Dev/stuff from pyctbgui (#273)
Some checks failed
Build on RHEL8 / build (push) Successful in 2m23s
Build on RHEL9 / build (push) Successful in 2m35s
Run tests using data on local RHEL8 / build (push) Failing after 3m19s

Matterhorn10 Transform 
some other Transformations from pyctbGUI 
added method get_reading_mode for easier error handling in decoders 


## TODO: 

- proper error handling for all other decoders 
- proper documentation for all other decoders 
- refactoring all other decoders to store hard coded values in a Struct
ChipSpecification
This commit is contained in:
2026-02-19 16:12:44 +01:00
committed by GitHub
parent 5dbc746462
commit 2139e5843c
19 changed files with 411 additions and 51 deletions

View File

@@ -10,11 +10,21 @@ NDArray<ssize_t, 2> GenerateMoench03PixelMap();
NDArray<ssize_t, 2> GenerateMoench05PixelMap(); NDArray<ssize_t, 2> GenerateMoench05PixelMap();
NDArray<ssize_t, 2> GenerateMoench05PixelMap1g(); NDArray<ssize_t, 2> GenerateMoench05PixelMap1g();
NDArray<ssize_t, 2> GenerateMoench05PixelMapOld(); NDArray<ssize_t, 2> GenerateMoench05PixelMapOld();
NDArray<ssize_t, 2> GenerateMoench04AnalogPixelMap();
// Matterhorn02 // Matterhorn02
NDArray<ssize_t, 2> GenerateMH02SingleCounterPixelMap(); NDArray<ssize_t, 2> GenerateMH02SingleCounterPixelMap();
NDArray<ssize_t, 3> GenerateMH02FourCounterPixelMap(); NDArray<ssize_t, 3> GenerateMH02FourCounterPixelMap();
/**
* @brief Generate pixel map for Matterhorn10 detector
* @param dynamic_range Dynamic range of the detector (16, 8, or 4)
* @param n_counters Number of counters (1 to 4)
*/
NDArray<ssize_t, 2>
GenerateMatterhorn10PixelMap(const size_t dynamic_range = 16,
const size_t n_counters = 1);
// Eiger // Eiger
NDArray<ssize_t, 2> GenerateEigerFlipRowsPixelMap(); NDArray<ssize_t, 2> GenerateEigerFlipRowsPixelMap();

View File

@@ -97,9 +97,9 @@ class RawMasterFile {
size_t m_frame_padding{}; size_t m_frame_padding{};
// TODO! should these be bool? // TODO! should these be bool?
uint8_t m_analog_flag{}; bool m_analog_flag{};
uint8_t m_digital_flag{}; bool m_digital_flag{};
uint8_t m_transceiver_flag{}; bool m_transceiver_flag{};
ScanParameters m_scan_parameters; ScanParameters m_scan_parameters;
@@ -135,6 +135,8 @@ class RawMasterFile {
size_t n_modules() const; size_t n_modules() const;
uint8_t quad() const; uint8_t quad() const;
ReadoutMode get_reading_mode() const;
std::optional<size_t> analog_samples() const; std::optional<size_t> analog_samples() const;
std::optional<size_t> digital_samples() const; std::optional<size_t> digital_samples() const;
std::optional<size_t> transceiver_samples() const; std::optional<size_t> transceiver_samples() const;

View File

@@ -38,6 +38,13 @@ uint32_t mask32to24bits(uint32_t input, BitOffset offset = {});
void expand24to32bit(NDView<uint8_t, 1> input, NDView<uint32_t, 1> output, void expand24to32bit(NDView<uint8_t, 1> input, NDView<uint32_t, 1> output,
BitOffset offset = {}); BitOffset offset = {});
/**
* @brief expands the two 4 bit values of an 8 bit buffer into two 8 bit values
* @param input input buffer with 4 bit values packed into 8 bit
* @param output output buffer with 8 bit values
*/
void expand4to8bit(NDView<uint8_t, 1> input, NDView<uint8_t, 1> output);
/** /**
* @brief Apply custom weights to a 16-bit input value. Will sum up * @brief Apply custom weights to a 16-bit input value. Will sum up
* weights[i]**i for each bit i that is set in the input value. * weights[i]**i for each bit i that is set in the input value.

