mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2026-02-19 13:38:40 +01:00
Merge branch 'main' into dev/reduce
This commit is contained in:
@@ -144,9 +144,9 @@ class ClusterFinder {
|
||||
static_cast<CT>(
|
||||
m_pedestal.mean(iy + ir, ix + ic));
|
||||
cluster.data[i] =
|
||||
tmp; // Watch for out of bounds access
|
||||
i++;
|
||||
tmp; // Watch for out of bounds access
|
||||
}
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -105,7 +105,7 @@ class Frame {
|
||||
* @tparam T type of the pixels
|
||||
* @return NDView<T, 2>
|
||||
*/
|
||||
template <typename T> NDView<T, 2> view() {
|
||||
template <typename T> NDView<T, 2> view() & {
|
||||
std::array<ssize_t, 2> shape = {static_cast<ssize_t>(m_rows),
|
||||
static_cast<ssize_t>(m_cols)};
|
||||
T *data = reinterpret_cast<T *>(m_data);
|
||||
|
||||
@@ -25,7 +25,7 @@ template <typename T, ssize_t Ndim = 2>
|
||||
class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
std::array<ssize_t, Ndim> shape_;
|
||||
std::array<ssize_t, Ndim> strides_;
|
||||
size_t size_{};
|
||||
size_t size_{}; //TODO! do we need to store size when we have shape?
|
||||
T *data_;
|
||||
|
||||
public:
|
||||
@@ -33,7 +33,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
* @brief Default constructor. Will construct an empty NDArray.
|
||||
*
|
||||
*/
|
||||
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr){};
|
||||
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr) {};
|
||||
|
||||
/**
|
||||
* @brief Construct a new NDArray object with a given shape.
|
||||
@@ -43,8 +43,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
*/
|
||||
explicit NDArray(std::array<ssize_t, Ndim> shape)
|
||||
: shape_(shape), strides_(c_strides<Ndim>(shape_)),
|
||||
size_(std::accumulate(shape_.begin(), shape_.end(), 1,
|
||||
std::multiplies<>())),
|
||||
size_(num_elements(shape_)),
|
||||
data_(new T[size_]) {}
|
||||
|
||||
/**
|
||||
@@ -79,6 +78,24 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
other.reset(); // TODO! is this necessary?
|
||||
}
|
||||
|
||||
|
||||
//Move constructor from an an array with Ndim + 1
|
||||
template <ssize_t M, typename = std::enable_if_t<(M == Ndim + 1)>>
|
||||
NDArray(NDArray<T, M> &&other)
|
||||
: shape_(drop_first_dim(other.shape())),
|
||||
strides_(c_strides<Ndim>(shape_)), size_(num_elements(shape_)),
|
||||
data_(other.data()) {
|
||||
|
||||
// For now only allow move if the size matches, to avoid unreachable data
|
||||
// if the use case arises we can remove this check
|
||||
if(size() != other.size()) {
|
||||
data_ = nullptr; // avoid double free, other will clean up the memory in it's destructor
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Size mismatch in move constructor of NDArray<T, Ndim-1>");
|
||||
}
|
||||
other.reset();
|
||||
}
|
||||
|
||||
// Copy constructor
|
||||
NDArray(const NDArray &other)
|
||||
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
|
||||
@@ -380,12 +397,6 @@ NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
|
||||
result *= value;
|
||||
return result;
|
||||
}
|
||||
// template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print() {
|
||||
// if (shape_[0] < 20 && shape_[1] < 20)
|
||||
// Print_all();
|
||||
// else
|
||||
// Print_some();
|
||||
// }
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
|
||||
@@ -437,4 +448,23 @@ NDArray<T, Ndim> load(const std::string &pathname,
|
||||
return img;
|
||||
}
|
||||
|
||||
template <typename RT, typename NT, typename DT, ssize_t Ndim>
|
||||
NDArray<RT, Ndim> safe_divide(const NDArray<NT, Ndim> &numerator,
|
||||
const NDArray<DT, Ndim> &denominator) {
|
||||
if (numerator.shape() != denominator.shape()) {
|
||||
throw std::runtime_error(
|
||||
"Shapes of numerator and denominator must match");
|
||||
}
|
||||
NDArray<RT, Ndim> result(numerator.shape());
|
||||
for (ssize_t i = 0; i < numerator.size(); ++i) {
|
||||
if (denominator[i] != 0) {
|
||||
result[i] =
|
||||
static_cast<RT>(numerator[i]) / static_cast<RT>(denominator[i]);
|
||||
} else {
|
||||
result[i] = RT{0}; // or handle division by zero as needed
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
@@ -26,6 +26,33 @@ Shape<Ndim> make_shape(const std::vector<size_t> &shape) {
|
||||
return arr;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Helper function to drop the first dimension of a shape.
