Merge branch 'main' into dev/reduce
All checks were successful
Build on RHEL8 / build (push) Successful in 3m16s
Build on RHEL9 / build (push) Successful in 3m35s

This commit is contained in:
2025-09-08 15:39:27 +02:00
23 changed files with 658 additions and 55 deletions

View File

@@ -368,6 +368,7 @@ set(PUBLICHEADERS
set(SourceFiles
${CMAKE_CURRENT_SOURCE_DIR}/src/calibration.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/CtbRawFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.cpp
@@ -437,6 +438,7 @@ endif()
if(AARE_TESTS)
set(TestSources
${CMAKE_CURRENT_SOURCE_DIR}/src/algorithm.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/calibration.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.test.cpp

View File

@@ -1,7 +1,22 @@
# Release notes
### head
### 2025.8.22
Features:
- Apply calibration works in G0 if passes a 2D calibration and pedestal
- count pixels that switch
- calculate pedestal (also g0 version)
- NDArray::view() needs an lvalue to reduce issues with the view outliving the array
Bugfixes:
- Now using glibc 2.17 in conda builds (was using the host)
- Fixed shifted pixels in clusters close to the edge of a frame
### 2025.7.18
Features:
@@ -15,7 +30,7 @@ Bugfixes:
- Removed unused file: ClusterFile.cpp
### 2025.05.22
### 2025.5.22
Features:

View File

@@ -1 +1 @@
2025.5.22
2025.8.22

View File

@@ -3,3 +3,14 @@ python:
- 3.12
- 3.13
c_compiler:
- gcc # [linux]
c_stdlib:
- sysroot # [linux]
cxx_compiler:
- gxx # [linux]
c_stdlib_version: # [linux]
- 2.17 # [linux]

View File

@@ -16,6 +16,8 @@ build:
requirements:
build:
- {{ compiler('c') }}
- {{ stdlib("c") }}
- {{ compiler('cxx') }}
- cmake
- ninja

View File

@@ -17,8 +17,24 @@ Functions for applying calibration to data.
# Apply calibration to raw data to convert from raw ADC values to keV
data = aare.apply_calibration(raw_data, pd=pedestal, cal=calibration)
# If you pass a 2D pedestal and calibration only G0 will be used for the conversion
# Pixels that switched to G1 or G2 will be set to 0
data = aare.apply_calibration(raw_data, pd=pedestal[0], cal=calibration[0])
.. py:currentmodule:: aare
.. autofunction:: apply_calibration
.. autofunction:: load_calibration
.. autofunction:: calculate_pedestal
.. autofunction:: calculate_pedestal_float
.. autofunction:: calculate_pedestal_g0
.. autofunction:: calculate_pedestal_g0_float
.. autofunction:: count_switching_pixels

View File

@@ -145,8 +145,8 @@ class ClusterFinder {
m_pedestal.mean(iy + ir, ix + ic));
cluster.data[i] =
tmp; // Watch for out of bounds access
i++;
}
i++;
}
}

View File

@@ -105,7 +105,7 @@ class Frame {
* @tparam T type of the pixels
* @return NDView<T, 2>
*/
template <typename T> NDView<T, 2> view() {
template <typename T> NDView<T, 2> view() & {
std::array<ssize_t, 2> shape = {static_cast<ssize_t>(m_rows),
static_cast<ssize_t>(m_cols)};
T *data = reinterpret_cast<T *>(m_data);

