solved merge conflict

This commit is contained in:
Mazzoleni Alice Francesca
2025-04-01 17:48:48 +02:00
17 changed files with 750 additions and 251 deletions

View File

@ -8,7 +8,9 @@
#pragma once
#include <algorithm>
#include <cstdint>
#include <numeric>
#include <type_traits>
namespace aare {
@ -28,6 +30,61 @@ struct Cluster {
CoordType x;
CoordType y;
T data[ClusterSizeX * ClusterSizeY];
T sum() const {
return std::accumulate(data, data + ClusterSizeX * ClusterSizeY, 0);
}
T max_sum_2x2() const {
constexpr size_t num_2x2_subclusters =
(ClusterSizeX - 1) * (ClusterSizeY - 1);
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
data[i * ClusterSizeX + j] +
data[i * ClusterSizeX + j + 1] +
data[(i + 1) * ClusterSizeX + j] +
data[(i + 1) * ClusterSizeX + j + 1];
}
return *std::max_element(sum_2x2_subcluster.begin(),
sum_2x2_subcluster.end());
}
};
// Specialization for 2x2 clusters (only one sum exists)
template <typename T> struct Cluster<T, 2, 2, int16_t> {
int16_t x;
int16_t y;
T data[4];
T sum() const { return std::accumulate(data, data + 4, 0); }
T max_sum_2x2() const {
return data[0] + data[1] + data[2] +
data[3]; // Only one possible 2x2 sum
}
};
// Specialization for 3x3 clusters
template <typename T> struct Cluster<T, 3, 3, int16_t> {
int16_t x;
int16_t y;
T data[9];
T sum() const { return std::accumulate(data, data + 9, 0); }
T max_sum_2x2() const {
std::array<T, 4> sum_2x2_subclusters;
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
return *std::max_element(sum_2x2_subclusters.begin(),
sum_2x2_subclusters.end());
}
};
// Type Traits for is_cluster_type