View File

@@ -188,6 +188,46 @@ struct ROI {
} }
}; };
/// @brief Chip specifications for Matterhorn1
struct Matterhorn10 {
constexpr static size_t nRows = 256;
constexpr static size_t nCols = 256;
};
/// @brief Chip specifications for Matterhorn2
struct Matterhorn02 {
constexpr static size_t nRows = 48;
constexpr static size_t nCols = 48;
constexpr static size_t nHalfCols = 24;
};
/// @brief Chip specifications for Moench04
struct Moench04 {
constexpr static size_t nRows = 400;
constexpr static size_t nCols = 400;
constexpr static std::array<int, 32>
adcNumbers =
{
9, 8, 11, 10, 13, 12, 15, 14, 1, 0, 3,
2, 5, 4, 7, 6, 23, 22, 21, 20, 19, 18,
17, 16, 31, 30, 29, 28, 27, 26, 25, 24}; // TODO : should we
// only have chip
// specifications or
// also wiring in
// chiptestboard?
constexpr static size_t nPixelsPerSuperColumn = 5000;
constexpr static size_t superColumnWidth = 25;
};
enum ReadoutMode : uint8_t {
ANALOG_ONLY = 0,
DIGITAL_ONLY = 1,
ANALOG_AND_DIGITAL = 2,
TRANSCEIVER_ONLY = 3,
DIGITAL_AND_TRANSCEIVER = 4,
UNKNOWN = 5
};
using dynamic_shape = std::vector<ssize_t>; using dynamic_shape = std::vector<ssize_t>;
// TODO! Can we uniform enums between the libraries? // TODO! Can we uniform enums between the libraries?

View File

@@ -18,6 +18,9 @@ class CtbRawFile(_aare.CtbRawFile):
super().__init__(fname) super().__init__(fname)
self._chunk_size = chunk_size self._chunk_size = chunk_size
self._transform = transform self._transform = transform
if self._transform:
if hasattr(self._transform, "compatibility") and callable(getattr(self._transform, "compatibility")):
self._transform.compatibility(self.master.reading_mode)
def read_frame(self, frame_index: int | None = None ) -> tuple: def read_frame(self, frame_index: int | None = None ) -> tuple:
@@ -45,7 +48,6 @@ class CtbRawFile(_aare.CtbRawFile):
if header.shape == (1,): if header.shape == (1,):
header = header[0] header = header[0]
if self._transform: if self._transform:
res = self._transform(data) res = self._transform(data)
if isinstance(res, tuple): if isinstance(res, tuple):

View File

@@ -5,7 +5,7 @@ from . import _aare
from ._aare import File, RawMasterFile, RawSubFile, JungfrauDataFile from ._aare import File, RawMasterFile, RawSubFile, JungfrauDataFile
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder_Cluster3x3i, VarClusterFinder from ._aare import Pedestal_d, Pedestal_f, ClusterFinder_Cluster3x3i, VarClusterFinder
from ._aare import DetectorType from ._aare import DetectorType, ReadoutMode
from ._aare import hitmap from ._aare import hitmap
from ._aare import ROI from ._aare import ROI
from ._aare import corner from ._aare import corner