View File

@@ -25,7 +25,7 @@ template <typename T, ssize_t Ndim = 2>
class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
std::array<ssize_t, Ndim> shape_;
std::array<ssize_t, Ndim> strides_;
size_t size_{};
size_t size_{}; //TODO! do we need to store size when we have shape?
T *data_;
public:
@@ -33,7 +33,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
* @brief Default constructor. Will construct an empty NDArray.
*
*/
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr){};
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr) {};
/**
* @brief Construct a new NDArray object with a given shape.
@@ -43,8 +43,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
*/
explicit NDArray(std::array<ssize_t, Ndim> shape)
: shape_(shape), strides_(c_strides<Ndim>(shape_)),
size_(std::accumulate(shape_.begin(), shape_.end(), 1,
std::multiplies<>())),
size_(num_elements(shape_)),
data_(new T[size_]) {}
/**
@@ -79,6 +78,24 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
other.reset(); // TODO! is this necessary?
}
//Move constructor from an an array with Ndim + 1
template <ssize_t M, typename = std::enable_if_t<(M == Ndim + 1)>>
NDArray(NDArray<T, M> &&other)
: shape_(drop_first_dim(other.shape())),
strides_(c_strides<Ndim>(shape_)), size_(num_elements(shape_)),
data_(other.data()) {
// For now only allow move if the size matches, to avoid unreachable data
// if the use case arises we can remove this check
if(size() != other.size()) {
data_ = nullptr; // avoid double free, other will clean up the memory in it's destructor
throw std::runtime_error(LOCATION +
"Size mismatch in move constructor of NDArray<T, Ndim-1>");
}
other.reset();
}
// Copy constructor
NDArray(const NDArray &other)
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
@@ -380,12 +397,6 @@ NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
result *= value;
return result;
}
// template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print() {
// if (shape_[0] < 20 && shape_[1] < 20)
// Print_all();
// else
// Print_some();
// }
template <typename T, ssize_t Ndim>
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
@@ -437,4 +448,23 @@ NDArray<T, Ndim> load(const std::string &pathname,
return img;
}
template <typename RT, typename NT, typename DT, ssize_t Ndim>
NDArray<RT, Ndim> safe_divide(const NDArray<NT, Ndim> &numerator,
const NDArray<DT, Ndim> &denominator) {
if (numerator.shape() != denominator.shape()) {
throw std::runtime_error(
"Shapes of numerator and denominator must match");
}
NDArray<RT, Ndim> result(numerator.shape());
for (ssize_t i = 0; i < numerator.size(); ++i) {
if (denominator[i] != 0) {
result[i] =
static_cast<RT>(numerator[i]) / static_cast<RT>(denominator[i]);
} else {
result[i] = RT{0}; // or handle division by zero as needed
}
}
return result;
}
} // namespace aare

View File

@@ -26,6 +26,33 @@ Shape<Ndim> make_shape(const std::vector<size_t> &shape) {
return arr;
}
/**
* @brief Helper function to drop the first dimension of a shape.
* This is useful when you want to create a 2D view from a 3D array.
* @param shape The shape to drop the first dimension from.
* @return A new shape with the first dimension dropped.
*/
template<size_t Ndim>
Shape<Ndim-1> drop_first_dim(const Shape<Ndim> &shape) {
static_assert(Ndim > 1, "Cannot drop first dimension from a 1D shape");
Shape<Ndim - 1> new_shape;
std::copy(shape.begin() + 1, shape.end(), new_shape.begin());
return new_shape;
}
/**
* @brief Helper function when constructing NDArray/NDView. Calculates the number
* of elements in the resulting array from a shape.
* @param shape The shape to calculate the number of elements for.
* @return The number of elements in and NDArray/NDView of that shape.
*/
template <size_t Ndim>
size_t num_elements(const Shape<Ndim> &shape) {
return std::accumulate(shape.begin(), shape.end(), 1,
std::multiplies<size_t>());
}
template <ssize_t Dim = 0, typename Strides>
ssize_t element_offset(const Strides & /*unused*/) {
return 0;
@@ -73,10 +100,21 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
}
template <typename... Ix>
const std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) const {
std::enable_if_t<sizeof...(Ix) == 1 && (Ndim > 1), NDView<T, Ndim - 1>> operator()(Ix... index) {
// return a view of the next dimension
std::array<ssize_t, Ndim - 1> new_shape{};
std::copy_n(shape_.begin() + 1, Ndim - 1, new_shape.begin());
return NDView<T, Ndim - 1>(&buffer_[element_offset(strides_, index...)],
new_shape);
}
template <typename... Ix>
std::enable_if_t<sizeof...(Ix) == Ndim, const T &> operator()(Ix... index) const {
return buffer_[element_offset(strides_, index...)];
}
ssize_t size() const { return static_cast<ssize_t>(size_); }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<ssize_t, Ndim> strides() const noexcept { return strides_; }
@@ -85,9 +123,19 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
T *end() { return buffer_ + size_; }
T const *begin() const { return buffer_; }
T const *end() const { return buffer_ + size_; }
T &operator()(ssize_t i) { return buffer_[i]; }
/**
* @brief Access element at index i.
*/
T &operator[](ssize_t i) { return buffer_[i]; }
const T &operator()(ssize_t i) const { return buffer_[i]; }
/**
* @brief Access element at index i.
*/
const T &operator[](ssize_t i) const { return buffer_[i]; }
bool operator==(const NDView &other) const {
@@ -157,6 +205,22 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
const T *data() const { return buffer_; }
void print_all() const;
/**
* @brief Create a subview of a range of the first dimension.
* This is useful for splitting a batches of frames in parallel processing.
* @param first The first index of the subview (inclusive).
* @param last The last index of the subview (exclusive).
* @return A new NDView that is a subview of the current view.
* @throws std::runtime_error if the range is invalid.
*/
NDView sub_view(ssize_t first, ssize_t last) const {
if (first < 0 || last > shape_[0] || first >= last)
throw std::runtime_error(LOCATION + "Invalid sub_view range");
auto new_shape = shape_;
new_shape[0] = last - first;
return NDView(buffer_ + first * strides_[0], new_shape);
}
private:
T *buffer_{nullptr};
std::array<ssize_t, Ndim> strides_{};