View File

@ -6,6 +6,7 @@
#include "aare/defs.hpp"
#include <filesystem>
#include <fstream>
#include <optional>
namespace aare {
@ -28,7 +29,7 @@ uint32_t number_of_clusters
*
* int32_t frame_number
* uint32_t number_of_clusters
* int16_t x, int16_t y, int32_t data[9] x number_of_clusters
* int16_t x, int16_t y, int32_t data[9] * number_of_clusters
* int32_t frame_number
* uint32_t number_of_clusters
* etc.
@ -37,9 +38,15 @@ template <typename ClusterType,
typename Enable = std::enable_if_t<is_cluster_v<ClusterType>, bool>>
class ClusterFile {
FILE *fp{};
uint32_t m_num_left{};
size_t m_chunk_size{};
const std::string m_mode;
uint32_t m_num_left{}; /*Number of photons left in frame*/
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
const std::string m_mode; /*Mode to open the file in*/
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
std::optional<NDArray<int32_t, 2>>
m_noise_map; /*Noise map to cut photons, will be applied if set*/
std::optional<NDArray<double, 2>>
m_gain_map; /*Gain map to apply to the clusters, will be applied if
set*/
public:
/**
@ -75,21 +82,44 @@ class ClusterFile {
void write_frame(const ClusterVector<ClusterType> &clusters);
// Need to be migrated to support NDArray and return a ClusterVector
// std::vector<Cluster3x3>
// read_cluster_with_cut(size_t n_clusters, double *noise_map, int nx, int
// ny);
/**
* @brief Return the chunk size
*/
size_t chunk_size() const { return m_chunk_size; }
/**
* @brief Set the region of interest to use when reading clusters. If set
* only clusters within the ROI will be read.
*/
void set_roi(ROI roi);
/**
* @brief Set the noise map to use when reading clusters. If set clusters
* below the noise level will be discarded. Selection criteria one of:
* Central pixel above noise, highest 2x2 sum above 2 * noise, total sum
* above 3 * noise.
*/
void set_noise_map(const NDView<int32_t, 2> noise_map);
/**
* @brief Set the gain map to use when reading clusters. If set the gain map
* will be applied to the clusters that pass ROI and noise_map selection.
*/
void set_gain_map(const NDView<double, 2> gain_map);
/**
* @brief Close the file. If not closed the file will be closed in the
* destructor
*/
void close();
private:
ClusterVector<ClusterType> read_clusters_with_cut(size_t n_clusters);
ClusterVector<ClusterType> read_clusters_without_cut(size_t n_clusters);
ClusterVector<ClusterType> read_frame_with_cut();
ClusterVector<ClusterType> read_frame_without_cut();
bool is_selected(ClusterType &cl);
ClusterType read_one_cluster();
};
template <typename ClusterType, typename Enable>
@ -133,6 +163,20 @@ void ClusterFile<ClusterType, Enable>::close() {
fp = nullptr;
}
}
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::set_roi(ROI roi) {
m_roi = roi;
}
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::set_noise_map(
const NDView<int32_t, 2> noise_map) {
m_noise_map = NDArray<int32_t, 2>(noise_map);
}
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::set_gain_map(
const NDView<double, 2> gain_map) {
m_gain_map = NDArray<double, 2>(gain_map);
}
// TODO generally supported for all clsuter types
template <typename ClusterType, typename Enable>
@ -158,6 +202,19 @@ ClusterFile<ClusterType, Enable>::read_clusters(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_noise_map || m_roi) {
return read_clusters_with_cut(n_clusters);
} else {
return read_clusters_without_cut(n_clusters);
}
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_clusters_without_cut(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<ClusterType> clusters(n_clusters);
@ -185,6 +242,7 @@ ClusterFile<ClusterType, Enable>::read_clusters(size_t n_clusters) {
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
clusters.set_frame_number(iframe);
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
@ -204,93 +262,121 @@ ClusterFile<ClusterType, Enable>::read_clusters(size_t n_clusters) {
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_clusters(size_t n_clusters, ROI roi) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterFile<ClusterType, Enable>::read_clusters_with_cut(size_t n_clusters) {
ClusterVector<ClusterType> clusters;
clusters.reserve(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
// auto buf = clusters.data();
ClusterType tmp; // this would break if the cluster size changes
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
// Read one cluster, in the ROI push back
// nph_read += fread((buf + nph_read*clusters.item_size()),
// clusters.item_size(), nn, fp);
for (size_t i = 0; i < nn; i++) {
fread(&tmp, sizeof(tmp), 1, fp);
if (tmp.x >= roi.xmin && tmp.x <= roi.xmax && tmp.y >= roi.ymin &&
tmp.y <= roi.ymax) {
// clusters.push_back(tmp.x, tmp.y,
// reinterpret_cast<std::byte *>(tmp.data));
clusters.push_back(tmp);
nph_read++;
if (m_num_left) {
while (m_num_left && clusters.size() < n_clusters) {
ClusterType c = read_one_cluster();
if (is_selected(c)) {
clusters.push_back(c);
}
}
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
// we did not have enough clusters left in the previous frame
// keep on reading frames until reaching n_clusters
if (clusters.size() < n_clusters) {
// sanity check
if (m_num_left) {
throw std::runtime_error(
LOCATION + "Entered second loop with clusters left\n");
}
// nph_read += fread((buf + nph_read*clusters.item_size()),
// clusters.item_size(), nn, fp);
for (size_t i = 0; i < nn; i++) {
fread(&tmp, sizeof(tmp), 1, fp);
if (tmp.x >= roi.xmin && tmp.x <= roi.xmax &&
tmp.y >= roi.ymin && tmp.y <= roi.ymax) {
// clusters.push_back(
// tmp.x, tmp.y,
// reinterpret_cast<std::byte *>(tmp.data));
clusters.push_back(tmp);
nph_read++;
int32_t frame_number = 0; // frame number needs to be 4 bytes!
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
clusters.set_frame_number(
frame_number); // cluster vector will hold the last frame
// number
while (m_num_left && clusters.size() < n_clusters) {
ClusterType c = read_one_cluster();
if (is_selected(c)) {
clusters.push_back(c);
}
}
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
// we have enough clusters, break out of the outer while loop
if (clusters.size() >= n_clusters)
break;
}
}
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterType ClusterFile<ClusterType, Enable>::read_one_cluster() {
ClusterType c;
auto rc = fread(&c, sizeof(c), 1, fp);
if (rc != 1) {
throw std::runtime_error(LOCATION + "Could not read cluster");
}
--m_num_left;
return c;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType> ClusterFile<ClusterType, Enable>::read_frame() {
if (m_mode != "r") {
throw std::runtime_error(LOCATION + "File not opened for reading");
}
if (m_noise_map || m_roi) {
return read_frame_with_cut();
} else {
return read_frame_without_cut();
}
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_frame_without_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error(LOCATION +
"Could not read number of clusters");
}
ClusterVector<ClusterType> clusters(n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error(LOCATION + "Could not read clusters");
}
clusters.resize(n_clusters);
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_frame_with_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
@ -303,20 +389,45 @@ ClusterVector<ClusterType> ClusterFile<ClusterType, Enable>::read_frame() {
throw std::runtime_error("Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
// std::vector<Cluster3x3> clusters(n_clusters);
ClusterVector<ClusterType> clusters(n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error("Could not read clusters");
ClusterVector<ClusterType> clusters;
clusters.reserve(m_num_left);
clusters.set_frame_number(frame_number);
while (m_num_left) {
ClusterType c = read_one_cluster();
if (is_selected(c)) {
clusters.push_back(c);
}
}
clusters.resize(n_clusters);
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
template <typename ClusterType, typename Enable>
bool ClusterFile<ClusterType, Enable>::is_selected(ClusterType &cl) {
// Should fail fast
if (m_roi) {
if (!(m_roi->contains(cl.x, cl.y))) {
return false;
}
}
if (m_noise_map) {
int32_t sum_1x1 = cl.data[4]; // central pixel
int32_t sum_2x2 = cl.max_sum_2x2(); // highest sum of 2x2 subclusters
int32_t sum_3x3 = cl.sum(); // sum of all pixels
auto noise =
(*m_noise_map)(cl.y, cl.x); // TODO! check if this is correct
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise || sum_3x3 <= 3 * noise) {
return false;
}
}
// we passed all checks
return true;
}
} // namespace aare

