Merge branch 'main' into dev/reduce
All checks were successful
Build on RHEL8 / build (push) Successful in 3m16s
Build on RHEL9 / build (push) Successful in 3m35s

This commit is contained in:
2025-09-08 15:39:27 +02:00
23 changed files with 658 additions and 55 deletions

View File

@@ -144,9 +144,9 @@ class ClusterFinder {
static_cast<CT>(
m_pedestal.mean(iy + ir, ix + ic));
cluster.data[i] =
tmp; // Watch for out of bounds access
i++;
tmp; // Watch for out of bounds access
}
i++;
}
}

View File

@@ -105,7 +105,7 @@ class Frame {
* @tparam T type of the pixels
* @return NDView<T, 2>
*/
template <typename T> NDView<T, 2> view() {
template <typename T> NDView<T, 2> view() & {
std::array<ssize_t, 2> shape = {static_cast<ssize_t>(m_rows),
static_cast<ssize_t>(m_cols)};
T *data = reinterpret_cast<T *>(m_data);

View File

@@ -25,7 +25,7 @@ template <typename T, ssize_t Ndim = 2>
class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
std::array<ssize_t, Ndim> shape_;
std::array<ssize_t, Ndim> strides_;
size_t size_{};
size_t size_{}; //TODO! do we need to store size when we have shape?
T *data_;
public:
@@ -33,7 +33,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
* @brief Default constructor. Will construct an empty NDArray.
*
*/
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr){};
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr) {};
/**
* @brief Construct a new NDArray object with a given shape.
@@ -43,8 +43,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
*/
explicit NDArray(std::array<ssize_t, Ndim> shape)
: shape_(shape), strides_(c_strides<Ndim>(shape_)),
size_(std::accumulate(shape_.begin(), shape_.end(), 1,
std::multiplies<>())),
size_(num_elements(shape_)),
data_(new T[size_]) {}
/**
@@ -79,6 +78,24 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
other.reset(); // TODO! is this necessary?
}
//Move constructor from an an array with Ndim + 1
template <ssize_t M, typename = std::enable_if_t<(M == Ndim + 1)>>
NDArray(NDArray<T, M> &&other)
: shape_(drop_first_dim(other.shape())),
strides_(c_strides<Ndim>(shape_)), size_(num_elements(shape_)),
data_(other.data()) {
// For now only allow move if the size matches, to avoid unreachable data
// if the use case arises we can remove this check
if(size() != other.size()) {
data_ = nullptr; // avoid double free, other will clean up the memory in it's destructor
throw std::runtime_error(LOCATION +
"Size mismatch in move constructor of NDArray<T, Ndim-1>");
}
other.reset();
}
// Copy constructor
NDArray(const NDArray &other)
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
@@ -380,12 +397,6 @@ NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
result *= value;
return result;
}
// template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print() {
// if (shape_[0] < 20 && shape_[1] < 20)
// Print_all();
// else
// Print_some();
// }
template <typename T, ssize_t Ndim>
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
@@ -437,4 +448,23 @@ NDArray<T, Ndim> load(const std::string &pathname,
return img;
}
template <typename RT, typename NT, typename DT, ssize_t Ndim>
NDArray<RT, Ndim> safe_divide(const NDArray<NT, Ndim> &numerator,
const NDArray<DT, Ndim> &denominator) {
if (numerator.shape() != denominator.shape()) {
throw std::runtime_error(
"Shapes of numerator and denominator must match");
}
NDArray<RT, Ndim> result(numerator.shape());
for (ssize_t i = 0; i < numerator.size(); ++i) {
if (denominator[i] != 0) {
result[i] =
static_cast<RT>(numerator[i]) / static_cast<RT>(denominator[i]);
} else {
result[i] = RT{0}; // or handle division by zero as needed
}
}
return result;
}
} // namespace aare

