Files
JFCalibration/BP_fit_M431.cpp
hinger_v 73938aad04 new file: BP_analysis_M431.cpp
new file:   BP_analysis_thinSensors.cpp
	new file:   BP_fit.cpp
	new file:   BP_fit_M431.cpp
	new file:   BP_fit_thin.cpp
	new file:   BP_scan_both_speeds.sh
	new file:   BP_scan_thinSensor.sh
	new file:   CS_analysis_M431.cpp
	new file:   CS_analysis_M439.cpp
	new file:   CS_fit.cpp
	new file:   CS_fit_M431
	new file:   CS_fit_M431.cpp
	new file:   CS_scan_both_speeds.sh
	new file:   CuFluo_exposure_both_speeds.sh
	new file:   CuFluo_fit.cpp
	new file:   Default_pixels_arrays.cpp
2025-06-27 11:16:26 +02:00

551 lines
18 KiB
C++

// to analyse the backplane pulsing data per module
// changes by VH 210906: to eliminate hardcoded absolute paths, uses location of the analysis root files as additional input argument (accordingly changed in filename_creator.sh)
#include "TApplication.h"
#include "sls_detector_calibration/jungfrauCommonHeader.h"
#include "sls_detector_calibration/jungfrauCommonFunctions.h"
#include "sls_detector_calibration/jungfrauFile.C"
#include "sls_detector_calibration/jungfrauPedestal.C"
#include "TGraphErrors.h"
#include "TF1.h"
#include "TStyle.h"
#include "TPaveStats.h"
#include "TFile.h"
#include "TLegend.h"
#include "TPaveText.h"
#include "TCanvas.h"
#include "TRootCanvas.h"
#include "TSystem.h"
#include "TF2.h"
#include "TGaxis.h"
#include <sys/stat.h>
#include <sstream>
#include <algorithm>
//#define NB_ENABLE 1
//void nonblock(int state);
//#define NB_DISABLE 0
//TApplication* rootapp;
//TCanvas *A2;
//TCanvas *A3;
//TCanvas *A4;
//TCanvas *A5;
//TCanvas *A6;
TGraphErrors *grap_g0;
TGraphErrors *grap_g1;
TF1 *fit_g0=0;
TF1 *fit_g1=0;
TGraphErrors *norm_g0=0;
TGraphErrors *norm_g1=0;
TF1 *flat_g0;
TF1 *flat_g1;
TF1 *lin_g0_p1pc;
TF1 *lin_g0_p05pc;
TF1 *lin_g0_p02pc;
TF1 *lin_g0_m1pc;
TF1 *lin_g0_m05pc;
TF1 *lin_g0_m02pc;
TF1 *lin_g1_p02pc;
TF1 *lin_g1_p01pc;
TF1 *lin_g1_m02pc;
TF1 *lin_g1_m01pc;
//TPaveStats *st0;
//void PlotCanvas(void);
double checkRangeMaxForAmplifierPlateau(double range_max) {
// check that the range maximum is no more than 6.4 V
// to avoid non-linearity coming from amplifier plateau
if (range_max > 6400) {
return 6400;
} else {
return range_max;
}
}
bool isHGX=false;
int main(int argc, char* argv[]) {
//nonblock(NB_ENABLE);
cout <<"opening the rootapp" <<endl;
TApplication rootapp("example",&argc, argv);
jungfrauStyle();
//gROOT->SetBatch(1);
gStyle->SetOptFit(11);
/*
if (argc != 3) {
cout << "Correct usage:" << endl;
cout << "arg 1: specify module number" << endl;
cout << "arg 2: specify data location" << endl;
cout << "arg 3: specify column (x)" << endl;
cout << "arg 4: specify row (y)" << endl;
exit(1);
}
*/ //uncomment for SR
if (argc != 4) {
cout << "Correct usage:" << endl;
cout << "arg 1: specify module number" << endl;
cout << "arg 2: specify pixel x position" << endl;
cout << "arg 3: specify pixel y position" << endl;
exit(1);
} //uncomment for VH 210906
string module_str = argv[1];
string str2 =("HG0G1G2");
string str3 =("HGOG1G2"); //filename creator had this bug
string C = argv[2];
string R = argv[3];
int column;
int row;
std::stringstream(C) >> column;
std::stringstream(R) >> row;
int pixel = column+row*1024;
