster &a) {
|
||||
return "<DynamicCluster: x: " + std::to_string(a.x) +
|
||||
", y: " + std::to_string(a.y) + ">";
|
||||
});
|
||||
}
|
||||
@@ -1,50 +0,0 @@
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
void define_cluster_file_io_bindings(py::module &m) {
|
||||
PYBIND11_NUMPY_DTYPE(Cluster, x, y, data);
|
||||
|
||||
py::class_<ClusterFile>(m, "ClusterFile")
|
||||
.def(py::init<const std::filesystem::path &, size_t>(), py::arg(), py::arg("chunk_size") = 1000)
|
||||
.def("read_clusters",
|
||||
[](ClusterFile &self, size_t n_clusters) {
|
||||
auto* vec = new std::vector<Cluster>(self.read_clusters(n_clusters));
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("read_frame",
|
||||
[](ClusterFile &self) {
|
||||
int32_t frame_number;
|
||||
auto* vec = new std::vector<Cluster>(self.read_frame(frame_number));
|
||||
return py::make_tuple(frame_number, return_vector(vec));
|
||||
})
|
||||
.def("read_cluster_with_cut",
|
||||
[](ClusterFile &self, size_t n_clusters, py::array_t<double> noise_map, int nx, int ny) {
|
||||
auto view = make_view_2d(noise_map);
|
||||
auto* vec = new std::vector<Cluster>(self.read_cluster_with_cut(n_clusters, view.data(), nx, ny));
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("__enter__", [](ClusterFile &self) { return &self; })
|
||||
.def("__exit__", [](ClusterFile &self) { self.close();})
|
||||
.def("__iter__", [](ClusterFile &self) { return &self; })
|
||||
.def("__next__", [](ClusterFile &self) {
|
||||
auto vec = new std::vector<Cluster>(self.read_clusters(self.chunk_size()));
|
||||
if(vec->size() == 0) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
return return_vector(vec);
|
||||
});
|
||||
|
||||
}
|
||||
@@ -7,8 +7,11 @@
|
||||
#include "aare/RawSubFile.hpp"
|
||||
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/decode.hpp"
|
||||
// #include "aare/fClusterFileV2.hpp"
|
||||
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
@@ -23,35 +26,95 @@ using namespace ::aare;
|
||||
|
||||
void define_ctb_raw_file_io_bindings(py::module &m) {
|
||||
|
||||
py::class_<CtbRawFile>(m, "CtbRawFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("read_frame",
|
||||
[](CtbRawFile &self) {
|
||||
size_t image_size = self.image_size_in_bytes();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(1);
|
||||
shape.push_back(image_size);
|
||||
m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
|
||||
py::array_t<DetectorHeader> header(1);
|
||||
|
||||
if(input.ndim() != 2){
|
||||
throw std::runtime_error("Only 2D arrays are supported at this moment");
|
||||
}
|
||||
|
||||
// always read bytes
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
//Create a 2D output array with the same shape as the input
|
||||
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<ssize_t>(bits_per_byte)};
|
||||
py::array_t<uint16_t> output(shape);
|
||||
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
//Create a view of the input and output arrays
|
||||
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
|
||||
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
})
|
||||
.def("seek", &CtbRawFile::seek)
|
||||
.def("tell", &CtbRawFile::tell)
|
||||
.def("master", &CtbRawFile::master)
|
||||
adc_sar_05_decode64to16(input_view, output_view);
|
||||
|
||||
.def_property_readonly("image_size_in_bytes",
|
||||
&CtbRawFile::image_size_in_bytes)
|
||||
return output;
|
||||
});
|
||||
|
||||
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
|
||||
|
||||
}
|
||||
m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
|
||||
|
||||
if(input.ndim() != 2){
|
||||
throw std::runtime_error("Only 2D arrays are supported at this moment");
|
||||
}
|
||||
|
||||
//Create a 2D output array with the same shape as the input
|
||||
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<ssize_t>(bits_per_byte)};
|
||||
py::array_t<uint16_t> output(shape);
|
||||
|
||||
//Create a view of the input and output arrays
|
||||
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
|
||||
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
|
||||
|
||||
adc_sar_04_decode64to16(input_view, output_view);
|
||||
|
||||
return output;
|
||||
});
|
||||
|
||||
m.def(
|
||||
"apply_custom_weights",
|
||||
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast> &input,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
&weights) {
|
||||
|
||||
|
||||
// Create new array with same shape as the input array (uninitialized values)
|
||||
py::buffer_info buf = input.request();
|
||||
py::array_t<double> output(buf.shape);
|
||||
|
||||
// Use NDViews to call into the C++ library
|
||||
auto weights_view = make_view_1d(weights);
|
||||
NDView<uint16_t, 1> input_view(input.mutable_data(), {input.size()});
|
||||
NDView<double, 1> output_view(output.mutable_data(), {output.size()});
|
||||
|
||||
apply_custom_weights(input_view, output_view, weights_view);
|
||||
return output;
|
||||
});
|
||||
|
||||
py::class_<CtbRawFile>(m, "CtbRawFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("read_frame",
|
||||
[](CtbRawFile &self) {
|
||||
size_t image_size = self.image_size_in_bytes();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(1);
|
||||
shape.push_back(image_size);
|
||||
|
||||
py::array_t<DetectorHeader> header(1);
|
||||
|
||||
// always read bytes
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
})
|
||||
.def("seek", &CtbRawFile::seek)
|
||||
.def("tell", &CtbRawFile::tell)
|
||||
.def("master", &CtbRawFile::master)
|
||||
|
||||
.def_property_readonly("image_size_in_bytes",
|
||||
&CtbRawFile::image_size_in_bytes)
|
||||
|
||||
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
|
||||
|
||||
}
|
||||
|
||||
@@ -25,6 +25,14 @@
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
|
||||
|
||||
|
||||
//Disable warnings for unused parameters, as we ignore some
|
||||
//in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
void define_file_io_bindings(py::module &m) {
|
||||
|
||||
|
||||
@@ -56,7 +64,8 @@ void define_file_io_bindings(py::module &m) {
|
||||
.def(py::init<const std::filesystem::path &, const std::string &,
|
||||
const FileConfig &>())
|
||||
|
||||
.def("frame_number", &File::frame_number)
|
||||
.def("frame_number", py::overload_cast<>(&File::frame_number))
|
||||
.def("frame_number", py::overload_cast<size_t>(&File::frame_number))
|
||||
.def_property_readonly("bytes_per_frame", &File::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame", &File::pixels_per_frame)
|
||||
.def("seek", &File::seek)
|
||||
@@ -128,8 +137,41 @@ void define_file_io_bindings(py::module &m) {
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames);
|
||||
return image;
|
||||
})
|
||||
.def("__enter__", [](File &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](File &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