View File

@@ -1,7 +1,8 @@
# SPDX-License-Identifier: MPL-2.0 # SPDX-License-Identifier: MPL-2.0
import numpy as np import numpy as np
from . import _aare from . import _aare
from aare import ReadoutMode
from aare._aare import Matterhorn10
class AdcSar04Transform64to16: class AdcSar04Transform64to16:
def __call__(self, data): def __call__(self, data):
@@ -24,6 +25,14 @@ class Moench05Transform:
return np.take(data.view(np.uint16), self.pixel_map) return np.take(data.view(np.uint16), self.pixel_map)
class Moench03Transform:
def __init__(self):
self.pixel_map = _aare.GenerateMoench03PixelMap()
def __call__(self, data):
return np.take(data.view(np.uint16), self.pixel_map)
class Moench05Transform1g: class Moench05Transform1g:
#Could be moved to C++ without changing the interface #Could be moved to C++ without changing the interface
def __init__(self): def __init__(self):
@@ -41,17 +50,79 @@ class Moench05TransformOld:
def __call__(self, data): def __call__(self, data):
return np.take(data.view(np.uint16), self.pixel_map) return np.take(data.view(np.uint16), self.pixel_map)
class Moench04AnalogTransform:
class Matterhorn02Transform: #Could be moved to C++ without changing the interface
def __init__(self): def __init__(self):
self.pixel_map = _aare.GenerateMH02FourCounterPixelMap() self.pixel_map = _aare.GenerateMoench04AnalogPixelMap()
def __call__(self, data): def __call__(self, data):
counters = int(data.size / 48**2 / 2) return np.take(data.view(np.uint16), self.pixel_map)
if counters == 1:
return np.take(data.view(np.uint16), self.pixel_map[0]) class Matterhorn02TransceiverTransform:
else: #Could be moved to C++ without changing the interface
return np.take(data.view(np.uint16), self.pixel_map[0:counters]) def __init__(self):
self.pixel_map = _aare.GenerateMH02SingleCounterPixelMap()
def __call__(self, data):
return np.take(data.view(np.uint16), self.pixel_map)
class Matterhorn10Transform:
"""
Transforms Matterhorn10 chip data from a buffer of bytes (uint8_t)
to a numpy array of uint8, uint16 depending on dynamic range.
Assumes data taken with transceiver samples only.
:param dynamic_range: How many bits a pixel is encoded dynamic range (4, 8, or 16)
:type dynamic_range: int
:param num_counters: num counters used (1 to 4)
:type num_counters: int
.. note::
A matterhorn chip has 256 columns and 256 rows.
A matterhornchip with dynamic range 16 and 2 counters thus requires
256*256*16*2/(2*64) = 1024 transceiver samples. (Per default 2 channels are enabled per transceiver sample, each channel storing 64 bits)
"""
def __init__(self, dynamic_range : int, num_counters : int):
self.pixel_map = _aare.GenerateMatterhorn10PixelMap(dynamic_range, num_counters)
self.dynamic_range = dynamic_range
self.num_counters = num_counters
def compatibility(self, readingmode : ReadoutMode):
"""
checks if Matterhorn10Transform is compatible with given parameters
:param readingmode: Reading mode set
:type readingmode: ReadoutMode
:raises ValueError: if not compatible
"""
if(readingmode != ReadoutMode.TRANSCEIVER_ONLY):
raise ValueError(f"Incompatible Transformation. Matterhorn10Transform only requires transceiver samples. However reading mode is {readingmode}.")
pass
def data_compatibility(self, data):
"""
checks if data is compatible for transformation
:param data: data to be transformed, expected to be a 1D numpy array of uint8
:type data: np.ndarray
:raises ValueError: if not compatible
"""
expected_size = (Matterhorn10.nRows*Matterhorn10.nCols*self.num_counters*self.dynamic_range)//8 # read_frame returns data in uint8_t
if(data.size != expected_size):
raise ValueError(f"Data size {data.size} does not match expected size {expected_size} for Matterhorn10 with dynamic range {self.dynamic_range} and num_counters {self.num_counters}.")
pass
def __call__(self, data):
self.data_compatibility(data)
if self.dynamic_range == 16:
return np.take(data.view(np.uint16), self.pixel_map)
elif self.dynamic_range == 8:
return np.take(data.view(np.uint8), self.pixel_map)
else: #dynamic range 4
return np.take(_aare.expand4to8bit(data.view(np.uint8)), self.pixel_map)
class Mythen302Transform: class Mythen302Transform:
""" """
@@ -95,7 +166,7 @@ class Mythen302Transform:
moench05 = Moench05Transform() moench05 = Moench05Transform()
moench05_1g = Moench05Transform1g() moench05_1g = Moench05Transform1g()
moench05_old = Moench05TransformOld() moench05_old = Moench05TransformOld()
matterhorn02 = Matterhorn02Transform() matterhorn02 = Matterhorn02TransceiverTransform()
adc_sar_04_64to16 = AdcSar04Transform64to16() adc_sar_04_64to16 = AdcSar04Transform64to16()
adc_sar_05_64to16 = AdcSar05Transform64to16() adc_sar_05_64to16 = AdcSar05Transform64to16()
adc_sar_05_06_07_08_64to16 = AdcSar05060708Transform64to16() adc_sar_05_06_07_08_64to16 = AdcSar05060708Transform64to16()

25
python/src/bind_Defs.hpp Normal file
View File

@@ -0,0 +1,25 @@
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "aare/defs.hpp"
namespace py = pybind11;
using namespace aare;
void define_defs_bindings(py::module &m) {
auto matterhorn10 = py::class_<Matterhorn10>(m, "Matterhorn10");
matterhorn10.attr("nRows") = Matterhorn10::nRows;
matterhorn10.attr("nCols") = Matterhorn10::nCols;
auto matterhorn02 = py::class_<Matterhorn02>(m, "Matterhorn02");
matterhorn02.attr("nRows") = Matterhorn02::nRows;
matterhorn02.attr("nCols") = Matterhorn02::nCols;
matterhorn02.attr("nHalfCols") = Matterhorn02::nHalfCols;
auto moench04 = py::class_<Moench04>(m, "Moench04");
moench04.attr("nRows") = Moench04::nRows;
moench04.attr("nCols") = Moench04::nCols;
moench04.attr("nPixelsPerSuperColumn") = Moench04::nPixelsPerSuperColumn;
moench04.attr("superColumnWidth") = Moench04::superColumnWidth;
moench04.attr("adcNumbers") = Moench04::adcNumbers;
}

