templated calculate_pedestal with boolean template argument only_gain0, added drop_dimension to NDArray and reference pointer to data

This commit is contained in:
2025-07-24 15:40:05 +02:00
parent 8c4d8b687e
commit 1347158235
5 changed files with 85 additions and 92 deletions

View File

@@ -33,7 +33,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
* @brief Default constructor. Will construct an empty NDArray.
*
*/
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr){};
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr) {};
/**
* @brief Construct a new NDArray object with a given shape.
@@ -185,6 +185,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
const T &operator[](ssize_t i) const { return data_[i]; }
T *data() { return data_; }
T *&data_ref() { return data_; }
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
ssize_t size() const { return static_cast<ssize_t>(size_); }
size_t total_bytes() const { return size_ * sizeof(T); }
@@ -211,13 +212,30 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
void Print_all();
void Print_some();
template <ssize_t M = Ndim, typename = std::enable_if_t<(M > 2)>>
NDArray<T, Ndim - 1> drop_dimension() && {
std::array<ssize_t, Ndim - 1> new_shape;
std::copy(shape_.begin() + 1, shape_.begin() + Ndim, new_shape.begin());
NDArray<T, Ndim - 1> new_array(new_shape);
delete new_array.data();
new_array.data_ref() = data_;
this->reset();
return new_array;
}
void reset() {
data_ = nullptr;
size_ = 0;
std::fill(shape_.begin(), shape_.end(), 0);
std::fill(strides_.begin(), strides_.end(), 0);
}
};
// Move assign
@@ -382,8 +400,6 @@ NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
return result;
}
template <typename T, ssize_t Ndim>
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
for (auto row = 0; row < arr.shape(0); ++row) {
@@ -434,17 +450,18 @@ NDArray<T, Ndim> load(const std::string &pathname,
return img;
}
template <typename RT, typename NT, typename DT, ssize_t Ndim>
NDArray<RT, Ndim> safe_divide(const NDArray<NT, Ndim> &numerator,
const NDArray<DT, Ndim> &denominator) {
const NDArray<DT, Ndim> &denominator) {
if (numerator.shape() != denominator.shape()) {
throw std::runtime_error("Shapes of numerator and denominator must match");
throw std::runtime_error(
"Shapes of numerator and denominator must match");
}
NDArray<RT, Ndim> result(numerator.shape());
for (ssize_t i = 0; i < numerator.size(); ++i) {
if (denominator[i] != 0) {
result[i] = static_cast<RT>(numerator[i]) / static_cast<RT>(denominator[i]);
result[i] =
static_cast<RT>(numerator[i]) / static_cast<RT>(denominator[i]);
} else {
result[i] = RT{0}; // or handle division by zero as needed
}