// self.close();
|
||||
})
|
||||
.def("__iter__", [](File &self) { return &self; })
|
||||
.def("__next__", [](File &self) {
|
||||
|
||||
try{
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(self.rows());
|
||||
shape.push_back(self.cols());
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()));
|
||||
return image;
|
||||
}catch(std::runtime_error &e){
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
});
|
||||
|
||||
|
||||
py::class_<FileConfig>(m, "FileConfig")
|
||||
.def(py::init<>())
|
||||
.def_readwrite("rows", &FileConfig::rows)
|
||||
@@ -161,6 +203,8 @@ void define_file_io_bindings(py::module &m) {
|
||||
|
||||
py::class_<ROI>(m, "ROI")
|
||||
.def(py::init<>())
|
||||
.def(py::init<ssize_t, ssize_t, ssize_t, ssize_t>(), py::arg("xmin"),
|
||||
py::arg("xmax"), py::arg("ymin"), py::arg("ymax"))
|
||||
.def_readwrite("xmin", &ROI::xmin)
|
||||
.def_readwrite("xmax", &ROI::xmax)
|
||||
.def_readwrite("ymin", &ROI::ymin)
|
||||
@@ -178,38 +222,11 @@ void define_file_io_bindings(py::module &m) {
|
||||
|
||||
|
||||
|
||||
py::class_<RawSubFile>(m, "RawSubFile")
|
||||
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
|
||||
size_t, size_t>())
|
||||
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame",
|
||||
&RawSubFile::pixels_per_frame)
|
||||
.def("seek", &RawSubFile::seek)
|
||||
.def("tell", &RawSubFile::tell)
|
||||
.def_property_readonly("rows", &RawSubFile::rows)
|
||||
.def_property_readonly("cols", &RawSubFile::cols)
|
||||
.def("read_frame",
|
||||
[](RawSubFile &self) {
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(self.rows());
|
||||
shape.push_back(self.cols());
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
fmt::print("item_size: {} rows: {} cols: {}\n", item_size, self.rows(), self.cols());
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()));
|
||||
return image;
|
||||
});
|
||||
|
||||
|
||||
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
// py::class_<ClusterHeader>(m, "ClusterHeader")
|
||||
// .def(py::init<>())
|
||||
// .def_readwrite("frame_number", &ClusterHeader::frame_number)
|
||||
|
||||
465
python/src/fit.hpp
Normal file
465
python/src/fit.hpp
Normal file
@@ -0,0 +1,465 @@
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
#include "aare/Fit.hpp"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace pybind11::literals;
|
||||
|
||||
|
||||
void define_fit_bindings(py::module &m) {
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
m.def(
|
||||
"gaus",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y = new NDArray<double, 1>{aare::func::gaus(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D Gaussian function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the Gaussian function.
|
||||
par : array_like
|
||||
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"pol1",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y = new NDArray<double, 1>{aare::func::pol1(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D polynomial function for all points in x using parameters par. (p0+p1*x)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the polynomial function.
|
||||
par : array_like
|
||||
The parameters of the polynomial function. The first element is the intercept, and the second element is the slope.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"scurve",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y = new NDArray<double, 1>{aare::func::scurve(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D scurve function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the scurve function.
|
||||
par : array_like
|
||||
The parameters of the scurve function. The first element is the background slope, the second element is the background intercept, the third element is the mean, the fourth element is the standard deviation, the fifth element is inflexion point count number, and the sixth element is C.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"scurve2",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y = new NDArray<double, 1>{aare::func::scurve2(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D scurve2 function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the scurve function.
|
||||
par : array_like
|
||||
The parameters of the scurve2 function. The first element is the background slope, the second element is the background intercept, the third element is the mean, the fourth element is the standard deviation, the fifth element is inflexion point count number, and the sixth element is C.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"fit_gaus",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
auto y_view = make_view_3d(y);
|
||||
auto x_view = make_view_1d(x);
|
||||
*par = aare::fit_gaus(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto y_view = make_view_1d(y);
|
||||
auto x_view = make_view_1d(x);
|
||||
*par = aare::fit_gaus(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
|
||||
Fit a 1D Gaussian to data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_gaus",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
|
||||
if (y.ndim() == 3) {
|
||||
// Allocate memory for the output
|
||||
// Need to have pointers to allow python to manage
|
||||
// the memory
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
// Make views of the numpy arrays
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 3);
|
||||
} else if (y.ndim() == 1) {
|
||||
// Allocate memory for the output
|
||||
// Need to have pointers to allow python to manage
|
||||
// the memory
|
||||
auto par = new NDArray<double, 1>({3});
|
||||
auto par_err = new NDArray<double, 1>({3});
|
||||
|
||||
// Decode the numpy arrays
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
|
||||
double chi2 = 0;
|
||||
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 3);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
|
||||
Fit a 1D Gaussian to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_pol1",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_3d(y);
|
||||
*par = aare::fit_pol1(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_1d(y);
|
||||
*par = aare::fit_pol1(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_pol1",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
|
||||
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
|
||||
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({2});
|
||||
auto par_err = new NDArray<double, 1>({2});
|
||||
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
Fit a 1D polynomial to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
//=========
|
||||
m.def(
|
||||
"fit_scurve",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_3d(y);
|
||||
