mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2026-02-15 07:08:42 +01:00
WIP
This commit is contained in:
@@ -1,50 +1,40 @@
|
||||
import sys
|
||||
sys.path.append('/home/l_msdetect/erik/aare/build')
|
||||
|
||||
|
||||
#Our normal python imports
|
||||
from pathlib import Path
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
||||
import numpy as np
|
||||
import boost_histogram as bh
|
||||
import time
|
||||
|
||||
import tifffile
|
||||
|
||||
import aare
|
||||
|
||||
data = np.random.normal(10, 1, 1000)
|
||||
|
||||
hist = bh.Histogram(bh.axis.Regular(10, 0, 20))
|
||||
hist.fill(data)
|
||||
#Directly import what we need from aare
|
||||
from aare import File, ClusterFile, hitmap
|
||||
from aare._aare import calculate_eta2, ClusterFinderMT, ClusterCollector
|
||||
|
||||
|
||||
x = hist.axes[0].centers
|
||||
y = hist.values()
|
||||
y_err = np.sqrt(y)+1
|
||||
res = aare.fit_gaus(x, y, y_err, chi2 = True)
|
||||
base = Path('/mnt/sls_det_storage/moench_data/tomcat_nanoscope_21042020/09_Moench_650um/')
|
||||
|
||||
# for f in base.glob('*'):
|
||||
# print(f.name)
|
||||
|
||||
|
||||
t_elapsed = time.perf_counter()-t0
|
||||
print(f'Histogram filling took: {t_elapsed:.3f}s {total_clusters/t_elapsed/1e6:.3f}M clusters/s')
|
||||
cluster_fname = base/'acq_interp_center_3.8Mfr_200V.clust'
|
||||
flatfield_fname = base/'flatfield_center_200_d0_f000000000000_0.clust'
|
||||
|
||||
histogram_data = hist3d.counts()
|
||||
x = hist3d.axes[2].edges[:-1]
|
||||
|
||||
y = histogram_data[100,100,:]
|
||||
xx = np.linspace(x[0], x[-1])
|
||||
# fig, ax = plt.subplots()
|
||||
# ax.step(x, y, where = 'post')
|
||||
|
||||
y_err = np.sqrt(y)
|
||||
y_err = np.zeros(y.size)
|
||||
y_err += 1
|
||||
|
||||
# par = fit_gaus2(y,x, y_err)
|
||||
# ax.plot(xx, gaus(xx,par))
|
||||
# print(par)
|
||||
|
||||
res = fit_gaus(y,x)
|
||||
res2 = fit_gaus(y,x, y_err)
|
||||
print(res)
|
||||
print(res2)
|
||||
cluster_fname.stat().st_size/1e6/4
|
||||
|
||||
image = np.zeros((400,400))
|
||||
with ClusterFile(cluster_fname, chunk_size = 1000000) as f:
|
||||
for clusters in f:
|
||||
test = hitmap(image.shape, clusters)
|
||||
break
|
||||
# image += hitmap(image.shape, clusters)
|
||||
# break
|
||||
print('We are back in python')
|
||||
# fig, ax = plt.subplots(figsize = (7,7))
|
||||
# im = ax.imshow(image)
|
||||
# im.set_clim(0,1)
|
||||
Reference in New Issue
Block a user