View File

@@ -240,14 +240,14 @@ template <typename T> void VarClusterFinder<T>::first_pass() {
for (ssize_t i = 0; i < original_.size(); ++i) {
if (use_noise_map)
threshold_ = 5 * noiseMap(i);
binary_(i) = (original_(i) > threshold_);
threshold_ = 5 * noiseMap[i];
binary_[i] = (original_[i] > threshold_);
}
for (int i = 0; i < shape_[0]; ++i) {
for (int j = 0; j < shape_[1]; ++j) {
// do we have someting to process?
// do we have something to process?
if (binary_(i, j)) {
auto tmp = check_neighbours(i, j);
if (tmp != 0) {

View File

@@ -1,6 +1,9 @@
#pragma once
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "aare/defs.hpp"
#include "aare/utils/par.hpp"
#include "aare/utils/task.hpp"
#include <cstdint>
#include <future>
@@ -55,32 +58,152 @@ ALWAYS_INLINE std::pair<uint16_t, int16_t> get_value_and_gain(uint16_t raw) {
template <class T>
void apply_calibration_impl(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
NDView<T, 3> ped, NDView<T, 3> cal, int start,
int stop) {
NDView<T, 3> ped, NDView<T, 3> cal, int start,
int stop) {
for (int frame_nr = start; frame_nr != stop; ++frame_nr) {
for (int row = 0; row != raw_data.shape(1); ++row) {
for (int col = 0; col != raw_data.shape(2); ++col) {
auto [value, gain] = get_value_and_gain(raw_data(frame_nr, row, col));
auto [value, gain] =
get_value_and_gain(raw_data(frame_nr, row, col));
// Using multiplication does not seem to speed up the code here
// ADU/keV is the standard unit for the calibration which
// means rewriting the formula is not worth it.
res(frame_nr, row, col) =
(value - ped(gain, row, col)) / cal(gain, row, col); //TODO! use multiplication
(value - ped(gain, row, col)) / cal(gain, row, col);
}
}
}
}
template <class T>
void apply_calibration_impl(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
NDView<T, 2> ped, NDView<T, 2> cal, int start,
int stop) {
for (int frame_nr = start; frame_nr != stop; ++frame_nr) {
for (int row = 0; row != raw_data.shape(1); ++row) {
for (int col = 0; col != raw_data.shape(2); ++col) {
auto [value, gain] =
get_value_and_gain(raw_data(frame_nr, row, col));
// Using multiplication does not seem to speed up the code here
// ADU/keV is the standard unit for the calibration which
// means rewriting the formula is not worth it.
// Set the value to 0 if the gain is not 0
if (gain == 0)
res(frame_nr, row, col) =
(value - ped(row, col)) / cal(row, col);
else
res(frame_nr, row, col) = 0;
}
}
}
}
template <class T, ssize_t Ndim = 3>
void apply_calibration(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
NDView<T, 3> ped, NDView<T, 3> cal,
NDView<T, Ndim> ped, NDView<T, Ndim> cal,
ssize_t n_threads = 4) {
std::vector<std::future<void>> futures;
futures.reserve(n_threads);
auto limits = split_task(0, raw_data.shape(0), n_threads);
for (const auto &lim : limits)
futures.push_back(std::async(&apply_calibration_impl<T>, res, raw_data, ped, cal,
lim.first, lim.second));
futures.push_back(std::async(
static_cast<void (*)(NDView<T, 3>, NDView<uint16_t, 3>,
NDView<T, Ndim>, NDView<T, Ndim>, int, int)>(
apply_calibration_impl),
res, raw_data, ped, cal, lim.first, lim.second));
for (auto &f : futures)
f.get();
}
template <bool only_gain0>
std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>>
sum_and_count_per_gain(NDView<uint16_t, 3> raw_data) {
constexpr ssize_t num_gains = only_gain0 ? 1 : 3;