View File

@@ -33,15 +33,35 @@ void define_pixel_map_bindings(py::module &m) {
new NDArray<ssize_t, 2>(GenerateMoench05PixelMapOld()); new NDArray<ssize_t, 2>(GenerateMoench05PixelMapOld());
return return_image_data(ptr); return return_image_data(ptr);
}) })
.def("GenerateMoench04AnalogPixelMap",
[]() {
auto ptr =
new NDArray<ssize_t, 2>(GenerateMoench04AnalogPixelMap());
return return_image_data(ptr);
})
.def("GenerateMH02SingleCounterPixelMap", .def("GenerateMH02SingleCounterPixelMap",
[]() { []() {
auto ptr = new NDArray<ssize_t, 2>( auto ptr = new NDArray<ssize_t, 2>(
GenerateMH02SingleCounterPixelMap()); GenerateMH02SingleCounterPixelMap());
return return_image_data(ptr); return return_image_data(ptr);
}) })
.def("GenerateMH02FourCounterPixelMap", []() { .def("GenerateMH02FourCounterPixelMap",
auto ptr = []() {
new NDArray<ssize_t, 3>(GenerateMH02FourCounterPixelMap()); auto ptr =
return return_image_data(ptr); new NDArray<ssize_t, 3>(GenerateMH02FourCounterPixelMap());
}); return return_image_data(ptr);
})
.def(
"GenerateMatterhorn10PixelMap",
[](const size_t dynamic_range, const size_t n_counters) {
auto ptr = new NDArray<ssize_t, 2>(
GenerateMatterhorn10PixelMap(dynamic_range, n_counters));
return return_image_data(ptr);
},
py::arg("dynamic_range") = 16, py::arg("n_counters") = 1,
R"(
Generate pixel map for Matterhorn02 detector)");
} }

View File

@@ -139,6 +139,22 @@ void define_ctb_raw_file_io_bindings(py::module &m) {
return output; return output;
}); });
m.def("expand4to8bit",
[](py::array_t<uint8_t, py::array::c_style | py::array::forcecast>
&input) {
py::buffer_info buf = input.request();
py::array_t<uint8_t> output(buf.size * 2);
NDView<uint8_t, 1> input_view(input.mutable_data(),
{input.size()});
NDView<uint8_t, 1> output_view(output.mutable_data(),
{output.size()});
aare::expand4to8bit(input_view, output_view);
return output;
});
m.def("decode_my302", m.def("decode_my302",
[](py::array_t<uint8_t, py::array::c_style | py::array::forcecast> [](py::array_t<uint8_t, py::array::c_style | py::array::forcecast>
&input, &input,

View File

@@ -9,8 +9,10 @@
#include "bind_ClusterFinder.hpp" #include "bind_ClusterFinder.hpp"
#include "bind_ClusterFinderMT.hpp" #include "bind_ClusterFinderMT.hpp"
#include "bind_ClusterVector.hpp" #include "bind_ClusterVector.hpp"
#include "bind_Defs.hpp"
#include "bind_Eta.hpp" #include "bind_Eta.hpp"
#include "bind_Interpolator.hpp" #include "bind_Interpolator.hpp"
#include "bind_PixelMap.hpp"
#include "bind_RawFile.hpp" #include "bind_RawFile.hpp"
#include "bind_calibration.hpp" #include "bind_calibration.hpp"
@@ -20,7 +22,6 @@
#include "fit.hpp" #include "fit.hpp"
#include "jungfrau_data_file.hpp" #include "jungfrau_data_file.hpp"
#include "pedestal.hpp" #include "pedestal.hpp"
#include "pixel_map.hpp"
#include "raw_master_file.hpp" #include "raw_master_file.hpp"
#include "raw_sub_file.hpp" #include "raw_sub_file.hpp"
#include "var_cluster.hpp" #include "var_cluster.hpp"
@@ -140,6 +141,8 @@ PYBIND11_MODULE(_aare, m) {
register_calculate_3x3eta<float, 3, 3, uint16_t>(m); register_calculate_3x3eta<float, 3, 3, uint16_t>(m);
register_calculate_3x3eta<int16_t, 3, 3, uint16_t>(m); register_calculate_3x3eta<int16_t, 3, 3, uint16_t>(m);
define_defs_bindings(m);
using Sum_index_pair_d = Sum_index_pair<double, corner>; using Sum_index_pair_d = Sum_index_pair<double, corner>;
PYBIND11_NUMPY_DTYPE(Sum_index_pair_d, sum, index); PYBIND11_NUMPY_DTYPE(Sum_index_pair_d, sum, index);
using Sum_index_pair_f = Sum_index_pair<float, corner>; using Sum_index_pair_f = Sum_index_pair<float, corner>;