*par = aare::fit_scurve(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_1d(y);
|
||||
*par = aare::fit_scurve(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_scurve",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_scurve(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({2});
|
||||
auto par_err = new NDArray<double, 1>({2});
|
||||
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_scurve(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
Fit a 1D polynomial to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
|
||||
m.def(
|
||||
"fit_scurve2",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_3d(y);
|
||||
*par = aare::fit_scurve2(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_1d(y);
|
||||
*par = aare::fit_scurve2(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_scurve2",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_scurve2(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({6});
|
||||
auto par_err = new NDArray<double, 1>({6});
|
||||
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_scurve2(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
Fit a 1D polynomial to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
}
|
||||
82
python/src/interpolation.hpp
Normal file
82
python/src/interpolation.hpp
Normal file
@@ -0,0 +1,82 @@
|
||||
#include "aare/Interpolator.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "np_helper.hpp"
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void register_interpolate(py::class_<aare::Interpolator> &interpolator) {
|
||||
|
||||
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
||||
|
||||
interpolator.def("interpolate",
|
||||
[](aare::Interpolator &self,
|
||||
const ClusterVector<ClusterType> &clusters) {
|
||||
auto photons = self.interpolate<ClusterType>(clusters);
|
||||
auto *ptr = new std::vector<Photon>{photons};
|
||||
return return_vector(ptr);
|
||||
});
|
||||
}
|
||||
|
||||
void define_interpolation_bindings(py::module &m) {
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(aare::Photon, x, y, energy);
|
||||
|
||||
auto interpolator =
|
||||
py::class_<aare::Interpolator>(m, "Interpolator")
|
||||
.def(py::init([](py::array_t<double, py::array::c_style |
|
||||
py::array::forcecast>
|
||||
etacube,
|
||||
py::array_t<double> xbins,
|
||||
py::array_t<double> ybins,
|
||||
py::array_t<double> ebins) {
|
||||
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
|
||||
make_view_1d(ybins), make_view_1d(ebins));
|
||||
}))
|
||||
.def("get_ietax",
|
||||
[](Interpolator &self) {
|
||||
auto *ptr = new NDArray<double, 3>{};
|
||||
*ptr = self.get_ietax();
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("get_ietay", [](Interpolator &self) {
|
||||
auto *ptr = new NDArray<double, 3>{};
|
||||
*ptr = self.get_ietay();
|
||||
return return_image_data(ptr);
|
||||
});
|
||||
|
||||
register_interpolate<int, 3, 3, uint16_t>(interpolator);
|
||||
register_interpolate<float, 3, 3, uint16_t>(interpolator);
|
||||
register_interpolate<double, 3, 3, uint16_t>(interpolator);
|
||||
register_interpolate<int, 2, 2, uint16_t>(interpolator);
|
||||
register_interpolate<float, 2, 2, uint16_t>(interpolator);
|
||||
register_interpolate<double, 2, 2, uint16_t>(interpolator);
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
m.def(
|
||||
"hej",
|
||||
[]() {
|
||||
// auto boost_histogram = py::module_::import("boost_histogram");
|
||||
// py::object axis =
|
||||
// boost_histogram.attr("axis").attr("Regular")(10, 0.0, 10.0);
|
||||
// py::object histogram = boost_histogram.attr("Histogram")(axis);
|
||||
// return histogram;
|
||||
// return h;
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D Gaussian function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the Gaussian function.
|
||||
par : array_like
|
||||
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
|
||||
)");
|
||||
}
|
||||
116
python/src/jungfrau_data_file.hpp
Normal file
116
python/src/jungfrau_data_file.hpp
Normal file
@@ -0,0 +1,116 @@
|
||||
|
||||
#include "aare/JungfrauDataFile.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
// Disable warnings for unused parameters, as we ignore some
|
||||
// in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
auto read_dat_frame(JungfrauDataFile &self) {
|
||||
py::array_t<JungfrauDataHeader> header(1);
|
||||
py::array_t<uint16_t> image({
|
||||
self.rows(),
|
||||
self.cols()
|
||||
});
|
||||
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
auto read_n_dat_frames(JungfrauDataFile &self, size_t n_frames) {
|
||||
// adjust for actual frames left in the file
|
||||
n_frames = std::min(n_frames, self.total_frames() - self.tell());
|
||||
if (n_frames == 0) {
|
||||
throw std::runtime_error("No frames left in file");
|
||||
}
|
||||
|
||||
py::array_t<JungfrauDataHeader> header(n_frames);
|
||||
py::array_t<uint16_t> image({
|
||||
n_frames, self.rows(),
|
||||
self.cols()});
|
||||
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames, header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
void define_jungfrau_data_file_io_bindings(py::module &m) {
|
||||
// Make the JungfrauDataHeader usable from numpy
|
||||
PYBIND11_NUMPY_DTYPE(JungfrauDataHeader, framenum, bunchid);
|
||||
|
||||
py::class_<JungfrauDataFile>(m, "JungfrauDataFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("seek", &JungfrauDataFile::seek,
|
||||
R"(
|
||||
Seek to the given frame index.
|
||||
)")
|
||||
.def("tell", &JungfrauDataFile::tell,
|
||||
R"(
|
||||
Get the current frame index.
|
||||
)")
|
||||
.def_property_readonly("rows", &JungfrauDataFile::rows)
|
||||
.def_property_readonly("cols", &JungfrauDataFile::cols)
|
||||
.def_property_readonly("base_name", &JungfrauDataFile::base_name)
|
||||
.def_property_readonly("bytes_per_frame",
|
||||
&JungfrauDataFile::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame",
|
||||
&JungfrauDataFile::pixels_per_frame)
|
||||
.def_property_readonly("bytes_per_pixel",
|
||||
&JungfrauDataFile::bytes_per_pixel)
|
||||
.def_property_readonly("bitdepth", &JungfrauDataFile::bitdepth)
|
||||
.def_property_readonly("current_file", &JungfrauDataFile::current_file)
|
||||
.def_property_readonly("total_frames", &JungfrauDataFile::total_frames)
|
||||
.def_property_readonly("n_files", &JungfrauDataFile::n_files)
|
||||
.def("read_frame", &read_dat_frame,
|
||||
R"(
|
||||
Read a single frame from the file.
|
||||
)")
|
||||
.def("read_n", &read_n_dat_frames,
|
||||
R"(
|
||||
Read maximum n_frames frames from the file.
|
||||
)")
|
||||
.def(
|
||||
"read",
|
||||
[](JungfrauDataFile &self) {
|
||||
self.seek(0);
|
||||
auto n_frames = self.total_frames();
|
||||
return read_n_dat_frames(self, n_frames);
|
||||
},
|
||||
R"(
|
||||
Read all frames from the file. Seeks to the beginning before reading.