char data_loc[256];
sprintf(data_loc,"/mnt/sls_det_storage/jungfrau_calib/jungfrau_ana_sophie/M%s_CalibAna/", module_str.c_str());
cout << data_loc << endl;
std::string folder_path(data_loc);
if (folder_path.find(str2) != string::npos) isHGX=true;
if (folder_path.find(str3) != string::npos) isHGX=true;
// cout << data_loc.find(str2)<<" " << string::npos << " " << str2 << " " << data_loc <<endl;
if (isHGX) {
cout << " HG0->HG1->HG2 sequence - dynamicHG0" <<endl;
// plotfolder_str="BackplanePulsing_HG0G1G2";
}
else {
cout << " G0->G1->G2 sequence - dynamicG0" <<endl;
// plotfolder_str="BackplanePulsing";
}
std::vector<double> G0_pixel(220, 0);
std::vector<double> G0_err_pixel(220, 0);
std::vector<double> G1_pixel(220, 0);
std::vector<double> G1_err_pixel(220, 0);
//char savename[128]; //uncomment for SR
//char filename[128]; //uncomment for SR
char filename[256]; //uncomment for VH 210902
// create necessary directories with permissions drwxrwxr-x
// data/Mxxx
//sprintf(savename,"data/M%s", module_str.c_str());
//mkdir(savename, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
// plots/Mxxx
//sprintf(savename,"plots/M%s", module_str.c_str());
//mkdir(savename, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
// plots/Mxxx/BackplanePulsing
//sprintf(savename,"plots/M%s/%s", module_str.c_str(), plotfolder_str.c_str());
//mkdir(savename, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
// /mnt/pcmoench_jungfrau_data/jungfrau_ana_sophie/Mxxx_CalibAna
//sprintf(savename,"/mnt/sls_det_storage/jungfrau_data1/jungfrau_ana_sophie/M%s_CalibAna", module_str.c_str()); //uncomment for SR
//sprintf(savename,"%s", anadata_loc.c_str()); //uncomment for VH 210906
//mkdir(savename, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
double xs[220];
for (int i = 0; i < 100; i++) {
//for (int i = 0; i < 220; i++) {
xs[i] = (i+1)*10.;
}
for (int i = 0; i < 120; i++) {
xs[i+100] = 1000+((i+1)*50);
}
TCanvas *A2 = new TCanvas("A2","Plot scan",150,10,800,400);
TCanvas *A3 = new TCanvas("A3","Plot G0 fit",150,10,800,400);
TCanvas *A4 = new TCanvas("A4","Plot G0 residuals",150,10,800,400);
TCanvas *A5 = new TCanvas("A5","Plot G1 fit",150,10,800,400);
TCanvas *A6 = new TCanvas("A6","Plot G1 residuals",150,10,800,400);
TCanvas *A7 = new TCanvas("A7","G0 linearity",150,10,800,400);
//file name
sprintf(filename,"%sBP_histos_M%s.root",folder_path.c_str(), module_str.c_str());
cout << "Loading file " << filename << endl;
TFile* f = new TFile((const char *)(filename),"READ");
for (int j = 0; j < 220; j++) {
TH2F* hist0=(TH2F*)f->Get(Form("avg_adcG0_map_%d",j));
G0_pixel[j]=hist0->GetBinContent((column+1),(row+1));
TH2F* hist0er=(TH2F*)f->Get(Form("avg_adcG0er_map_%d",j));
G0_err_pixel[j]=hist0er->GetBinContent((column+1),(row+1));
TH2F* hist1=(TH2F*)f->Get(Form("avg_adcG1_map_%d",j));
G1_pixel[j]=hist1->GetBinContent((column+1),(row+1));
TH2F* hist1er=(TH2F*)f->Get(Form("avg_adcG1er_map_%d",j));
G1_err_pixel[j]=hist1er->GetBinContent((column+1),(row+1));
//cout << "Data for pixel "<< pixel << "is loaded" << endl;
}
A2->SetLeftMargin(0.13);
A2->SetRightMargin(0.05);
vector<double> r0_adc;
vector<double> r0_filter;
vector<double> r0_adcerr;
vector<double> r0_ferr;