|
||||
* This is useful when you want to create a 2D view from a 3D array.
|
||||
* @param shape The shape to drop the first dimension from.
|
||||
* @return A new shape with the first dimension dropped.
|
||||
*/
|
||||
template<size_t Ndim>
|
||||
Shape<Ndim-1> drop_first_dim(const Shape<Ndim> &shape) {
|
||||
static_assert(Ndim > 1, "Cannot drop first dimension from a 1D shape");
|
||||
Shape<Ndim - 1> new_shape;
|
||||
std::copy(shape.begin() + 1, shape.end(), new_shape.begin());
|
||||
return new_shape;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Helper function when constructing NDArray/NDView. Calculates the number
|
||||
* of elements in the resulting array from a shape.
|
||||
* @param shape The shape to calculate the number of elements for.
|
||||
* @return The number of elements in and NDArray/NDView of that shape.
|
||||
*/
|
||||
template <size_t Ndim>
|
||||
size_t num_elements(const Shape<Ndim> &shape) {
|
||||
return std::accumulate(shape.begin(), shape.end(), 1,
|
||||
std::multiplies<size_t>());
|
||||
}
|
||||
|
||||
template <ssize_t Dim = 0, typename Strides>
|
||||
ssize_t element_offset(const Strides & /*unused*/) {
|
||||
return 0;
|
||||
@@ -66,17 +93,28 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
|
||||
: buffer_(buffer), strides_(c_strides<Ndim>(shape)), shape_(shape),
|
||||
size_(std::accumulate(std::begin(shape), std::end(shape), 1,
|
||||
std::multiplies<>())) {}
|
||||
|
||||
|
||||
template <typename... Ix>
|
||||
std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) {
|
||||
return buffer_[element_offset(strides_, index...)];
|
||||
}
|
||||
|
||||
template <typename... Ix>
|
||||
const std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) const {
|
||||
std::enable_if_t<sizeof...(Ix) == 1 && (Ndim > 1), NDView<T, Ndim - 1>> operator()(Ix... index) {
|
||||
// return a view of the next dimension
|
||||
std::array<ssize_t, Ndim - 1> new_shape{};
|
||||
std::copy_n(shape_.begin() + 1, Ndim - 1, new_shape.begin());
|
||||
return NDView<T, Ndim - 1>(&buffer_[element_offset(strides_, index...)],
|
||||
new_shape);
|
||||
|
||||
}
|
||||
|
||||
template <typename... Ix>
|
||||
std::enable_if_t<sizeof...(Ix) == Ndim, const T &> operator()(Ix... index) const {
|
||||
return buffer_[element_offset(strides_, index...)];
|
||||
}
|
||||
|
||||
|
||||
ssize_t size() const { return static_cast<ssize_t>(size_); }
|
||||
size_t total_bytes() const { return size_ * sizeof(T); }
|
||||
std::array<ssize_t, Ndim> strides() const noexcept { return strides_; }
|
||||
@@ -85,9 +123,19 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
|
||||
T *end() { return buffer_ + size_; }
|
||||
T const *begin() const { return buffer_; }
|
||||
T const *end() const { return buffer_ + size_; }
|
||||
T &operator()(ssize_t i) { return buffer_[i]; }
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Access element at index i.
|
||||
*/
|
||||
T &operator[](ssize_t i) { return buffer_[i]; }
|
||||
const T &operator()(ssize_t i) const { return buffer_[i]; }
|
||||
|
||||
/**
|
||||
* @brief Access element at index i.
|
||||
*/
|
||||
const T &operator[](ssize_t i) const { return buffer_[i]; }
|
||||
|
||||
bool operator==(const NDView &other) const {
|
||||
@@ -157,6 +205,22 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
|
||||
const T *data() const { return buffer_; }
|
||||
void print_all() const;
|
||||
|
||||
/**
|
||||
* @brief Create a subview of a range of the first dimension.
|
||||
* This is useful for splitting a batches of frames in parallel processing.
|
||||
* @param first The first index of the subview (inclusive).
|
||||
* @param last The last index of the subview (exclusive).
|
||||
* @return A new NDView that is a subview of the current view.
|
||||
* @throws std::runtime_error if the range is invalid.
