mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2026-02-19 16:48:42 +01:00
Merge branch 'main' into dev/reduce
This commit is contained in:
@@ -17,27 +17,137 @@ py::array_t<DataType> pybind_apply_calibration(
|
||||
calibration,
|
||||
int n_threads = 4) {
|
||||
|
||||
auto data_span = make_view_3d(data);
|
||||
auto ped = make_view_3d(pedestal);
|
||||
auto cal = make_view_3d(calibration);
|
||||
|
||||
auto data_span = make_view_3d(data); // data is always 3D
|
||||
/* No pointer is passed, so NumPy will allocate the buffer */
|
||||
auto result = py::array_t<DataType>(data_span.shape());
|
||||
auto res = make_view_3d(result);
|
||||
|
||||
aare::apply_calibration<DataType>(res, data_span, ped, cal, n_threads);
|
||||
|
||||
if (data.ndim() == 3 && pedestal.ndim() == 3 && calibration.ndim() == 3) {
|
||||
auto ped = make_view_3d(pedestal);
|
||||
auto cal = make_view_3d(calibration);
|
||||
aare::apply_calibration<DataType, 3>(res, data_span, ped, cal,
|
||||
n_threads);
|
||||
} else if (data.ndim() == 3 && pedestal.ndim() == 2 &&
|
||||
calibration.ndim() == 2) {
|
||||
auto ped = make_view_2d(pedestal);
|
||||
auto cal = make_view_2d(calibration);
|
||||
aare::apply_calibration<DataType, 2>(res, data_span, ped, cal,
|
||||
n_threads);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Invalid number of dimensions for data, pedestal or calibration");
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
py::array_t<int> pybind_count_switching_pixels(
|
||||
py::array_t<uint16_t, py::array::c_style | py::array::forcecast> data,
|
||||
ssize_t n_threads = 4) {
|
||||
|
||||
auto data_span = make_view_3d(data);
|
||||
auto arr = new NDArray<int, 2>{};
|
||||
*arr = aare::count_switching_pixels(data_span, n_threads);
|
||||
return return_image_data(arr);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
py::array_t<T> pybind_calculate_pedestal(
|
||||
py::array_t<uint16_t, py::array::c_style | py::array::forcecast> data,
|
||||
ssize_t n_threads) {
|
||||
|
||||
auto data_span = make_view_3d(data);
|
||||
auto arr = new NDArray<T, 3>{};
|
||||
*arr = aare::calculate_pedestal<T, false>(data_span, n_threads);
|
||||
return return_image_data(arr);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
py::array_t<T> pybind_calculate_pedestal_g0(
|
||||
py::array_t<uint16_t, py::array::c_style | py::array::forcecast> data,
|
||||
ssize_t n_threads) {
|
||||
|
||||
auto data_span = make_view_3d(data);
|
||||
auto arr = new NDArray<T, 2>{};
|
||||
*arr = aare::calculate_pedestal<T, true>(data_span, n_threads);
|
||||
return return_image_data(arr);
|
||||
}
|
||||
|
||||
void bind_calibration(py::module &m) {
|
||||
m.def("apply_calibration", &pybind_apply_calibration<double>,
|
||||
py::arg("raw_data").noconvert(), py::kw_only(),
|
||||
py::arg("pd").noconvert(), py::arg("cal").noconvert(),
|
||||
py::arg("n_threads") = 4);
|
||||
|
||||
m.def("apply_calibration", &pybind_apply_calibration<float>,
|
||||
py::arg("raw_data").noconvert(), py::kw_only(),
|
||||
py::arg("pd").noconvert(), py::arg("cal").noconvert(),
|
||||
py::arg("n_threads") = 4);
|
||||
|
||||
m.def("apply_calibration", &pybind_apply_calibration<double>,
|
||||
m.def("count_switching_pixels", &pybind_count_switching_pixels,
|
||||
R"(
|
||||
Count the number of time each pixel switches to G1 or G2.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
raw_data : array_like
|
||||
3D array of shape (frames, rows, cols) to count the switching pixels from.
|
||||
n_threads : int
|
||||
The number of threads to use for the calculation.
|
||||
)",
|
||||
py::arg("raw_data").noconvert(), py::kw_only(),
|
||||
py::arg("pd").noconvert(), py::arg("cal").noconvert(),
|
||||
py::arg("n_threads") = 4);
|
||||
|
||||
m.def("calculate_pedestal", &pybind_calculate_pedestal<double>,
|
||||
R"(
|
||||
Calculate the pedestal for all three gains and return the result as a 3D array of doubles.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
raw_data : array_like
|
||||
3D array of shape (frames, rows, cols) to calculate the pedestal from.
|
||||
Needs to contain data for all three gains (G0, G1, G2).
|
||||
n_threads : int
|
||||
The number of threads to use for the calculation.
|
||||
)",
|
||||
py::arg("raw_data").noconvert(), py::arg("n_threads") = 4);
|
||||
|
||||
m.def("calculate_pedestal_float", &pybind_calculate_pedestal<float>,
|
||||
R"(
|
||||
Same as `calculate_pedestal` but returns a 3D array of floats.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
raw_data : array_like
|
||||
3D array of shape (frames, rows, cols) to calculate the pedestal from.
|
||||
Needs to contain data for all three gains (G0, G1, G2).
|
||||
n_threads : int
|
||||
The number of threads to use for the calculation.
|
||||
)",
|
||||
py::arg("raw_data").noconvert(), py::arg("n_threads") = 4);
|
||||
|
||||
m.def("calculate_pedestal_g0", &pybind_calculate_pedestal_g0<double>,
|
||||
R"(
|
||||
Calculate the pedestal for G0 and return the result as a 2D array of doubles.
|
||||
Pixels in G1 and G2 are ignored.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
raw_data : array_like
|
||||
3D array of shape (frames, rows, cols) to calculate the pedestal from.
|
||||
n_threads : int
|
||||
The number of threads to use for the calculation.
|
||||
)",
|
||||
py::arg("raw_data").noconvert(), py::arg("n_threads") = 4);
|
||||
|
||||
m.def("calculate_pedestal_g0_float", &pybind_calculate_pedestal_g0<float>,
|
||||
R"(
|
||||
Same as `calculate_pedestal_g0` but returns a 2D array of floats.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
raw_data : array_like
|
||||
3D array of shape (frames, rows, cols) to calculate the pedestal from.
|
||||
n_threads : int
|
||||
The number of threads to use for the calculation.
|
||||
)",
|
||||
py::arg("raw_data").noconvert(), py::arg("n_threads") = 4);
|
||||
}
|
||||
Reference in New Issue
Block a user