mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-12-29 00:11:25 +01:00
adresses SonarQube comments
This commit is contained in:
@@ -17,6 +17,8 @@ data_points = np.stack([X.ravel(), Y.ravel()], axis=1)
|
||||
variance = 10*pixel_width
|
||||
covariance_matrix = np.array([[variance, 0],[0, variance]])
|
||||
|
||||
|
||||
|
||||
def create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points):
|
||||
gaussian = multivariate_normal(mean=mean, cov=covariance_matrix)
|
||||
probability_values = gaussian.pdf(data_points)
|
||||
@@ -46,14 +48,14 @@ def create_3x3cluster_from_frame(frame, pixels_per_superpixel):
|
||||
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum()], dtype=np.float64))
|
||||
|
||||
|
||||
def calculate_eta_distribution(num_frames, pixels_per_superpixel, cluster_2x2 = True):
|
||||
def calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, cluster_2x2 = True):
|
||||
hist = bh.Histogram(
|
||||
bh.axis.Regular(100, -0.2, 1.2),
|
||||
bh.axis.Regular(100, -0.2, 1.2), bh.axis.Regular(1, 0, num_pixels*num_pixels*1/(variance*2*np.pi)))
|
||||
|
||||
for frame_index in range(0, num_frames):
|
||||
mean_x = np.random.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
|
||||
mean_y = np.random.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
|
||||
for _ in range(0, num_frames):
|
||||
mean_x = random_number_generator.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
|
||||
mean_y = random_number_generator.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
|
||||
frame = create_photon_hit_with_gaussian_distribution(np.array([mean_x, mean_y]), variance, data_points)
|
||||
|
||||
cluster = None
|
||||
@@ -81,7 +83,9 @@ def test_interpolation_of_2x2_cluster(test_data_path):
|
||||
|
||||
num_frames = 1000
|
||||
pixels_per_superpixel = int(num_pixels*0.5)
|
||||
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel)
|
||||
random_number_generator = np.random.default_rng(42)
|
||||
|
||||
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator)
|
||||
|
||||
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges[:-1], eta_distribution.axes[1].edges[:-1], eta_distribution.axes[2].edges[:-1])
|
||||
|
||||
@@ -118,7 +122,8 @@ def test_interpolation_of_3x3_cluster(test_data_path):
|
||||
|
||||
num_frames = 1000
|
||||
pixels_per_superpixel = int(num_pixels/3)
|
||||
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, False)
|
||||
random_number_generator = np.random.default_rng(42)
|
||||
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, False)
|
||||
|
||||
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges[:-1], eta_distribution.axes[1].edges[:-1], eta_distribution.axes[2].edges[:-1])
|
||||
|
||||
|
||||
Reference in New Issue
Block a user