|
||||
)")
|
||||
.def("__enter__", [](JungfrauDataFile &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](JungfrauDataFile &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
// self.close();
|
||||
})
|
||||
.def("__iter__", [](JungfrauDataFile &self) { return &self; })
|
||||
.def("__next__", [](JungfrauDataFile &self) {
|
||||
try {
|
||||
return read_dat_frame(self);
|
||||
} catch (std::runtime_error &e) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
@@ -1,19 +1,32 @@
|
||||
//Files with bindings to the different classes
|
||||
#include "file.hpp"
|
||||
#include "raw_file.hpp"
|
||||
// Files with bindings to the different classes
|
||||
|
||||
//New style file naming
|
||||
#include "bind_Cluster.hpp"
|
||||
#include "bind_ClusterCollector.hpp"
|
||||
#include "bind_ClusterFinder.hpp"
|
||||
#include "bind_ClusterFinderMT.hpp"
|
||||
#include "bind_ClusterFile.hpp"
|
||||
#include "bind_ClusterFileSink.hpp"
|
||||
#include "bind_ClusterVector.hpp"
|
||||
|
||||
//TODO! migrate the other names
|
||||
#include "ctb_raw_file.hpp"
|
||||
#include "file.hpp"
|
||||
#include "fit.hpp"
|
||||
#include "interpolation.hpp"
|
||||
#include "raw_sub_file.hpp"
|
||||
#include "raw_master_file.hpp"
|
||||
#include "raw_file.hpp"
|
||||
#ifdef HDF5_FOUND
|
||||
#include "hdf5_file.hpp"
|
||||
#include "hdf5_master_file.hpp"
|
||||
#endif
|
||||
#include "var_cluster.hpp"
|
||||
#include "pixel_map.hpp"
|
||||
#include "var_cluster.hpp"
|
||||
#include "pedestal.hpp"
|
||||
#include "cluster.hpp"
|
||||
#include "cluster_file.hpp"
|
||||
#include "jungfrau_data_file.hpp"
|
||||
|
||||
//Pybind stuff
|
||||
// Pybind stuff
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
@@ -22,6 +35,7 @@ namespace py = pybind11;
|
||||
PYBIND11_MODULE(_aare, m) {
|
||||
define_file_io_bindings(m);
|
||||
define_raw_file_io_bindings(m);
|
||||
define_raw_sub_file_io_bindings(m);
|
||||
define_ctb_raw_file_io_bindings(m);
|
||||
define_raw_master_file_bindings(m);
|
||||
#ifdef HDF5_FOUND
|
||||
@@ -30,8 +44,65 @@ PYBIND11_MODULE(_aare, m) {
|
||||
#endif
|
||||
define_var_cluster_finder_bindings(m);
|
||||
define_pixel_map_bindings(m);
|
||||
define_pedestal_bindings<double>(m, "Pedestal");
|
||||
define_pedestal_bindings<float>(m, "Pedestal_float32");
|
||||
define_cluster_finder_bindings(m);
|
||||
define_cluster_file_io_bindings(m);
|
||||
}
|
||||
define_pedestal_bindings<double>(m, "Pedestal_d");
|
||||
define_pedestal_bindings<float>(m, "Pedestal_f");
|
||||
define_fit_bindings(m);
|
||||
define_interpolation_bindings(m);
|
||||
define_jungfrau_data_file_io_bindings(m);
|
||||
|
||||
define_ClusterFile<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_ClusterFile<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_ClusterFile<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_ClusterFile<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_ClusterFile<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
define_ClusterFile<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
|
||||
define_ClusterVector<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_ClusterVector<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_ClusterVector<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_ClusterVector<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_ClusterVector<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_ClusterVector<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
define_ClusterFinder<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_ClusterFinder<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_ClusterFinder<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_ClusterFinder<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_ClusterFinder<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_ClusterFinder<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
define_ClusterFinderMT<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_ClusterFinderMT<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_ClusterFinderMT<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_ClusterFinderMT<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_ClusterFinderMT<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_ClusterFinderMT<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
define_ClusterFileSink<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_ClusterFileSink<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_ClusterFileSink<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_ClusterFileSink<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_ClusterFileSink<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_ClusterFileSink<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
define_ClusterCollector<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_ClusterCollector<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_ClusterCollector<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_ClusterCollector<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_ClusterCollector<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_ClusterCollector<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
define_Cluster<int, 3, 3, uint16_t>(m, "3x3i");
|
||||
define_Cluster<float, 3, 3, uint16_t>(m, "3x3f");
|
||||
define_Cluster<double, 3, 3, uint16_t>(m, "3x3d");
|
||||
define_Cluster<int, 2, 2, uint16_t>(m, "2x2i");
|
||||
define_Cluster<float, 2, 2, uint16_t>(m, "2x2f");
|
||||
define_Cluster<double, 2, 2, uint16_t>(m, "2x2d");
|
||||
|
||||
register_calculate_eta<int, 3, 3, uint16_t>(m);
|
||||
register_calculate_eta<float, 3, 3, uint16_t>(m);
|
||||
register_calculate_eta<double, 3, 3, uint16_t>(m);
|
||||
register_calculate_eta<int, 2, 2, uint16_t>(m);
|
||||
register_calculate_eta<float, 2, 2, uint16_t>(m);
|
||||
register_calculate_eta<double, 2, 2, uint16_t>(m);
|
||||
}
|
||||
|
||||
@@ -10,9 +10,10 @@
|
||||
#include "aare/NDView.hpp"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace aare;
|
||||
|
||||
// Pass image data back to python as a numpy array
|
||||
template <typename T, int64_t Ndim>
|
||||