NDArray<size_t, 3> accumulator(
std::array<ssize_t, 3>{num_gains, raw_data.shape(1), raw_data.shape(2)},
0);
NDArray<size_t, 3> count(
std::array<ssize_t, 3>{num_gains, raw_data.shape(1), raw_data.shape(2)},
0);
for (int frame_nr = 0; frame_nr != raw_data.shape(0); ++frame_nr) {
for (int row = 0; row != raw_data.shape(1); ++row) {
for (int col = 0; col != raw_data.shape(2); ++col) {
auto [value, gain] =
get_value_and_gain(raw_data(frame_nr, row, col));
if (gain != 0 && only_gain0)
continue;
accumulator(gain, row, col) += value;
count(gain, row, col) += 1;
}
}
}
return {std::move(accumulator), std::move(count)};
}
template <typename T, bool only_gain0 = false>
NDArray<T, 3 - static_cast<ssize_t>(only_gain0)>
calculate_pedestal(NDView<uint16_t, 3> raw_data, ssize_t n_threads) {
constexpr ssize_t num_gains = only_gain0 ? 1 : 3;
std::vector<std::future<std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>>>>
futures;
futures.reserve(n_threads);
auto subviews = make_subviews(raw_data, n_threads);
for (auto view : subviews) {
futures.push_back(std::async(
static_cast<std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>> (*)(
NDView<uint16_t, 3>)>(&sum_and_count_per_gain<only_gain0>),
view));
}
Shape<3> shape{num_gains, raw_data.shape(1), raw_data.shape(2)};
NDArray<size_t, 3> accumulator(shape, 0);
NDArray<size_t, 3> count(shape, 0);
// Combine the results from the futures
for (auto &f : futures) {
auto [acc, cnt] = f.get();
accumulator += acc;
count += cnt;
}
// Will move to a NDArray<T, 3 - static_cast<ssize_t>(only_gain0)>
// if only_gain0 is true
return safe_divide<T>(accumulator, count);
}
/**
* @brief Count the number of switching pixels in the raw data.
* This function counts the number of pixels that switch between G1 and G2 gain.
* It returns an NDArray with the number of switching pixels per pixel.
* @param raw_data The NDView containing the raw data
* @return An NDArray with the number of switching pixels per pixel
*/
NDArray<int, 2> count_switching_pixels(NDView<uint16_t, 3> raw_data);
/**
* @brief Count the number of switching pixels in the raw data.
* This function counts the number of pixels that switch between G1 and G2 gain.
* It returns an NDArray with the number of switching pixels per pixel.
* @param raw_data The NDView containing the raw data
* @param n_threads The number of threads to use for parallel processing
* @return An NDArray with the number of switching pixels per pixel
*/
NDArray<int, 2> count_switching_pixels(NDView<uint16_t, 3> raw_data,
ssize_t n_threads);
template <typename T>
auto calculate_pedestal_g0(NDView<uint16_t, 3> raw_data, ssize_t n_threads) {
return calculate_pedestal<T, true>(raw_data, n_threads);
}
} // namespace aare

View File

@@ -1,7 +1,10 @@
#pragma once
#include <thread>
#include <utility>
#include <vector>
#include "aare/utils/task.hpp"
namespace aare {
template <typename F>
@@ -15,4 +18,17 @@ void RunInParallel(F func, const std::vector<std::pair<int, int>> &tasks) {
thread.join();
}
}
template <typename T>
std::vector<NDView<T,3>> make_subviews(NDView<T, 3> &data, ssize_t n_threads) {
std::vector<NDView<T, 3>> subviews;
subviews.reserve(n_threads);
auto limits = split_task(0, data.shape(0), n_threads);
for (const auto &lim : limits) {
subviews.push_back(data.sub_view(lim.first, lim.second));
}
return subviews;
}
} // namespace aare