|
||||
*/
|
||||
NDView sub_view(ssize_t first, ssize_t last) const {
|
||||
if (first < 0 || last > shape_[0] || first >= last)
|
||||
throw std::runtime_error(LOCATION + "Invalid sub_view range");
|
||||
auto new_shape = shape_;
|
||||
new_shape[0] = last - first;
|
||||
return NDView(buffer_ + first * strides_[0], new_shape);
|
||||
}
|
||||
|
||||
private:
|
||||
T *buffer_{nullptr};
|
||||
std::array<ssize_t, Ndim> strides_{};
|
||||
|
||||
@@ -240,14 +240,14 @@ template <typename T> void VarClusterFinder<T>::first_pass() {
|
||||
|
||||
for (ssize_t i = 0; i < original_.size(); ++i) {
|
||||
if (use_noise_map)
|
||||
threshold_ = 5 * noiseMap(i);
|
||||
binary_(i) = (original_(i) > threshold_);
|
||||
threshold_ = 5 * noiseMap[i];
|
||||
binary_[i] = (original_[i] > threshold_);
|
||||
}
|
||||
|
||||
for (int i = 0; i < shape_[0]; ++i) {
|
||||
for (int j = 0; j < shape_[1]; ++j) {
|
||||
|
||||
// do we have someting to process?
|
||||
// do we have something to process?
|
||||
if (binary_(i, j)) {
|
||||
auto tmp = check_neighbours(i, j);
|
||||
if (tmp != 0) {
|
||||
|
||||
@@ -1,6 +1,9 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/utils/par.hpp"
|
||||
#include "aare/utils/task.hpp"
|
||||
#include <cstdint>
|
||||
#include <future>
|
||||
@@ -55,32 +58,152 @@ ALWAYS_INLINE std::pair<uint16_t, int16_t> get_value_and_gain(uint16_t raw) {
|
||||
|
||||
template <class T>
|
||||
void apply_calibration_impl(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
|
||||
NDView<T, 3> ped, NDView<T, 3> cal, int start,
|
||||
int stop) {
|
||||
NDView<T, 3> ped, NDView<T, 3> cal, int start,
|
||||
int stop) {
|
||||
|
||||
for (int frame_nr = start; frame_nr != stop; ++frame_nr) {
|
||||
for (int row = 0; row != raw_data.shape(1); ++row) {
|
||||
for (int col = 0; col != raw_data.shape(2); ++col) {
|
||||
auto [value, gain] = get_value_and_gain(raw_data(frame_nr, row, col));
|
||||
auto [value, gain] =
|
||||
get_value_and_gain(raw_data(frame_nr, row, col));
|
||||
|
||||
// Using multiplication does not seem to speed up the code here
|
||||
// ADU/keV is the standard unit for the calibration which
|
||||
// means rewriting the formula is not worth it.
|
||||
res(frame_nr, row, col) =
|
||||
(value - ped(gain, row, col)) / cal(gain, row, col); //TODO! use multiplication
|
||||
(value - ped(gain, row, col)) / cal(gain, row, col);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void apply_calibration_impl(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
|
||||
NDView<T, 2> ped, NDView<T, 2> cal, int start,
|
||||
int stop) {
|
||||
|
||||
for (int frame_nr = start; frame_nr != stop; ++frame_nr) {
|
||||
for (int row = 0; row != raw_data.shape(1); ++row) {
|
||||
for (int col = 0; col != raw_data.shape(2); ++col) {
|
||||
auto [value, gain] =
|
||||
get_value_and_gain(raw_data(frame_nr, row, col));
|
||||
|
||||
// Using multiplication does not seem to speed up the code here
|
||||
// ADU/keV is the standard unit for the calibration which
|
||||
// means rewriting the formula is not worth it.
|
||||
|
||||
// Set the value to 0 if the gain is not 0
|
||||
if (gain == 0)
|
||||
res(frame_nr, row, col) =
|
||||
(value - ped(row, col)) / cal(row, col);
|
||||
else
|
||||
res(frame_nr, row, col) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T, ssize_t Ndim = 3>
|
||||
void apply_calibration(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
|
||||
NDView<T, 3> ped, NDView<T, 3> cal,
|
||||
NDView<T, Ndim> ped, NDView<T, Ndim> cal,
|
||||
ssize_t n_threads = 4) {
|
||||
std::vector<std::future<void>> futures;
|
||||
futures.reserve(n_threads);
|
||||
auto limits = split_task(0, raw_data.shape(0), n_threads);
|
||||
for (const auto &lim : limits)
|
||||
futures.push_back(std::async(&apply_calibration_impl<T>, res, raw_data, ped, cal,
|
||||
lim.first, lim.second));
|
||||
futures.push_back(std::async(
|
||||
static_cast<void (*)(NDView<T, 3>, NDView<uint16_t, 3>,
|
||||
NDView<T, Ndim>, NDView<T, Ndim>, int, int)>(
|
||||
apply_calibration_impl),
|
||||
res, raw_data, ped, cal, lim.first, lim.second));
|
||||
for (auto &f : futures)
|
||||
f.get();
|
||||
}
|
||||
|
||||
template <bool only_gain0>
|
||||
std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>>
|
||||
sum_and_count_per_gain(NDView<uint16_t, 3> raw_data) {