View File

@ -9,6 +9,9 @@
#include <fmt/core.h>
#include "aare/Cluster.hpp"
#include "aare/NDView.hpp"
namespace aare {
template <typename ClusterType,
@ -235,6 +238,10 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
return *reinterpret_cast<const ClusterType *>(element_ptr(i));
}
template <typename V> const V &at(size_t i) const {
return *reinterpret_cast<const V *>(element_ptr(i));
}
const std::string_view fmt_base() const {
// TODO! how do we match on coord_t?
return m_fmt_base;
@ -265,6 +272,28 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
m_size = new_size;
}
void apply_gain_map(const NDView<double> gain_map){
//in principle we need to know the size of the image for this lookup
//TODO! check orientations
std::array<int64_t, 9> xcorr = {-1, 0, 1, -1, 0, 1, -1, 0, 1};
std::array<int64_t, 9> ycorr = {-1, -1, -1, 0, 0, 0, 1, 1, 1};
for (size_t i=0; i<m_size; i++){
auto& cl = at<Cluster3x3>(i);
if (cl.x > 0 && cl.y > 0 && cl.x < gain_map.shape(1)-1 && cl.y < gain_map.shape(0)-1){
for (size_t j=0; j<9; j++){
size_t x = cl.x + xcorr[j];
size_t y = cl.y + ycorr[j];
cl.data[j] = static_cast<T>(cl.data[j] * gain_map(y, x));
}
}else{
memset(cl.data, 0, 9*sizeof(T)); //clear edge clusters
}
}
}
private:
void allocate_buffer(size_t new_capacity) {
size_t num_bytes = item_size() * new_capacity;

View File

@ -1,11 +1,9 @@
#pragma once
#include "aare/Dtype.hpp"
// #include "aare/utils/logger.hpp"
#include <array>
#include <stdexcept>
#include <cassert>
#include <cstdint>
#include <cstring>
@ -43,6 +41,7 @@ inline constexpr size_t bits_per_byte = 8;
void assert_failed(const std::string &msg);
class DynamicCluster {
public:
int cluster_sizeX;
@ -215,6 +214,9 @@ struct ROI{
int64_t height() const { return ymax - ymin; }
int64_t width() const { return xmax - xmin; }
bool contains(int64_t x, int64_t y) const {
return x >= xmin && x < xmax && y >= ymin && y < ymax;
}
};