template <typename T, ssize_t Ndim>
|
||||
py::array return_image_data(aare::NDArray<T, Ndim> *image) {
|
||||
|
||||
py::capsule free_when_done(image, [](void *f) {
|
||||
@@ -39,78 +40,47 @@ template <typename T> py::array return_vector(std::vector<T> *vec) {
|
||||
free_when_done); // numpy array references this parent
|
||||
}
|
||||
|
||||
// template <typename Reader> py::array do_read(Reader &r, size_t n_frames) {
|
||||
// py::array image;
|
||||
// if (n_frames == 0)
|
||||
// n_frames = r.total_frames();
|
||||
|
||||
// std::array<ssize_t, 3> shape{static_cast<ssize_t>(n_frames), r.rows(),
|
||||
// r.cols()};
|
||||
// const uint8_t item_size = r.bytes_per_pixel();
|
||||
// if (item_size == 1) {
|
||||
// image = py::array_t<uint8_t, py::array::c_style | py::array::forcecast>(
|
||||
// shape);
|
||||
// } else if (item_size == 2) {
|
||||
// image =
|
||||
// py::array_t<uint16_t, py::array::c_style | py::array::forcecast>(
|
||||
// shape);
|
||||
// } else if (item_size == 4) {
|
||||
// image =
|
||||
// py::array_t<uint32_t, py::array::c_style | py::array::forcecast>(
|
||||
// shape);
|
||||
// }
|
||||
// r.read_into(reinterpret_cast<std::byte *>(image.mutable_data()), n_frames);
|
||||
// return image;
|
||||
// }
|
||||
|
||||
// py::array return_frame(pl::Frame *ptr) {
|
||||
// py::capsule free_when_done(ptr, [](void *f) {
|
||||
// pl::Frame *foo = reinterpret_cast<pl::Frame *>(f);
|
||||
// delete foo;
|
||||
// });
|
||||
|
||||
// const uint8_t item_size = ptr->bytes_per_pixel();
|
||||
// std::vector<ssize_t> shape;
|
||||
// for (auto val : ptr->shape())
|
||||
// if (val > 1)
|
||||
// shape.push_back(val);
|
||||
|
||||
// std::vector<ssize_t> strides;
|
||||
// if (shape.size() == 1)
|
||||
// strides.push_back(item_size);
|
||||
// else if (shape.size() == 2) {
|
||||
// strides.push_back(item_size * shape[1]);
|
||||
// strides.push_back(item_size);
|
||||
// }
|
||||
|
||||
// if (item_size == 1)
|
||||
// return py::array_t<uint8_t>(
|
||||
// shape, strides,
|
||||
// reinterpret_cast<uint8_t *>(ptr->data()), free_when_done);
|
||||
// else if (item_size == 2)
|
||||
// return py::array_t<uint16_t>(shape, strides,
|
||||
// reinterpret_cast<uint16_t *>(ptr->data()),
|
||||
// free_when_done);
|
||||
// else if (item_size == 4)
|
||||
// return py::array_t<uint32_t>(shape, strides,
|
||||
// reinterpret_cast<uint32_t *>(ptr->data()),
|
||||
// free_when_done);
|
||||
// return {};
|
||||
// }
|
||||
|
||||
// todo rewrite generic
|
||||
template <class T, int Flags> auto get_shape_3d(py::array_t<T, Flags> arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_3d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<3>{arr.shape(0), arr.shape(1), arr.shape(2)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> arr) {
|
||||
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 3>(arr.mutable_data(), get_shape_3d<T, Flags>(arr));
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto get_shape_2d(py::array_t<T, Flags> arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_2d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<2>{arr.shape(0), arr.shape(1)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_1d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<1>{arr.shape(0)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 2>(arr.mutable_data(), get_shape_2d<T, Flags>(arr));
|
||||
}
|
||||
}
|
||||
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 1>(arr.mutable_data(), get_shape_1d<T, Flags>(arr));
|
||||
}
|
||||
|
||||
template <typename ClusterType> struct fmt_format_trait; // forward declaration
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
struct fmt_format_trait<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
static std::string value() {
|
||||
return fmt::format("T{{{}:x:{}:y:{}:data:}}",
|
||||
py::format_descriptor<CoordType>::format(),
|
||||
py::format_descriptor<CoordType>::format(),
|
||||
fmt::format("({},{}){}", ClusterSizeX, ClusterSizeY,
|
||||
py::format_descriptor<T>::format()));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename ClusterType>
|
||||
auto fmt_format = fmt_format_trait<ClusterType>::value();
|
||||
@@ -43,5 +43,10 @@ template <typename SUM_TYPE> void define_pedestal_bindings(py::module &m, const
|
||||
.def("push", [](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t> &f) {
|
||||
auto v = make_view_2d(f);
|
||||
pedestal.push(v);
|
||||
});
|
||||
})
|
||||
.def("push_no_update", [](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t, py::array::c_style> &f) {
|
||||
auto v = make_view_2d(f);
|
||||
pedestal.push_no_update(v);
|
||||
}, py::arg().noconvert())
|
||||
.def("update_mean", &Pedestal<SUM_TYPE>::update_mean);
|
||||
}
|
||||
@@ -32,7 +32,7 @@ void define_raw_file_io_bindings(py::module &m) {
|
||||
shape.push_back(self.cols());
|
||||
|
||||
// return headers from all subfiles
|
||||
py::array_t<DetectorHeader> header(self.n_mod());
|
||||
py::array_t<DetectorHeader> header(self.n_modules());
|
||||
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
if (item_size == 1) {
|
||||
@@ -61,10 +61,10 @@ void define_raw_file_io_bindings(py::module &m) {
|
||||
|
||||
// return headers from all subfiles
|
||||
py::array_t<DetectorHeader> header;
|
||||
if (self.n_mod() == 1) {
|
||||
if (self.n_modules() == 1) {
|
||||
header = py::array_t<DetectorHeader>(n_frames);
|
||||
} else {
|
||||
header = py::array_t<DetectorHeader>({self.n_mod(), n_frames});
|
||||
header = py::array_t<DetectorHeader>({self.n_modules(), n_frames});
|
||||
}
|
||||
// py::array_t<DetectorHeader> header({self.n_mod(), n_frames});
|
||||
|
||||
@@ -100,7 +100,7 @@ void define_raw_file_io_bindings(py::module &m) {
|
||||
.def_property_readonly("cols", &RawFile::cols)
|
||||
.def_property_readonly("bitdepth", &RawFile::bitdepth)
|
||||
.def_property_readonly("geometry", &RawFile::geometry)
|
||||
.def_property_readonly("n_mod", &RawFile::n_mod)
|
||||
.def_property_readonly("n_modules", &RawFile::n_modules)
|
||||
.def_property_readonly("detector_type", &RawFile::detector_type)
|
||||