View File

@@ -23,6 +23,16 @@ namespace py = pybind11;
using namespace ::aare; using namespace ::aare;
void define_raw_master_file_bindings(py::module &m) { void define_raw_master_file_bindings(py::module &m) {
py::enum_<ReadoutMode>(m, "ReadoutMode")
.value("ANALOG_ONLY", ReadoutMode::ANALOG_ONLY)
.value("DIGITAL_ONLY", ReadoutMode::DIGITAL_ONLY)
.value("ANALOG_AND_DIGITAL", ReadoutMode::ANALOG_AND_DIGITAL)
.value("TRANSCEIVER_ONLY", ReadoutMode::TRANSCEIVER_ONLY)
.value("DIGITAL_AND_TRANSCEIVER", ReadoutMode::DIGITAL_AND_TRANSCEIVER)
.value("UNKNOWN", ReadoutMode::UNKNOWN)
.export_values();
py::class_<RawMasterFile>(m, "RawMasterFile") py::class_<RawMasterFile>(m, "RawMasterFile")
.def(py::init<const std::filesystem::path &>()) .def(py::init<const std::filesystem::path &>())
.def("data_fname", &RawMasterFile::data_fname, R"( .def("data_fname", &RawMasterFile::data_fname, R"(
@@ -81,6 +91,7 @@ void define_raw_master_file_bindings(py::module &m) {
.def_property_readonly("transceiver_samples", .def_property_readonly("transceiver_samples",
&RawMasterFile::transceiver_samples) &RawMasterFile::transceiver_samples)
.def_property_readonly("reading_mode", &RawMasterFile::get_reading_mode)
.def_property_readonly("number_of_rows", &RawMasterFile::number_of_rows) .def_property_readonly("number_of_rows", &RawMasterFile::number_of_rows)
.def_property_readonly("quad", &RawMasterFile::quad) .def_property_readonly("quad", &RawMasterFile::quad)
.def_property_readonly("scan_parameters", .def_property_readonly("scan_parameters",

View File

@@ -14,6 +14,9 @@ def test_read_rawfile_with_roi_spanning_over_one_module(test_data_path):
assert headers.size == 10100 assert headers.size == 10100
assert frames.shape == (10100, 256, 256) assert frames.shape == (10100, 256, 256)
assert headers.size == 10100
assert frames.shape == (10100, 256, 256)
@pytest.mark.withdata @pytest.mark.withdata
def test_read_rawfile_with_multiple_rois(test_data_path): def test_read_rawfile_with_multiple_rois(test_data_path):
with RawFile(test_data_path / "raw/ROITestData/MultipleROIs/run_master_0.json") as f: with RawFile(test_data_path / "raw/ROITestData/MultipleROIs/run_master_0.json") as f:
@@ -44,6 +47,8 @@ def test_read_rawfile_with_multiple_rois(test_data_path):
assert frame[0].shape == (301, 101) assert frame[0].shape == (301, 101)
assert f.tell() == 2 assert f.tell() == 2
@pytest.mark.withdata @pytest.mark.withdata
def test_read_rawfile_quad_eiger_and_compare_to_numpy(test_data_path): def test_read_rawfile_quad_eiger_and_compare_to_numpy(test_data_path):
@@ -68,7 +73,6 @@ def test_read_rawfile_quad_eiger_and_compare_to_numpy(test_data_path):
assert (image == image1).all() assert (image == image1).all()
@pytest.mark.withdata @pytest.mark.withdata
def test_read_rawfile_eiger_and_compare_to_numpy(test_data_path): def test_read_rawfile_eiger_and_compare_to_numpy(test_data_path):
d0 = test_data_path/'raw/eiger/Lab6_20500eV_2deg_20240629_d0_f0_7.raw' d0 = test_data_path/'raw/eiger/Lab6_20500eV_2deg_20240629_d0_f0_7.raw'

View File

@@ -0,0 +1,14 @@
import pytest
from aare import RawMasterFile, ReadoutMode, DetectorType
@pytest.mark.withdata
def test_read_rawfile_quad_eiger_and_compare_to_numpy(test_data_path):
file_name = test_data_path/'raw/jungfrau/jungfrau_single_master_0.json'
f = RawMasterFile(file_name)
assert(f.reading_mode == ReadoutMode.UNKNOWN)
assert(f.detector_type == DetectorType.Jungfrau)