View File

@@ -26,6 +26,33 @@ Shape<Ndim> make_shape(const std::vector<size_t> &shape) {
return arr;
}
/**
* @brief Helper function to drop the first dimension of a shape.
* This is useful when you want to create a 2D view from a 3D array.
* @param shape The shape to drop the first dimension from.
* @return A new shape with the first dimension dropped.
*/
template<size_t Ndim>
Shape<Ndim-1> drop_first_dim(const Shape<Ndim> &shape) {
static_assert(Ndim > 1, "Cannot drop first dimension from a 1D shape");
Shape<Ndim - 1> new_shape;
std::copy(shape.begin() + 1, shape.end(), new_shape.begin());
return new_shape;
}
/**
* @brief Helper function when constructing NDArray/NDView. Calculates the number
* of elements in the resulting array from a shape.
* @param shape The shape to calculate the number of elements for.
* @return The number of elements in and NDArray/NDView of that shape.
*/
template <size_t Ndim>
size_t num_elements(const Shape<Ndim> &shape) {
return std::accumulate(shape.begin(), shape.end(), 1,
std::multiplies<size_t>());
}
template <ssize_t Dim = 0, typename Strides>
ssize_t element_offset(const Strides & /*unused*/) {
return 0;
@@ -66,17 +93,28 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
: buffer_(buffer), strides_(c_strides<Ndim>(shape)), shape_(shape),
size_(std::accumulate(std::begin(shape), std::end(shape), 1,
std::multiplies<>())) {}
template <typename... Ix>
std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) {
return buffer_[element_offset(strides_, index...)];
}
template <typename... Ix>
const std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) const {
std::enable_if_t<sizeof...(Ix) == 1 && (Ndim > 1), NDView<T, Ndim - 1>> operator()(Ix... index) {
// return a view of the next dimension
std::array<ssize_t, Ndim - 1> new_shape{};
std::copy_n(shape_.begin() + 1, Ndim - 1, new_shape.begin());
return NDView<T, Ndim - 1>(&buffer_[element_offset(strides_, index...)],
new_shape);
}
template <typename... Ix>
std::enable_if_t<sizeof...(Ix) == Ndim, const T &> operator()(Ix... index) const {
return buffer_[element_offset(strides_, index...)];
}
ssize_t size() const { return static_cast<ssize_t>(size_); }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<ssize_t, Ndim> strides() const noexcept { return strides_; }
@@ -85,9 +123,19 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
T *end() { return buffer_ + size_; }
T const *begin() const { return buffer_; }
T const *end() const { return buffer_ + size_; }
T &operator()(ssize_t i) { return buffer_[i]; }
/**
* @brief Access element at index i.
*/
T &operator[](ssize_t i) { return buffer_[i]; }
const T &operator()(ssize_t i) const { return buffer_[i]; }
/**
* @brief Access element at index i.
*/
const T &operator[](ssize_t i) const { return buffer_[i]; }
bool operator==(const NDView &other) const {
@@ -157,6 +205,22 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
const T *data() const { return buffer_; }
void print_all() const;
/**
* @brief Create a subview of a range of the first dimension.
* This is useful for splitting a batches of frames in parallel processing.
* @param first The first index of the subview (inclusive).
* @param last The last index of the subview (exclusive).
* @return A new NDView that is a subview of the current view.
* @throws std::runtime_error if the range is invalid.
*/
NDView sub_view(ssize_t first, ssize_t last) const {
if (first < 0 || last > shape_[0] || first >= last)
throw std::runtime_error(LOCATION + "Invalid sub_view range");
auto new_shape = shape_;
new_shape[0] = last - first;
return NDView(buffer_ + first * strides_[0], new_shape);
}
private:
T *buffer_{nullptr};
std::array<ssize_t, Ndim> strides_{};

View File

@@ -240,14 +240,14 @@ template <typename T> void VarClusterFinder<T>::first_pass() {
for (ssize_t i = 0; i < original_.size(); ++i) {
if (use_noise_map)
threshold_ = 5 * noiseMap(i);
binary_(i) = (original_(i) > threshold_);
threshold_ = 5 * noiseMap[i];
binary_[i] = (original_[i] > threshold_);
}
for (int i = 0; i < shape_[0]; ++i) {
for (int j = 0; j < shape_[1]; ++j) {
// do we have someting to process?
// do we have something to process?
if (binary_(i, j)) {
auto tmp = check_neighbours(i, j);
if (tmp != 0) {