.def_property_readonly("master", &RawFile::master);
|
||||
}
|
||||
110
python/src/raw_sub_file.hpp
Normal file
110
python/src/raw_sub_file.hpp
Normal file
@@ -0,0 +1,110 @@
|
||||
#include "aare/CtbRawFile.hpp"
|
||||
#include "aare/File.hpp"
|
||||
#include "aare/Frame.hpp"
|
||||
#include "aare/RawFile.hpp"
|
||||
#include "aare/RawMasterFile.hpp"
|
||||
#include "aare/RawSubFile.hpp"
|
||||
|
||||
#include "aare/defs.hpp"
|
||||
// #include "aare/fClusterFileV2.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
auto read_frame_from_RawSubFile(RawSubFile &self) {
|
||||
py::array_t<DetectorHeader> header(1);
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
std::vector<ssize_t> shape{static_cast<ssize_t>(self.rows()),
|
||||
static_cast<ssize_t>(self.cols())};
|
||||
|
||||
py::array image;
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
auto read_n_frames_from_RawSubFile(RawSubFile &self, size_t n_frames) {
|
||||
py::array_t<DetectorHeader> header(n_frames);
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
std::vector<ssize_t> shape{
|
||||
static_cast<ssize_t>(n_frames),
|
||||
static_cast<ssize_t>(self.rows()),
|
||||
static_cast<ssize_t>(self.cols())
|
||||
};
|
||||
|
||||
py::array image;
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()), n_frames,
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
|
||||
//Disable warnings for unused parameters, as we ignore some
|
||||
//in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
void define_raw_sub_file_io_bindings(py::module &m) {
|
||||
py::class_<RawSubFile>(m, "RawSubFile")
|
||||
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
|
||||
size_t, size_t>())
|
||||
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame",
|
||||
&RawSubFile::pixels_per_frame)
|
||||
.def_property_readonly("bytes_per_pixel", &RawSubFile::bytes_per_pixel)
|
||||
.def("seek", &RawSubFile::seek)
|
||||
.def("tell", &RawSubFile::tell)
|
||||
.def_property_readonly("rows", &RawSubFile::rows)
|
||||
.def_property_readonly("cols", &RawSubFile::cols)
|
||||
.def_property_readonly("frames_in_file", &RawSubFile::frames_in_file)
|
||||
.def("read_frame", &read_frame_from_RawSubFile)
|
||||
.def("read_n", &read_n_frames_from_RawSubFile)
|
||||
.def("read", [](RawSubFile &self){
|
||||
self.seek(0);
|
||||
auto n_frames = self.frames_in_file();
|
||||
return read_n_frames_from_RawSubFile(self, n_frames);
|
||||
})
|
||||
.def("__enter__", [](RawSubFile &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](RawSubFile &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
})
|
||||
.def("__iter__", [](RawSubFile &self) { return &self; })
|
||||
.def("__next__", [](RawSubFile &self) {
|
||||
try {
|
||||
return read_frame_from_RawSubFile(self);
|
||||
} catch (std::runtime_error &e) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
@@ -19,15 +19,24 @@ using namespace::aare;
|
||||
|
||||
void define_var_cluster_finder_bindings(py::module &m) {
|
||||
PYBIND11_NUMPY_DTYPE(VarClusterFinder<double>::Hit, size, row, col,
|
||||
reserved, energy, max);
|
||||
reserved, energy, max, rows, cols, enes);
|
||||
|
||||
py::class_<VarClusterFinder<double>>(m, "VarClusterFinder")
|
||||
.def(py::init<Shape<2>, double>())
|
||||
.def("labeled",
|
||||
[](VarClusterFinder<double> &self) {
|
||||
auto ptr = new NDArray<int, 2>(self.labeled());
|
||||
auto *ptr = new NDArray<int, 2>(self.labeled());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("set_noiseMap",
|
||||
[](VarClusterFinder<double> &self,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
noise_map) {
|
||||
auto noise_map_span = make_view_2d(noise_map);
|
||||
self.set_noiseMap(noise_map_span);
|
||||
})
|
||||
.def("set_peripheralThresholdFactor",
|
||||
&VarClusterFinder<double>::set_peripheralThresholdFactor)
|
||||
.def("find_clusters",
|
||||
[](VarClusterFinder<double> &self,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
@@ -35,6 +44,30 @@ void define_var_cluster_finder_bindings(py::module &m) {
|
||||
auto view = make_view_2d(img);
|
||||
self.find_clusters(view);
|
||||
})
|
||||
.def("find_clusters_X",
|
||||
[](VarClusterFinder<double> &self,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
img) {
|
||||
auto img_span = make_view_2d(img);
|
||||
self.find_clusters_X(img_span);
|
||||
})
|
||||
.def("single_pass",
|
||||
[](VarClusterFinder<double> &self,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
img) {
|
||||
auto img_span = make_view_2d(img);
|
||||
self.single_pass(img_span);
|
||||
})
|
||||
.def("hits",
|
||||
[](VarClusterFinder<double> &self) {
|
||||
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(
|
||||
self.steal_hits());
|
||||
return return_vector(ptr);
|
||||
})
|
||||
.def("clear_hits",
|
||||
[](VarClusterFinder<double> &self) {
|
||||
self.clear_hits();
|
||||
})
|
||||
.def("steal_hits",
|
||||
[](VarClusterFinder<double> &self) {
|
||||
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(
|
||||
|
||||
34
python/tests/conftest.py
Normal file
34
python/tests/conftest.py
Normal file
@@ -0,0 +1,34 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
import pytest
|
||||
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
"--files", action="store_true", default=False, help="run slow tests"
|
||||
)
|
||||
|
||||
|
||||
def pytest_configure(config):
|
||||
config.addinivalue_line("markers", "files: mark test as needing image files to run")
|
||||
|
||||
|
||||
def pytest_collection_modifyitems(config, items):
|
||||
if config.getoption("--files"):
|
||||
return
|
||||
skip = pytest.mark.skip(reason="need --files option to run")
|
||||
for item in items:
|
||||
if "files" in item.keywords:
|
||||
item.add_marker(skip)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def test_data_path():
|
||||
env_value = os.environ.get("AARE_TEST_DATA")
|
||||
if not env_value:
|
||||
raise RuntimeError("Environment variable AARE_TEST_DATA is not set or is empty")
|
||||
|
||||
return Path(env_value)
|
||||
|
||||
|
||||
110
python/tests/test_Cluster.py
Normal file
110
python/tests/test_Cluster.py
Normal file