View File

@@ -1,5 +1,6 @@
// SPDX-License-Identifier: MPL-2.0 // SPDX-License-Identifier: MPL-2.0
#include "aare/PixelMap.hpp" #include "aare/PixelMap.hpp"
#include "aare/defs.hpp"
#include <array> #include <array>
@@ -31,6 +32,29 @@ NDArray<ssize_t, 2> GenerateMoench03PixelMap() {
return order_map; return order_map;
} }
NDArray<ssize_t, 2> GenerateMoench04AnalogPixelMap() {
std::array<int, 32> const adc_nr = Moench04::adcNumbers;
int const nadc = adc_nr.size();
NDArray<ssize_t, 2> order_map({Moench04::nRows, Moench04::nCols});
int pixel = 0;
for (size_t i = 0; i != Moench04::nPixelsPerSuperColumn; ++i) {
for (size_t i_adc = 0; i_adc != nadc; ++i_adc) {
int const col =
(adc_nr[i_adc] % 16) * 25 + (i % Moench04::superColumnWidth);
int row = 0;
if (i_adc < 16)
row = 199 - (i / Moench04::superColumnWidth);
else
row = 200 + (i / Moench04::superColumnWidth);
order_map(row, col) = pixel;
pixel++;
}
}
return order_map;
}
NDArray<ssize_t, 2> GenerateMoench05PixelMap() { NDArray<ssize_t, 2> GenerateMoench05PixelMap() {
std::array<int, 3> adc_numbers = {5, 9, 1}; std::array<int, 3> adc_numbers = {5, 9, 1};
NDArray<ssize_t, 2> order_map({160, 150}); NDArray<ssize_t, 2> order_map({160, 150});
@@ -104,16 +128,18 @@ NDArray<ssize_t, 2> GenerateEigerFlipRowsPixelMap() {
return order_map; return order_map;
} }
// transceiver pixel map for Matterhorn02
NDArray<ssize_t, 2> GenerateMH02SingleCounterPixelMap() { NDArray<ssize_t, 2> GenerateMH02SingleCounterPixelMap() {
// This is the pixel map for a single counter Matterhorn02, i.e. 48x48 // This is the pixel map for a single counter Matterhorn02, i.e. 48x48
// pixels. Data is read from two transceivers in blocks of 4 pixels. // pixels. Data is read from two transceivers in blocks of 4 pixels.
NDArray<ssize_t, 2> order_map({48, 48}); NDArray<ssize_t, 2> order_map({Matterhorn02::nRows, Matterhorn02::nCols});
size_t offset = 0; size_t offset = 0;
size_t nSamples = 4; size_t nSamples = 4;
for (int row = 0; row < 48; row++) { for (size_t row = 0; row < Matterhorn02::nRows; row++) {
for (int col = 0; col < 24; col++) { for (size_t col = 0; col < Matterhorn02::nHalfCols; col++) {
for (int iTrans = 0; iTrans < 2; iTrans++) { for (size_t iTrans = 0; iTrans < 2; iTrans++) {
order_map(row, iTrans * 24 + col) = offset + nSamples * iTrans; order_map(row, iTrans * Matterhorn02::nHalfCols + col) =
offset + nSamples * iTrans;
} }
offset += 1; offset += 1;
if ((col + 1) % nSamples == 0) { if ((col + 1) % nSamples == 0) {
@@ -126,16 +152,64 @@ NDArray<ssize_t, 2> GenerateMH02SingleCounterPixelMap() {
NDArray<ssize_t, 3> GenerateMH02FourCounterPixelMap() { NDArray<ssize_t, 3> GenerateMH02FourCounterPixelMap() {
auto single_counter_map = GenerateMH02SingleCounterPixelMap(); auto single_counter_map = GenerateMH02SingleCounterPixelMap();
NDArray<ssize_t, 3> order_map({4, 48, 48}); NDArray<ssize_t, 3> order_map(
for (int counter = 0; counter < 4; counter++) { {4, Matterhorn02::nRows, Matterhorn02::nCols});
for (int row = 0; row < 48; row++) { for (size_t counter = 0; counter < 4; counter++) {
for (int col = 0; col < 48; col++) { for (size_t row = 0; row < Matterhorn02::nRows; row++) {
for (size_t col = 0; col < Matterhorn02::nCols; col++) {
order_map(counter, row, col) = order_map(counter, row, col) =
single_counter_map(row, col) + counter * 48 * 48; single_counter_map(row, col) +
counter * Matterhorn02::nRows * Matterhorn02::nCols;
} }
} }
} }
return order_map; return order_map;
} }
NDArray<ssize_t, 2> GenerateMatterhorn10PixelMap(const size_t dynamic_range,
const size_t n_counters) {
// Matterhorn10 uses transceiver samples (each transceiver sample has 1-4
// channels storing 8 bytes each)
constexpr size_t n_cols = Matterhorn10::nCols;
constexpr size_t n_rows = Matterhorn10::nRows;
NDArray<ssize_t, 2> pixel_map(
{static_cast<ssize_t>(n_rows * n_counters), n_cols});
size_t num_consecutive_pixels{};
switch (dynamic_range) {
case 16:
num_consecutive_pixels = 4;
break;
case 8:
num_consecutive_pixels = 8;
break;
case 4:
num_consecutive_pixels = 16;
break;
default:
throw std::runtime_error("Unsupported dynamic range for Matterhorn02");
}
for (size_t row = 0; row < n_rows; ++row) {
for (size_t counter = 0; counter < n_counters; ++counter) {
size_t col = 0;
for (size_t offset = 0; offset < 64;
offset += num_consecutive_pixels) {
for (size_t pkg = offset; pkg < Matterhorn10::nCols;
pkg += 64) {
for (size_t pixel = 0; pixel < num_consecutive_pixels;
++pixel) {
pixel_map(row + counter * n_rows, col) =
pkg + pixel + row * n_cols * n_counters +
n_cols * counter;
++col;
}
}
}
}
}
return pixel_map;
}
} // namespace aare } // namespace aare

