mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-12 15:27:13 +02:00
WIP
This commit is contained in:
@ -7,6 +7,7 @@ from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
|
||||
from ._aare import DetectorType
|
||||
from ._aare import ClusterFile
|
||||
from ._aare import hitmap
|
||||
from ._aare import ROI
|
||||
|
||||
from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
|
||||
|
||||
|
@ -1,50 +1,40 @@
|
||||
import sys
|
||||
sys.path.append('/home/l_msdetect/erik/aare/build')
|
||||
|
||||
|
||||
#Our normal python imports
|
||||
from pathlib import Path
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
||||
import numpy as np
|
||||
import boost_histogram as bh
|
||||
import time
|
||||
|
||||
import tifffile
|
||||
|
||||
import aare
|
||||
|
||||
data = np.random.normal(10, 1, 1000)
|
||||
|
||||
hist = bh.Histogram(bh.axis.Regular(10, 0, 20))
|
||||
hist.fill(data)
|
||||
#Directly import what we need from aare
|
||||
from aare import File, ClusterFile, hitmap
|
||||
from aare._aare import calculate_eta2, ClusterFinderMT, ClusterCollector
|
||||
|
||||
|
||||
x = hist.axes[0].centers
|
||||
y = hist.values()
|
||||
y_err = np.sqrt(y)+1
|
||||
res = aare.fit_gaus(x, y, y_err, chi2 = True)
|
||||
base = Path('/mnt/sls_det_storage/moench_data/tomcat_nanoscope_21042020/09_Moench_650um/')
|
||||
|
||||
# for f in base.glob('*'):
|
||||
# print(f.name)
|
||||
|
||||
|
||||
t_elapsed = time.perf_counter()-t0
|
||||
print(f'Histogram filling took: {t_elapsed:.3f}s {total_clusters/t_elapsed/1e6:.3f}M clusters/s')
|
||||
cluster_fname = base/'acq_interp_center_3.8Mfr_200V.clust'
|
||||
flatfield_fname = base/'flatfield_center_200_d0_f000000000000_0.clust'
|
||||
|
||||
histogram_data = hist3d.counts()
|
||||
x = hist3d.axes[2].edges[:-1]
|
||||
|
||||
y = histogram_data[100,100,:]
|
||||
xx = np.linspace(x[0], x[-1])
|
||||
# fig, ax = plt.subplots()
|
||||
# ax.step(x, y, where = 'post')
|
||||
|
||||
y_err = np.sqrt(y)
|
||||
y_err = np.zeros(y.size)
|
||||
y_err += 1
|
||||
|
||||
# par = fit_gaus2(y,x, y_err)
|
||||
# ax.plot(xx, gaus(xx,par))
|
||||
# print(par)
|
||||
|
||||
res = fit_gaus(y,x)
|
||||
res2 = fit_gaus(y,x, y_err)
|
||||
print(res)
|
||||
print(res2)
|
||||
cluster_fname.stat().st_size/1e6/4
|
||||
|
||||
image = np.zeros((400,400))
|
||||
with ClusterFile(cluster_fname, chunk_size = 1000000) as f:
|
||||
for clusters in f:
|
||||
test = hitmap(image.shape, clusters)
|
||||
break
|
||||
# image += hitmap(image.shape, clusters)
|
||||
# break
|
||||
print('We are back in python')
|
||||
# fig, ax = plt.subplots(figsize = (7,7))
|
||||
# im = ax.imshow(image)
|
||||
# im.set_clim(0,1)
|
98
python/src/aare.code-workspace
Normal file
98
python/src/aare.code-workspace
Normal file
@ -0,0 +1,98 @@
|
||||
{
|
||||
"folders": [
|
||||
{
|
||||
"path": "../../.."