vector<double> r1_adc;
vector<double> r1_filter;
vector<double> r1_adcerr;
vector<double> r1_ferr;
for (int j = 0; j < 220; j++) {
//cout << "Pixel G0: " << G0_pixel[j] << ", pixel G1: " << G1_pixel[j] << endl;
if (G0_pixel[j] != 0) {
r0_filter.push_back(xs[j]);
r0_ferr.push_back(0.);
r0_adc.push_back(G0_pixel[j]);
r0_adcerr.push_back(G0_err_pixel[j]);
}
if (G1_pixel[j] != 0) {
r1_filter.push_back(xs[j]);
r1_ferr.push_back(0.);
r1_adc.push_back(G1_pixel[j]);
r1_adcerr.push_back(G1_err_pixel[j]);
}
//cout << "Filter array is loaded" << endl;
}
//TGraphErrors *grap_g0 = 0;
//TGraphErrors *grap_g1 = 0;
//TF1 *fit_g0 = 0;
//TF1 *fit_g1 = 0;
double rangemin_g0 = 0;
double rangemax_g0 = 0;
double rangemin_g1 = 0;
double rangemax_g1 = 0;
A2->cd();
// define graphs
if (r0_adc.size() > 1) {
grap_g0 = new TGraphErrors(r0_adc.size(),&(r0_filter[0]),&(r0_adc[0]),&(r0_ferr[0]),&(r0_adcerr[0]));
grap_g0->SetMarkerStyle(20);
grap_g0->SetMarkerColor(kBlue);
grap_g0->SetLineColor(kBlue);
}
if (r1_adc.size() > 1) {
grap_g1 = new TGraphErrors(r1_adc.size(),&(r1_filter[0]),&(r1_adc[0]),&(r1_ferr[0]),&(r1_adcerr[0]));
grap_g1->SetMarkerStyle(20);
grap_g1->SetMarkerColor(kGreen+2);
grap_g1->SetLineColor(kGreen+2);
}
//debug
cout <<" r0size= "<< r0_adc.size()<< " r1size= "<< r1_adc.size()<< endl;
// plot the datapoints
if (r1_adc.size() > 1) {
grap_g1->GetXaxis()->SetTitle("Signal generator voltage [mV]");
grap_g1->GetYaxis()->SetTitle("ADC [ADU]");
grap_g1->GetYaxis()->SetTitleOffset(0.9);
grap_g1->SetMinimum(1000);
grap_g1->SetMaximum(20000);
grap_g1->GetXaxis()->SetLimits(0,7200);
grap_g1->Draw("AP");
if (r0_adc.size() > 1) {
grap_g0->Draw("P");
A2->Update();
}
//cout << "Number of point in g1 =" << r1_adc.size() << endl;
//sprintf(savename,"plots/M%s/%s/pixel_%s_%d_M%s.png", module_str.c_str(), plotfolder_str.c_str(),pixel_type.c_str(), i,module_str.c_str());
//mapcanvas->SaveAs((const char *)(savename));
}
// define fit ranges and fit
if (r0_adc.size() > 1) {
A3->cd();
rangemin_g0 = *min_element(r0_filter.begin(),r0_filter.end());
rangemax_g0 = highestPointBeforeSwitching(r0_filter,r1_filter);
cout << "Switch point: " << rangemax_g0 << endl;
if (rangemax_g0 > rangemin_g0) {
grap_g0->Fit("pol1","QRC","",rangemin_g0,rangemax_g0);
fit_g0 = (TF1*) grap_g0->GetFunction("pol1");
if (fit_g0) {
fit_g0->SetLineColor(kBlue);
fit_g0->SetParName(0,"G0 const");
fit_g0->SetParName(1,"G0 grad");
grap_g0->GetXaxis()->SetTitle("Signal generator voltage [mV]");
grap_g0->GetYaxis()->SetTitle("ADC [ADU]");
grap_g0->GetYaxis()->SetTitleOffset(0.9);
grap_g0->SetMinimum(1000);
grap_g0->SetMaximum(15000);
grap_g0->GetXaxis()->SetLimits(*min_element(r0_filter.begin(),r0_filter.end()),*max_element(r0_filter.begin(),r0_filter.end()));
// TPaveStats *st0 = (TPaveStats*)grap_g0->FindObject("stats");
// st0->SetX1NDC(0.2);
// st0->SetX2NDC(0.54);
// st0->SetY1NDC(0.18);
// st0->SetY2NDC(0.37);
// st0->SetBorderSize(0);
// st0->SetTextColor(kBlue);
grap_g0->Draw("AP");
fit_g0->Draw("same");
A3->Update();
//PlotCanvas();
//sprintf(savename,"plots/M%s/%s/pixel_%s_%d_g0_M%s.png", module_str.c_str(),plotfolder_str.c_str(), pixel_type.c_str(), i,module_str.c_str());
//mapcanvas->SaveAs((const char *)(savename));