View File

@@ -206,6 +206,30 @@ std::optional<ROI> RawMasterFile::roi() const {
std::optional<std::vector<ROI>> RawMasterFile::rois() const { return m_rois; } std::optional<std::vector<ROI>> RawMasterFile::rois() const { return m_rois; }
ReadoutMode RawMasterFile::get_reading_mode() const {
if (m_type != DetectorType::ChipTestBoard &&
m_type != DetectorType::Xilinx_ChipTestBoard) {
LOG(TLogLevel::logINFO)
<< "reading mode is only available for CTB detectors.";
return ReadoutMode::UNKNOWN;
}
if (m_analog_flag && m_digital_flag) {
return ReadoutMode::ANALOG_AND_DIGITAL;
} else if (m_analog_flag) {
return ReadoutMode::ANALOG_ONLY;
} else if (m_digital_flag && m_transceiver_flag) {
return ReadoutMode::DIGITAL_AND_TRANSCEIVER;
} else if (m_digital_flag) {
return ReadoutMode::DIGITAL_ONLY;
} else if (m_transceiver_flag) {
return ReadoutMode::TRANSCEIVER_ONLY;
} else {
return ReadoutMode::UNKNOWN;
}
}
void RawMasterFile::parse_json(std::istream &is) { void RawMasterFile::parse_json(std::istream &is) {
json j; json j;
is >> j; is >> j;
@@ -216,10 +240,10 @@ void RawMasterFile::parse_json(std::istream &is) {
m_type = string_to<DetectorType>(j["Detector Type"].get<std::string>()); m_type = string_to<DetectorType>(j["Detector Type"].get<std::string>());
m_timing_mode = string_to<TimingMode>(j["Timing Mode"].get<std::string>()); m_timing_mode = string_to<TimingMode>(j["Timing Mode"].get<std::string>());
m_geometry = { m_geometry = {j["Geometry"]["y"],
j["Geometry"]["y"], j["Geometry"]["x"]}; // TODO: isnt it only available for
j["Geometry"]["x"]}; // TODO: isnt it only available for version > 7.1? // version > 7.1?
// - try block default should be 1x1 // - try block default should be 1x1
m_image_size_in_bytes = m_image_size_in_bytes =
v < 8.0 ? j["Image Size in bytes"] : j["Image Size"]; v < 8.0 ? j["Image Size in bytes"] : j["Image Size"];
@@ -272,22 +296,15 @@ void RawMasterFile::parse_json(std::istream &is) {
// ---------------------------------------------------------------- // ----------------------------------------------------------------
// Special treatment of analog flag because of Moench03 // Special treatment of analog flag because of Moench03
m_analog_flag = v < 8.0 && (m_type == DetectorType::Moench);
try { try {
m_analog_flag = j.at("Analog Flag"); m_analog_flag = static_cast<bool>(j.at("Analog Flag").get<int>());
} catch (const json::out_of_range &e) {
// if it doesn't work still set it to one
// to try to decode analog samples (Old Moench03)
m_analog_flag = 1;
}
try {
if (m_analog_flag) { if (m_analog_flag) {
m_analog_samples = j.at("Analog Samples"); m_analog_samples = j.at("Analog Samples");
} }
} catch (const json::out_of_range &e) { } catch (const json::out_of_range &e) {
// keep the optional empty // keep the optional empty
// and set analog flag to 0
m_analog_flag = 0;
} }
//----------------------------------------------------------------- //-----------------------------------------------------------------
try { try {
@@ -302,7 +319,7 @@ void RawMasterFile::parse_json(std::istream &is) {
// m_adc_mask = 0; // m_adc_mask = 0;
// } // }
try { try {
int digital_flag = j.at("Digital Flag"); bool digital_flag = static_cast<bool>(j.at("Digital Flag").get<int>());
if (digital_flag) { if (digital_flag) {
m_digital_samples = j.at("Digital Samples"); m_digital_samples = j.at("Digital Samples");
} }
@@ -310,7 +327,8 @@ void RawMasterFile::parse_json(std::istream &is) {
// keep the optional empty // keep the optional empty
} }
try { try {
m_transceiver_flag = j.at("Transceiver Flag"); m_transceiver_flag =
static_cast<bool>(j.at("Transceiver Flag").get<int>());
if (m_transceiver_flag) { if (m_transceiver_flag) {
m_transceiver_samples = j.at("Transceiver Samples"); m_transceiver_samples = j.at("Transceiver Samples");
} }
@@ -444,9 +462,9 @@ void RawMasterFile::parse_raw(std::istream &is) {
// } else if (key == "Number of rows"){ // } else if (key == "Number of rows"){
// m_number_of_rows = std::stoi(value); // m_number_of_rows = std::stoi(value);
} else if (key == "Analog Flag") { } else if (key == "Analog Flag") {
m_analog_flag = std::stoi(value); m_analog_flag = static_cast<bool>(std::stoi(value));
} else if (key == "Digital Flag") { } else if (key == "Digital Flag") {
m_digital_flag = std::stoi(value); m_digital_flag = static_cast<bool>(std::stoi(value));
} else if (key == "Analog Samples") { } else if (key == "Analog Samples") {
if (m_analog_flag == 1) { if (m_analog_flag == 1) {