View File

@@ -1,4 +1,4 @@
#pragma once
#include <utility>
#include <vector>

View File

@@ -46,14 +46,13 @@ def ClusterFinderMT(image_size, cluster_size = (3,3), dtype=np.int32, n_sigma=5,
return cls(image_size, n_sigma=n_sigma, capacity=capacity, n_threads=n_threads)
def ClusterCollector(clusterfindermt, cluster_size = (3,3), dtype=np.int32):
def ClusterCollector(clusterfindermt, dtype=np.int32):
"""
Factory function to create a ClusterCollector object. Provides a cleaner syntax for
the templated ClusterCollector in C++.
"""
cls = _get_class("ClusterCollector", cluster_size, dtype)
cls = _get_class("ClusterCollector", clusterfindermt.cluster_size, dtype)
return cls(clusterfindermt)
def ClusterFileSink(clusterfindermt, cluster_file, dtype=np.int32):

View File

@@ -32,6 +32,7 @@ from .utils import random_pixels, random_pixel, flat_list, add_colorbar
from .func import *
from .calibration import *
from ._aare import apply_calibration
from ._aare import apply_calibration, count_switching_pixels
from ._aare import calculate_pedestal, calculate_pedestal_float, calculate_pedestal_g0, calculate_pedestal_g0_float
from ._aare import VarClusterFinder