|
||||
},
|
||||
{
|
||||
"path": "../../../../slsDetectorPackage"
|
||||
}
|
||||
],
|
||||
"settings": {
|
||||
"files.associations": {
|
||||
"compare": "cpp",
|
||||
"cstdint": "cpp",
|
||||
"cctype": "cpp",
|
||||
"clocale": "cpp",
|
||||
"cmath": "cpp",
|
||||
"csignal": "cpp",
|
||||
"cstdarg": "cpp",
|
||||
"cstddef": "cpp",
|
||||
"cstdio": "cpp",
|
||||
"cstdlib": "cpp",
|
||||
"cstring": "cpp",
|
||||
"ctime": "cpp",
|
||||
"cwchar": "cpp",
|
||||
"cwctype": "cpp",
|
||||
"any": "cpp",
|
||||
"array": "cpp",
|
||||
"atomic": "cpp",
|
||||
"strstream": "cpp",
|
||||
"bit": "cpp",
|
||||
"*.tcc": "cpp",
|
||||
"bitset": "cpp",
|
||||
"cfenv": "cpp",
|
||||
"charconv": "cpp",
|
||||
"chrono": "cpp",
|
||||
"codecvt": "cpp",
|
||||
"complex": "cpp",
|
||||
"concepts": "cpp",
|
||||
"condition_variable": "cpp",
|
||||
"deque": "cpp",
|
||||
"forward_list": "cpp",
|
||||
"list": "cpp",
|
||||
"map": "cpp",
|
||||
"set": "cpp",
|
||||
"string": "cpp",
|
||||
"unordered_map": "cpp",
|
||||
"unordered_set": "cpp",
|
||||
"vector": "cpp",
|
||||
"exception": "cpp",
|
||||
"algorithm": "cpp",
|
||||
"functional": "cpp",
|
||||
"iterator": "cpp",
|
||||
"memory": "cpp",
|
||||
"memory_resource": "cpp",
|
||||
"numeric": "cpp",
|
||||
"optional": "cpp",
|
||||
"random": "cpp",
|
||||
"ratio": "cpp",
|
||||
"source_location": "cpp",
|
||||
"string_view": "cpp",
|
||||
"system_error": "cpp",
|
||||
"tuple": "cpp",
|
||||
"type_traits": "cpp",
|
||||
"utility": "cpp",
|
||||
"format": "cpp",
|
||||
"fstream": "cpp",
|
||||
"future": "cpp",
|
||||
"initializer_list": "cpp",
|
||||
"iomanip": "cpp",
|
||||
"iosfwd": "cpp",
|
||||
"iostream": "cpp",
|
||||
"istream": "cpp",
|
||||
"limits": "cpp",
|
||||
"mutex": "cpp",
|
||||
"new": "cpp",
|
||||
"numbers": "cpp",
|
||||
"ostream": "cpp",
|
||||
"ranges": "cpp",
|
||||
"semaphore": "cpp",
|
||||
"shared_mutex": "cpp",
|
||||
"span": "cpp",
|
||||
"sstream": "cpp",
|
||||
"stdexcept": "cpp",
|
||||
"stdfloat": "cpp",
|
||||
"stop_token": "cpp",
|
||||
"streambuf": "cpp",
|
||||
"text_encoding": "cpp",
|
||||
"thread": "cpp",
|
||||
"cinttypes": "cpp",
|
||||
"typeindex": "cpp",
|
||||
"typeinfo": "cpp",
|
||||
"valarray": "cpp",
|
||||
"variant": "cpp",
|
||||
"regex": "cpp",
|
||||
"*.ipp": "cpp"
|
||||
}
|
||||
}
|
||||
}
|
@ -20,7 +20,13 @@ template <typename T>
|
||||
void define_cluster_vector(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterVector_{}", typestr);
|
||||
py::class_<ClusterVector<T>>(m, class_name.c_str(), py::buffer_protocol())
|
||||
.def(py::init<int, int>())
|
||||
.def(py::init<int, int>(),
|
||||
py::arg("cluster_size_x") = 3, py::arg("cluster_size_y") = 3)
|
||||
.def("push_back",
|
||||
[](ClusterVector<T> &self, int x, int y, py::array_t<T> data) {
|
||||
// auto view = make_view_2d(data);
|
||||
self.push_back(x, y, reinterpret_cast<const std::byte*>(data.data()));
|
||||
})
|
||||
.def_property_readonly("size", &ClusterVector<T>::size)
|
||||
.def("item_size", &ClusterVector<T>::item_size)
|
||||
.def_property_readonly("fmt",
|
||||
@ -38,6 +44,8 @@ void define_cluster_vector(py::module &m, const std::string &typestr) {
|
||||
auto *vec = new std::vector<T>(self.sum_2x2());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def_property_readonly("cluster_size_x", &ClusterVector<T>::cluster_size_x)
|
||||
.def_property_readonly("cluster_size_y", &ClusterVector<T>::cluster_size_y)
|
||||
.def_property_readonly("capacity", &ClusterVector<T>::capacity)
|
||||