View File

@@ -146,6 +146,8 @@ TEST_CASE("Parse a master file in .json format", "[.integration]") {
REQUIRE_FALSE(f.analog_samples()); REQUIRE_FALSE(f.analog_samples());
REQUIRE_FALSE(f.digital_samples()); REQUIRE_FALSE(f.digital_samples());
REQUIRE(f.get_reading_mode() == ReadoutMode::UNKNOWN);
} }
TEST_CASE("Parse a master file in old .raw format", TEST_CASE("Parse a master file in old .raw format",
@@ -211,6 +213,8 @@ TEST_CASE("Parse a master file in .raw format", "[.integration]") {
// Frames in File : 100 // Frames in File : 100
REQUIRE(f.frames_in_file() == 100); REQUIRE(f.frames_in_file() == 100);
REQUIRE(f.get_reading_mode() == ReadoutMode::ANALOG_AND_DIGITAL);
// #Frame Header // #Frame Header
// Frame Number : 8 bytes // Frame Number : 8 bytes
// SubFrame Number/ExpLength : 4 bytes // SubFrame Number/ExpLength : 4 bytes
@@ -560,6 +564,7 @@ TEST_CASE("Parse a CTB file from stream") {
REQUIRE(f.digital_samples() == std::nullopt); // Digital Flag is 0 REQUIRE(f.digital_samples() == std::nullopt); // Digital Flag is 0
REQUIRE(f.transceiver_samples() == 1152); REQUIRE(f.transceiver_samples() == 1152);
REQUIRE(f.frames_in_file() == 40); REQUIRE(f.frames_in_file() == 40);
REQUIRE(f.get_reading_mode() == ReadoutMode::TRANSCEIVER_ONLY);
} }
TEST_CASE("Parse v8.0 MYTHEN3 from stream") { TEST_CASE("Parse v8.0 MYTHEN3 from stream") {

View File

@@ -144,6 +144,24 @@ uint32_t mask32to24bits(uint32_t input, BitOffset offset) {
return (input >> offset.value()) & mask24bits; return (input >> offset.value()) & mask24bits;
} }
void expand4to8bit(NDView<uint8_t, 1> input, NDView<uint8_t, 1> output) {
if (2 * input.size() != output.size())
throw std::runtime_error(
fmt::format("Mismatch between input and output size. Input "
"size of {} requires an output of at least {} "
"bytes. Called with input size: {} output size: {}",
LOCATION, input.size(), 2 * input.size(), input.size(),
output.size()));
// assumes little-endian
for (ssize_t i = 0; i < input.size(); ++i) {
uint8_t val = input(i);
output[2 * i] = (val & 0x0F);
output[2 * i + 1] = (val & 0xF0) >> 4;
}
}
void expand24to32bit(NDView<uint8_t, 1> input, NDView<uint32_t, 1> output, void expand24to32bit(NDView<uint8_t, 1> input, NDView<uint32_t, 1> output,
BitOffset bit_offset) { BitOffset bit_offset) {

View File

@@ -153,3 +153,23 @@ TEST_CASE("Expand container with 24 bit data to 32") {
CHECK(out(2) == 0xFF0); CHECK(out(2) == 0xFF0);
} }
} }
TEST_CASE("Expand 4 bit values packed into 8 bit to 8 bit values") {
{
uint8_t buffer[] = {
0x00, 0xF0, 0xFF, 0x00, 0xF0, 0xFF,
};
aare::NDView<uint8_t, 1> input(&buffer[0], {6});
aare::NDArray<uint8_t, 1> out({12});
aare::expand4to8bit(input, out.view());
uint8_t expected_output[] = {
0x0, 0x0, 0x0, 0xF, 0xF, 0xF,
0x0, 0x0, 0x0, 0xF, 0xF, 0xF}; // assuming little endian
for (size_t i = 0; i < 12; ++i) {
CHECK(out(i) == expected_output[i]);
}
}
}