View File

@@ -17,27 +17,137 @@ py::array_t<DataType> pybind_apply_calibration(
calibration,
int n_threads = 4) {
auto data_span = make_view_3d(data);
auto ped = make_view_3d(pedestal);
auto cal = make_view_3d(calibration);
auto data_span = make_view_3d(data); // data is always 3D
/* No pointer is passed, so NumPy will allocate the buffer */
auto result = py::array_t<DataType>(data_span.shape());
auto res = make_view_3d(result);
aare::apply_calibration<DataType>(res, data_span, ped, cal, n_threads);
if (data.ndim() == 3 && pedestal.ndim() == 3 && calibration.ndim() == 3) {
auto ped = make_view_3d(pedestal);
auto cal = make_view_3d(calibration);
aare::apply_calibration<DataType, 3>(res, data_span, ped, cal,
n_threads);
} else if (data.ndim() == 3 && pedestal.ndim() == 2 &&
calibration.ndim() == 2) {
auto ped = make_view_2d(pedestal);
auto cal = make_view_2d(calibration);
aare::apply_calibration<DataType, 2>(res, data_span, ped, cal,
n_threads);
} else {
throw std::runtime_error(
"Invalid number of dimensions for data, pedestal or calibration");
}
return result;
}
py::array_t<int> pybind_count_switching_pixels(
py::array_t<uint16_t, py::array::c_style | py::array::forcecast> data,
ssize_t n_threads = 4) {
auto data_span = make_view_3d(data);
auto arr = new NDArray<int, 2>{};
*arr = aare::count_switching_pixels(data_span, n_threads);
return return_image_data(arr);
}
template <typename T>
py::array_t<T> pybind_calculate_pedestal(
py::array_t<uint16_t, py::array::c_style | py::array::forcecast> data,
ssize_t n_threads) {
auto data_span = make_view_3d(data);
auto arr = new NDArray<T, 3>{};
*arr = aare::calculate_pedestal<T, false>(data_span, n_threads);
return return_image_data(arr);
}
template <typename T>
py::array_t<T> pybind_calculate_pedestal_g0(
py::array_t<uint16_t, py::array::c_style | py::array::forcecast> data,
ssize_t n_threads) {
auto data_span = make_view_3d(data);
auto arr = new NDArray<T, 2>{};
*arr = aare::calculate_pedestal<T, true>(data_span, n_threads);
return return_image_data(arr);
}
void bind_calibration(py::module &m) {
m.def("apply_calibration", &pybind_apply_calibration<double>,
py::arg("raw_data").noconvert(), py::kw_only(),
py::arg("pd").noconvert(), py::arg("cal").noconvert(),
py::arg("n_threads") = 4);
m.def("apply_calibration", &pybind_apply_calibration<float>,
py::arg("raw_data").noconvert(), py::kw_only(),
py::arg("pd").noconvert(), py::arg("cal").noconvert(),
py::arg("n_threads") = 4);
m.def("apply_calibration", &pybind_apply_calibration<double>,
m.def("count_switching_pixels", &pybind_count_switching_pixels,
R"(
Count the number of time each pixel switches to G1 or G2.
Parameters
----------
raw_data : array_like
3D array of shape (frames, rows, cols) to count the switching pixels from.
n_threads : int
The number of threads to use for the calculation.
)",
py::arg("raw_data").noconvert(), py::kw_only(),
py::arg("pd").noconvert(), py::arg("cal").noconvert(),
py::arg("n_threads") = 4);
m.def("calculate_pedestal", &pybind_calculate_pedestal<double>,
R"(
Calculate the pedestal for all three gains and return the result as a 3D array of doubles.
Parameters
----------
raw_data : array_like
3D array of shape (frames, rows, cols) to calculate the pedestal from.
Needs to contain data for all three gains (G0, G1, G2).
n_threads : int
The number of threads to use for the calculation.
)",
py::arg("raw_data").noconvert(), py::arg("n_threads") = 4);
m.def("calculate_pedestal_float", &pybind_calculate_pedestal<float>,
R"(
Same as `calculate_pedestal` but returns a 3D array of floats.
Parameters
----------
raw_data : array_like
3D array of shape (frames, rows, cols) to calculate the pedestal from.
Needs to contain data for all three gains (G0, G1, G2).
n_threads : int
The number of threads to use for the calculation.
)",
py::arg("raw_data").noconvert(), py::arg("n_threads") = 4);
m.def("calculate_pedestal_g0", &pybind_calculate_pedestal_g0<double>,
R"(
Calculate the pedestal for G0 and return the result as a 2D array of doubles.
Pixels in G1 and G2 are ignored.
Parameters
----------
raw_data : array_like
3D array of shape (frames, rows, cols) to calculate the pedestal from.
n_threads : int
The number of threads to use for the calculation.
)",
py::arg("raw_data").noconvert(), py::arg("n_threads") = 4);
m.def("calculate_pedestal_g0_float", &pybind_calculate_pedestal_g0<float>,
R"(
Same as `calculate_pedestal_g0` but returns a 2D array of floats.
Parameters
----------
raw_data : array_like
3D array of shape (frames, rows, cols) to calculate the pedestal from.
n_threads : int
The number of threads to use for the calculation.
)",
py::arg("raw_data").noconvert(), py::arg("n_threads") = 4);
}