.def_property("frame_number", &ClusterVector<T>::frame_number,
|
||||
&ClusterVector<T>::set_frame_number)
|
||||
|
@ -31,6 +31,11 @@ void define_cluster_file_io_bindings(py::module &m) {
|
||||
auto v = new ClusterVector<int32_t>(self.read_clusters(n_clusters));
|
||||
return v;
|
||||
},py::return_value_policy::take_ownership)
|
||||
.def("read_clusters",
|
||||
[](ClusterFile &self, size_t n_clusters, ROI roi) {
|
||||
auto v = new ClusterVector<int32_t>(self.read_clusters(n_clusters, roi));
|
||||
return v;
|
||||
},py::return_value_policy::take_ownership)
|
||||
.def("read_frame",
|
||||
[](ClusterFile &self) {
|
||||
auto v = new ClusterVector<int32_t>(self.read_frame());
|
||||
|
@ -195,6 +195,8 @@ void define_file_io_bindings(py::module &m) {
|
||||
|
||||
py::class_<ROI>(m, "ROI")
|
||||
.def(py::init<>())
|
||||
.def(py::init<int64_t, int64_t, int64_t, int64_t>(), py::arg("xmin"),
|
||||
py::arg("xmax"), py::arg("ymin"), py::arg("ymax"))
|
||||
.def_readwrite("xmin", &ROI::xmin)
|
||||
.def_readwrite("xmax", &ROI::xmax)
|
||||
.def_readwrite("ymin", &ROI::ymin)
|
||||
|
58
python/src/interpolation.hpp
Normal file
58
python/src/interpolation.hpp
Normal file
@ -0,0 +1,58 @@
|
||||
#include "aare/Interpolator.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "np_helper.hpp"
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
void define_interpolation_bindings(py::module &m) {
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(aare::Photon, x,y,energy);
|
||||
|
||||
py::class_<aare::Interpolator>(m, "Interpolator")
|
||||
.def(py::init([](py::array_t<double, py::array::c_style | py::array::forcecast> etacube, py::array_t<double> xbins,
|
||||
py::array_t<double> ybins, py::array_t<double> ebins) {
|
||||
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
|
||||
make_view_1d(ybins), make_view_1d(ebins));
|
||||
}))
|
||||
.def("get_ietax", [](Interpolator& self){
|
||||
auto*ptr = new NDArray<double,3>{};
|
||||
*ptr = self.get_ietax();
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("get_ietay", [](Interpolator& self){
|
||||
auto*ptr = new NDArray<double,3>{};
|
||||
*ptr = self.get_ietay();
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("interpolate", [](Interpolator& self, const ClusterVector<int32_t>& clusters){
|
||||
auto photons = self.interpolate(clusters);
|
||||
auto* ptr = new std::vector<Photon>{photons};
|
||||
return return_vector(ptr);
|
||||
});
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
m.def(
|
||||
"hej",
|
||||
[]() {
|
||||
// auto boost_histogram = py::module_::import("boost_histogram");
|
||||
// py::object axis =
|
||||
// boost_histogram.attr("axis").attr("Regular")(10, 0.0, 10.0);
|
||||
// py::object histogram = boost_histogram.attr("Histogram")(axis);
|
||||
// return histogram;
|
||||
// return h;
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D Gaussian function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the Gaussian function.
|
||||
par : array_like
|
||||
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
|
||||
)");
|
||||
}
|
@ -9,6 +9,7 @@
|
||||
#include "cluster.hpp"
|
||||
#include "cluster_file.hpp"
|
||||
#include "fit.hpp"
|
||||
#include "interpolation.hpp"
|
||||
|
||||
//Pybind stuff
|
||||
#include <pybind11/pybind11.h>
|
||||
@ -31,5 +32,6 @@ PYBIND11_MODULE(_aare, m) {
|
||||
define_cluster_collector_bindings(m);
|
||||
define_cluster_file_sink_bindings(m);
|
||||
define_fit_bindings(m);
|
||||
define_interpolation_bindings(m);
|
||||
|
||||
}
|
Reference in New Issue
Block a user