View File

@@ -103,7 +103,7 @@ void apply_calibration_impl(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
}
}
template <class T, ssize_t Ndim=3>
template <class T, ssize_t Ndim = 3>
void apply_calibration(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
NDView<T, Ndim> ped, NDView<T, Ndim> cal,
ssize_t n_threads = 4) {
@@ -113,52 +113,44 @@ void apply_calibration(NDView<T, 3> res, NDView<uint16_t, 3> raw_data,
for (const auto &lim : limits)
futures.push_back(std::async(
static_cast<void (*)(NDView<T, 3>, NDView<uint16_t, 3>,
NDView<T, Ndim>, NDView<T, Ndim>, int,
int)>(
NDView<T, Ndim>, NDView<T, Ndim>, int, int)>(
apply_calibration_impl),
res, raw_data, ped, cal, lim.first, lim.second));
for (auto &f : futures)
f.get();
}
template <bool only_gain0>
std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>>
sum_and_count_per_gain(NDView<uint16_t, 3> raw_data);
std::pair<NDArray<size_t, 2>, NDArray<size_t, 2>>
sum_and_count_g0(NDView<uint16_t, 3> raw_data);
template <typename T>
NDArray<T, 2> calculate_pedestal_g0(NDView<uint16_t, 3> raw_data,
ssize_t n_threads) {
std::vector<std::future<std::pair<NDArray<size_t, 2>, NDArray<size_t, 2>>>>
futures;
futures.reserve(n_threads);
auto subviews = make_subviews(raw_data, n_threads);
for (auto view : subviews) {
futures.push_back(std::async(
static_cast<std::pair<NDArray<size_t, 2>, NDArray<size_t, 2>> (*)(
NDView<uint16_t, 3>)>(&sum_and_count_g0),
view));
}
NDArray<size_t, 2> accumulator(
std::array<ssize_t, 2>{raw_data.shape(1), raw_data.shape(2)}, 0);
NDArray<size_t, 2> count(
std::array<ssize_t, 2>{raw_data.shape(1), raw_data.shape(2)}, 0);
for (auto &f : futures) {
auto [acc, cnt] = f.get();
accumulator += acc;
count += cnt;
sum_and_count_per_gain(NDView<uint16_t, 3> raw_data) {
constexpr ssize_t num_gains = only_gain0 ? 1 : 3;
NDArray<size_t, 3> accumulator(
std::array<ssize_t, 3>{num_gains, raw_data.shape(1), raw_data.shape(2)},
0);
NDArray<size_t, 3> count(
std::array<ssize_t, 3>{num_gains, raw_data.shape(1), raw_data.shape(2)},
0);
for (int frame_nr = 0; frame_nr != raw_data.shape(0); ++frame_nr) {
for (int row = 0; row != raw_data.shape(1); ++row) {
for (int col = 0; col != raw_data.shape(2); ++col) {
auto [value, gain] =
get_value_and_gain(raw_data(frame_nr, row, col));
if (gain != 0 && only_gain0)
continue;
accumulator(gain, row, col) += value;
count(gain, row, col) += 1;
}
}
}
return safe_divide<T>(accumulator, count);
return {std::move(accumulator), std::move(count)};
}
template <typename T>
NDArray<T, 3> calculate_pedestal(NDView<uint16_t, 3> raw_data,
ssize_t n_threads) {
template <typename T, bool only_gain0 = false>
NDArray<T, 3 - static_cast<ssize_t>(only_gain0)>
calculate_pedestal(NDView<uint16_t, 3> raw_data, ssize_t n_threads) {
constexpr ssize_t num_gains = only_gain0 ? 1 : 3;
std::vector<std::future<std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>>>>
futures;
futures.reserve(n_threads);
@@ -168,21 +160,27 @@ NDArray<T, 3> calculate_pedestal(NDView<uint16_t, 3> raw_data,
for (auto view : subviews) {
futures.push_back(std::async(
static_cast<std::pair<NDArray<size_t, 3>, NDArray<size_t, 3>> (*)(
NDView<uint16_t, 3>)>(&sum_and_count_per_gain),
NDView<uint16_t, 3>)>(&sum_and_count_per_gain<only_gain0>),
view));
}
NDArray<size_t, 3> accumulator(
std::array<ssize_t, 3>{3, raw_data.shape(1), raw_data.shape(2)}, 0);
std::array<ssize_t, 3>{num_gains, raw_data.shape(1), raw_data.shape(2)},
0);
NDArray<size_t, 3> count(
std::array<ssize_t, 3>{3, raw_data.shape(1), raw_data.shape(2)}, 0);
std::array<ssize_t, 3>{num_gains, raw_data.shape(1), raw_data.shape(2)},
0);
for (auto &f : futures) {
auto [acc, cnt] = f.get();
accumulator += acc;
count += cnt;
}
return safe_divide<T>(accumulator, count);
if constexpr (only_gain0) {
return safe_divide<T>(accumulator, count).drop_dimension();
} else {
return safe_divide<T>(accumulator, count);
}
}
/**
@@ -205,4 +203,9 @@ NDArray<int, 2> count_switching_pixels(NDView<uint16_t, 3> raw_data);
NDArray<int, 2> count_switching_pixels(NDView<uint16_t, 3> raw_data,
ssize_t n_threads);
template <typename T>
auto calculate_pedestal_g0(NDView<uint16_t, 3> raw_data, ssize_t n_threads) {
return calculate_pedestal<T, true>(raw_data, n_threads);
}
} // namespace aare