@@ -0,0 +1,110 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from aare import _aare #import the C++ module
|
||||
from conftest import test_data_path
|
||||
|
||||
|
||||
def test_cluster_vector_can_be_converted_to_numpy():
|
||||
cv = _aare.ClusterVector_Cluster3x3i()
|
||||
arr = np.array(cv, copy=False)
|
||||
assert arr.shape == (0,) # 4 for x, y, size, energy and 9 for the cluster data
|
||||
|
||||
|
||||
def test_ClusterVector():
|
||||
"""Test ClusterVector"""
|
||||
|
||||
clustervector = _aare.ClusterVector_Cluster3x3i()
|
||||
assert clustervector.cluster_size_x == 3
|
||||
assert clustervector.cluster_size_y == 3
|
||||
assert clustervector.item_size() == 4+9*4
|
||||
assert clustervector.frame_number == 0
|
||||
assert clustervector.size == 0
|
||||
|
||||
cluster = _aare.Cluster3x3i(0,0,np.ones(9, dtype=np.int32))
|
||||
|
||||
clustervector.push_back(cluster)
|
||||
assert clustervector.size == 1
|
||||
|
||||
with pytest.raises(TypeError): # Or use the appropriate exception type
|
||||
clustervector.push_back(_aare.Cluster2x2i(0,0,np.ones(4, dtype=np.int32)))
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
clustervector.push_back(_aare.Cluster3x3f(0,0,np.ones(9, dtype=np.float32)))
|
||||
|
||||
def test_Interpolator():
|
||||
"""Test Interpolator"""
|
||||
|
||||
ebins = np.linspace(0,10, 20, dtype=np.float64)
|
||||
xbins = np.linspace(0, 5, 30, dtype=np.float64)
|
||||
ybins = np.linspace(0, 5, 30, dtype=np.float64)
|
||||
|
||||
etacube = np.zeros(shape=[30, 30, 20], dtype=np.float64)
|
||||
interpolator = _aare.Interpolator(etacube, xbins, ybins, ebins)
|
||||
|
||||
assert interpolator.get_ietax().shape == (30,30,20)
|
||||
assert interpolator.get_ietay().shape == (30,30,20)
|
||||
clustervector = _aare.ClusterVector_Cluster3x3i()
|
||||
|
||||
cluster = _aare.Cluster3x3i(0,0, np.ones(9, dtype=np.int32))
|
||||
clustervector.push_back(cluster)
|
||||
|
||||
interpolated_photons = interpolator.interpolate(clustervector)
|
||||
|
||||
assert interpolated_photons.size == 1
|
||||
|
||||
assert interpolated_photons[0]["x"] == -1
|
||||
assert interpolated_photons[0]["y"] == -1
|
||||
assert interpolated_photons[0]["energy"] == 4 #eta_sum = 4, dx, dy = -1,-1 m_ietax = 0, m_ietay = 0
|
||||
|
||||
clustervector = _aare.ClusterVector_Cluster2x2i()
|
||||
|
||||
cluster = _aare.Cluster2x2i(0,0, np.ones(4, dtype=np.int32))
|
||||
clustervector.push_back(cluster)
|
||||
|
||||
interpolated_photons = interpolator.interpolate(clustervector)
|
||||
|
||||
assert interpolated_photons.size == 1
|
||||
|
||||
assert interpolated_photons[0]["x"] == 0
|
||||
assert interpolated_photons[0]["y"] == 0
|
||||
assert interpolated_photons[0]["energy"] == 4
|
||||
|
||||
|
||||
|
||||
def test_calculate_eta():
|
||||
"""Calculate Eta"""
|
||||
clusters = _aare.ClusterVector_Cluster3x3i()
|
||||
clusters.push_back(_aare.Cluster3x3i(0,0, np.ones(9, dtype=np.int32)))
|
||||
clusters.push_back(_aare.Cluster3x3i(0,0, np.array([1,1,1,2,2,2,3,3,3])))
|
||||
|
||||
eta2 = _aare.calculate_eta2(clusters)
|
||||
|
||||
assert eta2.shape == (2,2)
|
||||
assert eta2[0,0] == 0.5
|
||||
assert eta2[0,1] == 0.5
|
||||
assert eta2[1,0] == 0.5
|
||||
assert eta2[1,1] == 0.6 #1/5
|
||||
|
||||
def test_cluster_finder():
|
||||
"""Test ClusterFinder"""
|
||||
|
||||
clusterfinder = _aare.ClusterFinder_Cluster3x3i([100,100])
|
||||
|
||||
#frame = np.random.rand(100,100)
|
||||
frame = np.zeros(shape=[100,100])
|
||||
|
||||
clusterfinder.find_clusters(frame)
|
||||
|
||||
clusters = clusterfinder.steal_clusters(False) #conversion does not work
|
||||
|
||||
assert clusters.size == 0
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
64
python/tests/test_ClusterFile.py
Normal file
64
python/tests/test_ClusterFile.py
Normal file
@@ -0,0 +1,64 @@
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
import boost_histogram as bh
|
||||
import time
|
||||
from pathlib import Path
|
||||
import pickle
|
||||
|
||||
from aare import ClusterFile
|
||||
from conftest import test_data_path
|
||||
|
||||
@pytest.mark.files
|
||||
def test_cluster_file(test_data_path):
|
||||
"""Test ClusterFile"""
|
||||
f = ClusterFile(test_data_path / "clust/single_frame_97_clustrers.clust")
|
||||
cv = f.read_clusters(10) #conversion does not work
|
||||
|
||||
|
||||
assert cv.frame_number == 135
|
||||
assert cv.size == 10
|
||||
|
||||
#Known data
|
||||
#frame_number, num_clusters [135] 97
|
||||
#[ 1 200] [0 1 2 3 4 5 6 7 8]
|
||||
#[ 2 201] [ 9 10 11 12 13 14 15 16 17]
|
||||
#[ 3 202] [18 19 20 21 22 23 24 25 26]
|
||||
#[ 4 203] [27 28 29 30 31 32 33 34 35]
|
||||
#[ 5 204] [36 37 38 39 40 41 42 43 44]
|
||||
#[ 6 205] [45 46 47 48 49 50 51 52 53]
|
||||
#[ 7 206] [54 55 56 57 58 59 60 61 62]
|
||||
#[ 8 207] [63 64 65 66 67 68 69 70 71]
|
||||
#[ 9 208] [72 73 74 75 76 77 78 79 80]
|
||||
#[ 10 209] [81 82 83 84 85 86 87 88 89]
|
||||
|
||||
#conversion to numpy array
|
||||
arr = np.array(cv, copy = False)
|
||||
|
||||
assert arr.size == 10
|
||||
for i in range(10):
|
||||
assert arr[i]['x'] == i+1
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_clusters_and_fill_histogram(test_data_path):
|
||||
# Create the histogram
|
||||
n_bins = 100
|
||||
xmin = -100
|
||||
xmax = 1e4
|
||||
hist_aare = bh.Histogram(bh.axis.Regular(n_bins, xmin, xmax))
|
||||
|
||||
fname = test_data_path / "clust/beam_En700eV_-40deg_300V_10us_d0_f0_100.clust"
|
||||
|
||||
#Read clusters and fill the histogram with pixel values
|
||||
with ClusterFile(fname, chunk_size = 10000) as f:
|
||||
for clusters in f:
|
||||
arr = np.array(clusters, copy = False)
|
||||
hist_aare.fill(arr['data'].flat)
|
||||
|
||||
|
||||
#Load the histogram from the pickle file
|
||||
with open(fname.with_suffix('.pkl'), 'rb') as f:
|
||||
hist_py = pickle.load(f)
|
||||
|
||||
#Compare the two histograms
|
||||
assert hist_aare == hist_py
|
||||
54
python/tests/test_ClusterVector.py
Normal file
54
python/tests/test_ClusterVector.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
import boost_histogram as bh
|
||||
import time
|
||||
from pathlib import Path
|
||||
import pickle
|
||||