View File

@@ -1,6 +1,9 @@
#pragma once
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "aare/defs.hpp"
#include "aare/utils/par.hpp"
#include "aare/utils/task.hpp"
#include <cstdint>
#include <future>
@@ -55,32 +58,152 @@ ALWAYS_INLINE std::pair<uint16_t, int16_t> get_value_and_gain(uint16_t raw) {
template <class T>
void apply_calibration_impl(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
NDView<T, 3> ped, NDView<T, 3> cal, int start,
int stop) {
NDView<T, 3> ped, NDView<T, 3> cal, int start,
int stop) {
for (int frame_nr = start; frame_nr != stop; ++frame_nr) {
for (int row = 0; row != raw_data.shape(1); ++row) {
for (int col = 0; col != raw_data.shape(2); ++col) {
auto [value, gain] = get_value_and_gain(raw_data(frame_nr, row, col));
auto [value, gain] =
get_value_and_gain(raw_data(frame_nr, row, col));
// Using multiplication does not seem to speed up the code here
// ADU/keV is the standard unit for the calibration which
// means rewriting the formula is not worth it.
res(frame_nr, row, col) =
(value - ped(gain, row, col)) / cal(gain, row, col); //TODO! use multiplication
(value - ped(gain, row, col)) / cal(gain, row, col);
}
}
}
}
template <class T>
void apply_calibration_impl(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
NDView<T, 2> ped, NDView<T, 2> cal, int start,
int stop) {
for (int frame_nr = start; frame_nr != stop; ++frame_nr) {
for (int row = 0; row != raw_data.shape(1); ++row) {
for (int col = 0; col != raw_data.shape(2); ++col) {
auto [value, gain] =
get_value_and_gain(raw_data(frame_nr, row, col));
// Using multiplication does not seem to speed up the code here
// ADU/keV is the standard unit for the calibration which
// means rewriting the formula is not worth it.
// Set the value to 0 if the gain is not 0
if (gain == 0)
res(frame_nr, row, col) =
(value - ped(row, col)) / cal(row, col);
else
res(frame_nr, row, col) = 0;
}
}
}
}
template <class T, ssize_t Ndim = 3>
void apply_calibration(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
NDView<T, 3> ped, NDView<T, 3> cal,
NDView<T, Ndim> ped, NDView<T, Ndim> cal,
ssize_t n_threads = 4) {
std::vector<std::future<void>> futures;
futures.reserve(n_threads);
auto limits = split_task(0, raw_data.shape(0), n_threads);
for (const auto &lim : limits)
futures.push_back(std::async(&apply_calibration_impl<T>, res, raw_data, ped, cal,
lim.first, lim.second));
futures.push_back(std::async(
static_cast<void (*)(NDView<T, 3>, NDView<uint16_t, 3>,
NDView<T, Ndim>, NDView<T, Ndim>, int, int)>(
apply_calibration_impl),
res, raw_data, ped, cal, lim.first, lim.second));
for (auto &f : futures)
f.get();
}
template <bool only_gain0>
std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>>
sum_and_count_per_gain(NDView<uint16_t, 3> raw_data) {
constexpr ssize_t num_gains = only_gain0 ? 1 : 3;
NDArray<size_t, 3> accumulator(
std::array<ssize_t, 3>{num_gains, raw_data.shape(1), raw_data.shape(2)},
0);
NDArray<size_t, 3> count(
std::array<ssize_t, 3>{num_gains, raw_data.shape(1), raw_data.shape(2)},
0);
for (int frame_nr = 0; frame_nr != raw_data.shape(0); ++frame_nr) {
for (int row = 0; row != raw_data.shape(1); ++row) {
for (int col = 0; col != raw_data.shape(2); ++col) {
auto [value, gain] =
get_value_and_gain(raw_data(frame_nr, row, col));
if (gain != 0 && only_gain0)
continue;
accumulator(gain, row, col) += value;
count(gain, row, col) += 1;
}
}
}
return {std::move(accumulator), std::move(count)};
}
template <typename T, bool only_gain0 = false>
NDArray<T, 3 - static_cast<ssize_t>(only_gain0)>
calculate_pedestal(NDView<uint16_t, 3> raw_data, ssize_t n_threads) {
constexpr ssize_t num_gains = only_gain0 ? 1 : 3;
std::vector<std::future<std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>>>>
futures;
futures.reserve(n_threads);
auto subviews = make_subviews(raw_data, n_threads);
for (auto view : subviews) {
futures.push_back(std::async(
static_cast<std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>> (*)(
NDView<uint16_t, 3>)>(&sum_and_count_per_gain<only_gain0>),
view));
}
Shape<3> shape{num_gains, raw_data.shape(1), raw_data.shape(2)};
NDArray<size_t, 3> accumulator(shape, 0);
NDArray<size_t, 3> count(shape, 0);
// Combine the results from the futures
for (auto &f : futures) {
auto [acc, cnt] = f.get();
accumulator += acc;
count += cnt;
}
// Will move to a NDArray<T, 3 - static_cast<ssize_t>(only_gain0)>
// if only_gain0 is true
return safe_divide<T>(accumulator, count);
}
/**
* @brief Count the number of switching pixels in the raw data.
* This function counts the number of pixels that switch between G1 and G2 gain.
* It returns an NDArray with the number of switching pixels per pixel.
* @param raw_data The NDView containing the raw data
* @return An NDArray with the number of switching pixels per pixel
*/
NDArray<int, 2> count_switching_pixels(NDView<uint16_t, 3> raw_data);
/**
* @brief Count the number of switching pixels in the raw data.
* This function counts the number of pixels that switch between G1 and G2 gain.
* It returns an NDArray with the number of switching pixels per pixel.
* @param raw_data The NDView containing the raw data
* @param n_threads The number of threads to use for parallel processing
* @return An NDArray with the number of switching pixels per pixel
*/
NDArray<int, 2> count_switching_pixels(NDView<uint16_t, 3> raw_data,
ssize_t n_threads);
template <typename T>
auto calculate_pedestal_g0(NDView<uint16_t, 3> raw_data, ssize_t n_threads) {
return calculate_pedestal<T, true>(raw_data, n_threads);
}
} // namespace aare

View File

@@ -1,7 +1,10 @@
#pragma once
#include <thread>
#include <utility>
#include <vector>
#include "aare/utils/task.hpp"
namespace aare {
template <typename F>
@@ -15,4 +18,17 @@ void RunInParallel(F func, const std::vector<std::pair<int, int>> &tasks) {
thread.join();
}
}
template <typename T>
std::vector<NDView<T,3>> make_subviews(NDView<T, 3> &data, ssize_t n_threads) {
std::vector<NDView<T, 3>> subviews;
subviews.reserve(n_threads);
auto limits = split_task(0, data.shape(0), n_threads);
for (const auto &lim : limits) {
subviews.push_back(data.sub_view(lim.first, lim.second));
}
return subviews;
}
} // namespace aare

View File

@@ -1,4 +1,4 @@
#pragma once
#include <utility>
#include <vector>