View File

@@ -1,6 +1,7 @@
import pytest
import numpy as np
from aare import apply_calibration
import aare
def test_apply_calibration_small_data():
# The raw data consists of 10 4x5 images
@@ -27,7 +28,7 @@ def test_apply_calibration_small_data():
data = apply_calibration(raw, pd = pedestal, cal = calibration)
data = aare.apply_calibration(raw, pd = pedestal, cal = calibration)
# The formula that is applied is:
@@ -41,3 +42,94 @@ def test_apply_calibration_small_data():
assert data[2,2,2] == 0
assert data[0,1,1] == 0
assert data[1,3,0] == 0
@pytest.fixture
def raw_data_3x2x2():
raw = np.zeros((3, 2, 2), dtype=np.uint16)
raw[0, 0, 0] = 100
raw[1,0, 0] = 200
raw[2, 0, 0] = 300
raw[0, 0, 1] = (1<<14) + 100
raw[1, 0, 1] = (1<<14) + 200
raw[2, 0, 1] = (1<<14) + 300
raw[0, 1, 0] = (1<<14) + 37
raw[1, 1, 0] = 38
raw[2, 1, 0] = (3<<14) + 39
raw[0, 1, 1] = (3<<14) + 100
raw[1, 1, 1] = (3<<14) + 200
raw[2, 1, 1] = (3<<14) + 300
return raw
def test_calculate_pedestal(raw_data_3x2x2):
# Calculate the pedestal
pd = aare.calculate_pedestal(raw_data_3x2x2)
assert pd.shape == (3, 2, 2)
assert pd.dtype == np.float64
assert pd[0, 0, 0] == 200
assert pd[1, 0, 0] == 0
assert pd[2, 0, 0] == 0
assert pd[0, 0, 1] == 0
assert pd[1, 0, 1] == 200
assert pd[2, 0, 1] == 0
assert pd[0, 1, 0] == 38
assert pd[1, 1, 0] == 37
assert pd[2, 1, 0] == 39
assert pd[0, 1, 1] == 0
assert pd[1, 1, 1] == 0
assert pd[2, 1, 1] == 200
def test_calculate_pedestal_float(raw_data_3x2x2):
#results should be the same for float
pd2 = aare.calculate_pedestal_float(raw_data_3x2x2)
assert pd2.shape == (3, 2, 2)
assert pd2.dtype == np.float32
assert pd2[0, 0, 0] == 200
assert pd2[1, 0, 0] == 0
assert pd2[2, 0, 0] == 0
assert pd2[0, 0, 1] == 0
assert pd2[1, 0, 1] == 200
assert pd2[2, 0, 1] == 0
assert pd2[0, 1, 0] == 38
assert pd2[1, 1, 0] == 37
assert pd2[2, 1, 0] == 39
assert pd2[0, 1, 1] == 0
assert pd2[1, 1, 1] == 0
assert pd2[2, 1, 1] == 200
def test_calculate_pedestal_g0(raw_data_3x2x2):
pd = aare.calculate_pedestal_g0(raw_data_3x2x2)
assert pd.shape == (2, 2)
assert pd.dtype == np.float64
assert pd[0, 0] == 200
assert pd[1, 0] == 38
assert pd[0, 1] == 0
assert pd[1, 1] == 0
def test_calculate_pedestal_g0_float(raw_data_3x2x2):
pd = aare.calculate_pedestal_g0_float(raw_data_3x2x2)
assert pd.shape == (2, 2)
assert pd.dtype == np.float32
assert pd[0, 0] == 200
assert pd[1, 0] == 38
assert pd[0, 1] == 0
assert pd[1, 1] == 0
def test_count_switching_pixels(raw_data_3x2x2):
# Count the number of pixels that switched gain
count = aare.count_switching_pixels(raw_data_3x2x2)
assert count.shape == (2, 2)
assert count.sum() == 8
assert count[0, 0] == 0
assert count[1, 0] == 2
assert count[0, 1] == 3
assert count[1, 1] == 3

View File

@@ -57,6 +57,7 @@ class ClusterFinderMTWrapper
size_t m_sink_size() const { return this->m_sink.sizeGuess(); }
};
TEST_CASE("multithreaded cluster finder", "[.with-data]") {
auto fpath =
test_data_path() / "raw/moench03/cu_half_speed_master_4.json";
@@ -81,7 +82,8 @@ TEST_CASE("multithreaded cluster finder", "[.with-data]") {
CHECK(cf.m_input_queues_are_empty() == true);
for (size_t i = 0; i < n_frames_pd; ++i) {
cf.find_clusters(file.read_frame().view<uint16_t>());
auto frame = file.read_frame();
cf.find_clusters(frame.view<uint16_t>());
}
cf.stop();

View File

@@ -25,13 +25,13 @@ TEST_CASE("Construct from an NDView") {
REQUIRE(image.data() != view.data());
for (uint32_t i = 0; i < image.size(); ++i) {
REQUIRE(image(i) == view(i));
REQUIRE(image[i] == view[i]);
}
// Changing the image doesn't change the view
image = 43;
for (uint32_t i = 0; i < image.size(); ++i) {
REQUIRE(image(i) != view(i));
REQUIRE(image[i] != view[i]);
}
}
@@ -428,3 +428,29 @@ TEST_CASE("Construct an NDArray from an std::array") {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Move construct from an array with Ndim + 1") {
NDArray<int, 3> a({{1,2,2}}, 0);
a(0, 0, 0) = 1;
a(0, 0, 1) = 2;
a(0, 1, 0) = 3;
a(0, 1, 1) = 4;
NDArray<int, 2> b(std::move(a));
REQUIRE(b.shape() == Shape<2>{2,2});
REQUIRE(b.size() == 4);
REQUIRE(b(0, 0) == 1);
REQUIRE(b(0, 1) == 2);
REQUIRE(b(1, 0) == 3);
REQUIRE(b(1, 1) == 4);
}
TEST_CASE("Move construct from an array with Ndim + 1 throws on size mismatch") {
NDArray<int, 3> a({{2,2,2}}, 0);
REQUIRE_THROWS(NDArray<int, 2>(std::move(a)));
}