|
||||
from aare import ClusterFile
|
||||
from aare import _aare
|
||||
from conftest import test_data_path
|
||||
|
||||
|
||||
def test_create_cluster_vector():
|
||||
cv = _aare.ClusterVector_Cluster3x3i()
|
||||
assert cv.cluster_size_x == 3
|
||||
assert cv.cluster_size_y == 3
|
||||
assert cv.size == 0
|
||||
|
||||
|
||||
def test_push_back_on_cluster_vector():
|
||||
cv = _aare.ClusterVector_Cluster2x2i()
|
||||
assert cv.cluster_size_x == 2
|
||||
assert cv.cluster_size_y == 2
|
||||
assert cv.size == 0
|
||||
|
||||
cluster = _aare.Cluster2x2i(19, 22, np.ones(4, dtype=np.int32))
|
||||
cv.push_back(cluster)
|
||||
assert cv.size == 1
|
||||
|
||||
arr = np.array(cv, copy=False)
|
||||
assert arr[0]['x'] == 19
|
||||
assert arr[0]['y'] == 22
|
||||
|
||||
|
||||
def test_make_a_hitmap_from_cluster_vector():
|
||||
cv = _aare.ClusterVector_Cluster3x3i()
|
||||
|
||||
# Push back 4 clusters with different positions
|
||||
cv.push_back(_aare.Cluster3x3i(0, 0, np.ones(9, dtype=np.int32)))
|
||||
cv.push_back(_aare.Cluster3x3i(1, 1, np.ones(9, dtype=np.int32)))
|
||||
cv.push_back(_aare.Cluster3x3i(1, 1, np.ones(9, dtype=np.int32)))
|
||||
cv.push_back(_aare.Cluster3x3i(2, 2, np.ones(9, dtype=np.int32)))
|
||||
|
||||
ref = np.zeros((5, 5), dtype=np.int32)
|
||||
ref[0,0] = 1
|
||||
ref[1,1] = 2
|
||||
ref[2,2] = 1
|
||||
|
||||
|
||||
img = _aare.hitmap((5,5), cv)
|
||||
# print(img)
|
||||
# print(ref)
|
||||
assert (img == ref).all()
|
||||
|
||||
39
python/tests/test_RawSubFile.py
Normal file
39
python/tests/test_RawSubFile.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from aare import RawSubFile, DetectorType
|
||||
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_a_jungfrau_RawSubFile(test_data_path):
|
||||
|
||||
# Starting with f1 there is now 7 frames left in the series of files
|
||||
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f1_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
|
||||
assert f.frames_in_file == 7
|
||||
|
||||
headers, frames = f.read()
|
||||
|
||||
assert headers.size == 7
|
||||
assert frames.shape == (7, 512, 1024)
|
||||
|
||||
|
||||
for i,h in zip(range(4,11,1), headers):
|
||||
assert h["frameNumber"] == i
|
||||
|
||||
# Compare to canned data using numpy
|
||||
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
|
||||
assert np.all(data[3:] == frames)
|
||||
|
||||
@pytest.mark.files
|
||||
def test_iterate_over_a_jungfrau_RawSubFile(test_data_path):
|
||||
|
||||
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
|
||||
|
||||
# Given the first subfile in a series we can read all frames from f0, f1, f2...fN
|
||||
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
|
||||
i = 0
|
||||
for header, frame in f:
|
||||
assert header["frameNumber"] == i+1
|
||||
assert np.all(frame == data[i])
|
||||
i += 1
|
||||
assert i == 10
|
||||
assert header["frameNumber"] == 10
|
||||
92
python/tests/test_jungfrau_dat_files.py
Normal file
92
python/tests/test_jungfrau_dat_files.py
Normal file
@@ -0,0 +1,92 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from aare import JungfrauDataFile
|
||||
|
||||
@pytest.mark.files
|
||||
def test_jfungfrau_dat_read_number_of_frames(test_data_path):
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as dat_file:
|
||||
assert dat_file.total_frames == 24
|
||||
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as dat_file:
|
||||
assert dat_file.total_frames == 53
|
||||
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as dat_file:
|
||||
assert dat_file.total_frames == 113
|
||||
|
||||
|
||||
@pytest.mark.files
|
||||
def test_jfungfrau_dat_read_number_of_file(test_data_path):
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as dat_file:
|
||||
assert dat_file.n_files == 4
|
||||
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as dat_file:
|
||||
assert dat_file.n_files == 7
|
||||
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as dat_file:
|
||||
assert dat_file.n_files == 7
|
||||
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_module(test_data_path):
|
||||
"""
|
||||
Read all frames from the series of .dat files. Compare to canned data in npz format.
|
||||
"""
|
||||
|
||||
# Read all frames from the .dat file
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as f:
|
||||
header, data = f.read()
|
||||
|
||||
#Sanity check
|
||||
n_frames = 24
|
||||
assert header.size == n_frames
|
||||
assert data.shape == (n_frames, 512, 1024)
|
||||
|
||||
# Read reference data using numpy
|
||||
with np.load(test_data_path / "dat/AldoJF500k.npz") as f:
|
||||
ref_header = f["headers"]
|
||||
ref_data = f["frames"]
|
||||
|
||||
# Check that the data is the same
|
||||
assert np.all(ref_header == header)
|
||||
assert np.all(ref_data == data)
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_half_module(test_data_path):
|
||||
|
||||
# Read all frames from the .dat file
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as f:
|
||||
header, data = f.read()
|
||||
|
||||
n_frames = 53
|
||||
assert header.size == n_frames
|
||||
assert data.shape == (n_frames, 256, 1024)
|
||||
|
||||
# Read reference data using numpy
|
||||
with np.load(test_data_path / "dat/AldoJF250k.npz") as f:
|
||||
ref_header = f["headers"]
|
||||
ref_data = f["frames"]
|
||||
|
||||
# Check that the data is the same
|
||||
assert np.all(ref_header == header)
|
||||
assert np.all(ref_data == data)
|
||||
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_single_chip(test_data_path):
|
||||
|
||||
# Read all frames from the .dat file
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as f:
|
||||
header, data = f.read()
|
||||
|
||||
n_frames = 113
|
||||
assert header.size == n_frames
|
||||
assert data.shape == (n_frames, 256, 256)
|
||||
|
||||
# Read reference data using numpy
|
||||
with np.load(test_data_path / "dat/AldoJF65k.npz") as f:
|
||||
ref_header = f["headers"]
|
||||
ref_data = f["frames"]
|
||||
|
||||
# Check that the data is the same
|
||||
assert np.all(ref_header == header)
|
||||
assert np.all(ref_data == data)
|
||||
Reference in New Issue
Block a user