|
||||
constexpr ssize_t num_gains = only_gain0 ? 1 : 3;
|
||||
NDArray<size_t, 3> accumulator(
|
||||
std::array<ssize_t, 3>{num_gains, raw_data.shape(1), raw_data.shape(2)},
|
||||
0);
|
||||
NDArray<size_t, 3> count(
|
||||
std::array<ssize_t, 3>{num_gains, raw_data.shape(1), raw_data.shape(2)},
|
||||
0);
|
||||
for (int frame_nr = 0; frame_nr != raw_data.shape(0); ++frame_nr) {
|
||||
for (int row = 0; row != raw_data.shape(1); ++row) {
|
||||
for (int col = 0; col != raw_data.shape(2); ++col) {
|
||||
auto [value, gain] =
|
||||
get_value_and_gain(raw_data(frame_nr, row, col));
|
||||
if (gain != 0 && only_gain0)
|
||||
continue;
|
||||
accumulator(gain, row, col) += value;
|
||||
count(gain, row, col) += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return {std::move(accumulator), std::move(count)};
|
||||
}
|
||||
|
||||
template <typename T, bool only_gain0 = false>
|
||||
NDArray<T, 3 - static_cast<ssize_t>(only_gain0)>
|
||||
calculate_pedestal(NDView<uint16_t, 3> raw_data, ssize_t n_threads) {
|
||||
|
||||
constexpr ssize_t num_gains = only_gain0 ? 1 : 3;
|
||||
std::vector<std::future<std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>>>>
|
||||
futures;
|
||||
futures.reserve(n_threads);
|
||||
|
||||
auto subviews = make_subviews(raw_data, n_threads);
|
||||
|
||||
for (auto view : subviews) {
|
||||
futures.push_back(std::async(
|
||||
static_cast<std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>> (*)(
|
||||
NDView<uint16_t, 3>)>(&sum_and_count_per_gain<only_gain0>),
|
||||
view));
|
||||
}
|
||||
Shape<3> shape{num_gains, raw_data.shape(1), raw_data.shape(2)};
|
||||
NDArray<size_t, 3> accumulator(shape, 0);
|
||||
NDArray<size_t, 3> count(shape, 0);
|
||||
|
||||
// Combine the results from the futures
|
||||
for (auto &f : futures) {
|
||||
auto [acc, cnt] = f.get();
|
||||
accumulator += acc;
|
||||
count += cnt;
|
||||
}
|
||||
|
||||
|
||||
// Will move to a NDArray<T, 3 - static_cast<ssize_t>(only_gain0)>
|
||||
// if only_gain0 is true
|
||||
return safe_divide<T>(accumulator, count);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Count the number of switching pixels in the raw data.
|
||||
* This function counts the number of pixels that switch between G1 and G2 gain.
|
||||
* It returns an NDArray with the number of switching pixels per pixel.
|
||||
* @param raw_data The NDView containing the raw data
|
||||
* @return An NDArray with the number of switching pixels per pixel
|
||||
*/
|
||||
NDArray<int, 2> count_switching_pixels(NDView<uint16_t, 3> raw_data);
|
||||
|
||||
/**
|
||||
* @brief Count the number of switching pixels in the raw data.
|
||||
* This function counts the number of pixels that switch between G1 and G2 gain.
|
||||
* It returns an NDArray with the number of switching pixels per pixel.
|
||||
* @param raw_data The NDView containing the raw data
|
||||
* @param n_threads The number of threads to use for parallel processing
|
||||
* @return An NDArray with the number of switching pixels per pixel
|
||||
*/
|
||||
NDArray<int, 2> count_switching_pixels(NDView<uint16_t, 3> raw_data,
|
||||
ssize_t n_threads);
|
||||
|
||||
template <typename T>
|
||||
auto calculate_pedestal_g0(NDView<uint16_t, 3> raw_data, ssize_t n_threads) {
|
||||
return calculate_pedestal<T, true>(raw_data, n_threads);
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
@@ -1,7 +1,10 @@
|
||||
#pragma once
|
||||
#include <thread>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "aare/utils/task.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename F>
|
||||
@@ -15,4 +18,17 @@ void RunInParallel(F func, const std::vector<std::pair<int, int>> &tasks) {
|
||||
thread.join();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
std::vector<NDView<T,3>> make_subviews(NDView<T, 3> &data, ssize_t n_threads) {
|
||||
std::vector<NDView<T, 3>> subviews;
|
||||
subviews.reserve(n_threads);
|
||||
auto limits = split_task(0, data.shape(0), n_threads);
|
||||
for (const auto &lim : limits) {
|
||||
subviews.push_back(data.sub_view(lim.first, lim.second));
|
||||
}
|
||||
return subviews;
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
@@ -1,4 +1,4 @@
|
||||
|
||||
#pragma once
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
|
||||
Reference in New Issue
Block a user