44
src/calibration.cpp Normal file
View File

@@ -0,0 +1,44 @@
#include "aare/calibration.hpp"
namespace aare {
NDArray<int, 2> count_switching_pixels(NDView<uint16_t, 3> raw_data) {
NDArray<int, 2> switched(
std::array<ssize_t, 2>{raw_data.shape(1), raw_data.shape(2)}, 0);
for (int frame_nr = 0; frame_nr != raw_data.shape(0); ++frame_nr) {
for (int row = 0; row != raw_data.shape(1); ++row) {
for (int col = 0; col != raw_data.shape(2); ++col) {
auto [value, gain] =
get_value_and_gain(raw_data(frame_nr, row, col));
if (gain != 0) {
switched(row, col) += 1;
}
}
}
}
return switched;
}
NDArray<int, 2> count_switching_pixels(NDView<uint16_t, 3> raw_data,
ssize_t n_threads) {
NDArray<int, 2> switched(
std::array<ssize_t, 2>{raw_data.shape(1), raw_data.shape(2)}, 0);
std::vector<std::future<NDArray<int, 2>>> futures;
futures.reserve(n_threads);
auto subviews = make_subviews(raw_data, n_threads);
for (auto view : subviews) {
futures.push_back(
std::async(static_cast<NDArray<int, 2> (*)(NDView<uint16_t, 3>)>(
&count_switching_pixels),
view));
}
for (auto &f : futures) {
switched += f.get();
}
return switched;
}
} // namespace aare

49
src/calibration.test.cpp Normal file
View File

@@ -0,0 +1,49 @@
/************************************************
* @file test-Cluster.cpp
* @short test case for generic Cluster, ClusterVector, and calculate_eta2
***********************************************/
#include "aare/calibration.hpp"
// #include "catch.hpp"
#include <array>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
using namespace aare;
TEST_CASE("Test Pedestal Generation", "[.calibration]") {
NDArray<uint16_t, 3> raw(std::array<ssize_t, 3>{3, 2, 2}, 0);
// gain 0
raw(0, 0, 0) = 100;
raw(1, 0, 0) = 200;
raw(2, 0, 0) = 300;
// gain 1
raw(0, 0, 1) = (1 << 14) + 100;
raw(1, 0, 1) = (1 << 14) + 200;
raw(2, 0, 1) = (1 << 14) + 300;
raw(0, 1, 0) = (1 << 14) + 37;
raw(1, 1, 0) = 38;
raw(2, 1, 0) = (3 << 14) + 39;
// gain 2
raw(0, 1, 1) = (3 << 14) + 100;
raw(1, 1, 1) = (3 << 14) + 200;
raw(2, 1, 1) = (3 << 14) + 300;
auto pedestal = calculate_pedestal<double>(raw.view(), 4);
REQUIRE(pedestal.size() == raw.size());
CHECK(pedestal(0, 0, 0) == 200);
CHECK(pedestal(1, 0, 0) == 0);
CHECK(pedestal(1, 0, 1) == 200);
auto pedestal_gain0 = calculate_pedestal_g0<double>(raw.view(), 4);
REQUIRE(pedestal_gain0.size() == 4);
CHECK(pedestal_gain0(0, 0) == 200);
CHECK(pedestal_gain0(1, 0) == 38);
}

View File

@@ -7,6 +7,7 @@ Script to update VERSION file with semantic versioning if provided as an argumen
import sys
import os
import re
from datetime import datetime
from packaging.version import Version, InvalidVersion
@@ -26,9 +27,9 @@ def get_version():
# Check at least one argument is passed
if len(sys.argv) < 2:
return "0.0.0"
version = sys.argv[1]
version = datetime.today().strftime('%Y.%-m.%-d')
else:
version = sys.argv[1]
try:
v = Version(version) # normalize check if version follows PEP 440 specification