A4->cd();
vector<double> r0_adc_norm;
for (size_t j = 0; j < r0_adc.size(); j++) {
r0_adc_norm.push_back(r0_adc[j] - fit_g0->Eval(r0_filter[j]));
}
TGraphErrors *norm_g0 = new TGraphErrors(r0_adc.size(),&(r0_filter[0]),&(r0_adc_norm[0]),&(r0_ferr[0]),&(r0_adcerr[0]));
norm_g0->SetMarkerColor(kBlue);
norm_g0->SetLineColor(kBlue);
TF1* flat_g0 = new TF1("flat_g0","0",rangemin_g0,rangemax_g0);
flat_g0->SetLineColor(kBlue);
TF1* lin_g0_p1pc = new TF1("lin_g0_p1pc","[0]+[1]*x",rangemin_g0,rangemax_g0);
lin_g0_p1pc->SetParameter(0,fit_g0->GetParameter(0)/100.);
lin_g0_p1pc->SetParameter(1,fit_g0->GetParameter(1)/100.);
lin_g0_p1pc->SetLineColor(kRed);
TF1* lin_g0_p05pc = new TF1("lin_g0_p05pc","[0]+[1]*x",rangemin_g0,rangemax_g0);
lin_g0_p05pc->SetParameter(0,fit_g0->GetParameter(0)/200.);
lin_g0_p05pc->SetParameter(1,fit_g0->GetParameter(1)/200.);
lin_g0_p05pc->SetLineColor(kOrange+1);
TF1* lin_g0_p02pc = new TF1("lin_g0_p02pc","[0]+[1]*x",rangemin_g0,rangemax_g0);
lin_g0_p02pc->SetParameter(0,fit_g0->GetParameter(0)/500.);
lin_g0_p02pc->SetParameter(1,fit_g0->GetParameter(1)/500.);
lin_g0_p02pc->SetLineColor(kOrange);
TF1* lin_g0_m1pc = new TF1("lin_g0_m1pc","[0]+[1]*x",rangemin_g0,rangemax_g0);
lin_g0_m1pc->SetParameter(0,fit_g0->GetParameter(0)/-100.);
lin_g0_m1pc->SetParameter(1,fit_g0->GetParameter(1)/-100.);
lin_g0_m1pc->SetLineColor(kRed);
TF1* lin_g0_m05pc = new TF1("lin_g0_m05pc","[0]+[1]*x",rangemin_g0,rangemax_g0);
lin_g0_m05pc->SetParameter(0,fit_g0->GetParameter(0)/-200.);
lin_g0_m05pc->SetParameter(1,fit_g0->GetParameter(1)/-200.);
lin_g0_m05pc->SetLineColor(kOrange+1);
TF1* lin_g0_m02pc = new TF1("lin_g0_m02pc","[0]+[1]*x",rangemin_g0,rangemax_g0);
lin_g0_m02pc->SetParameter(0,fit_g0->GetParameter(0)/-500.);
lin_g0_m02pc->SetParameter(1,fit_g0->GetParameter(1)/-500.);
lin_g0_m02pc->SetLineColor(kOrange);
norm_g0->GetXaxis()->SetRangeUser(*min_element(r0_filter.begin(),r0_filter.end()),*max_element(r0_filter.begin(),r0_filter.end()));
norm_g0->SetMinimum(1.5*lin_g0_m02pc->Eval(rangemax_g0));
norm_g0->SetMaximum(1.5*lin_g0_p02pc->Eval(rangemax_g0));
if (isHGX) {
norm_g0->SetMinimum(3*lin_g0_m02pc->Eval(rangemax_g0));
norm_g0->SetMaximum(3*lin_g0_p02pc->Eval(rangemax_g0));
}
norm_g0->GetXaxis()->SetTitle("Signal generator voltage [mV]");
norm_g0->GetYaxis()->SetTitle("Normalised ADC [ADU]");
norm_g0->GetYaxis()->SetTitleOffset(0.9);
norm_g0->Draw("AP");
flat_g0->Draw("same");
lin_g0_p1pc->Draw("same");
lin_g0_p05pc->Draw("same");
lin_g0_p02pc->Draw("same");
lin_g0_m1pc->Draw("same");
lin_g0_m05pc->Draw("same");
lin_g0_m02pc->Draw("same");
norm_g0->Draw("P");
A4->Update();
//sprintf(savename,"plots/M%s/%s/pixel_%s_%d_g0norm_M%s.png", module_str.c_str(), plotfolder_str.c_str(),pixel_type.c_str(), i, module_str.c_str());
//mapcanvas->SaveAs((const char *)(savename));
//delete norm_g0;
}
}
}
A5->cd();
if (r1_adc.size() > 1) {
rangemin_g1 = lowestPointAfterSwitching(r1_filter,r0_filter);
rangemax_g1 = *max_element(r1_filter.begin(),r1_filter.end());
// Added to fit first linear range, JF1.2
//rangemax_g1 = std::min(rangemax_g1, 2200.);
rangemax_g1 = checkRangeMaxForAmplifierPlateau(rangemax_g1);
if (rangemax_g1 > rangemin_g1) {
grap_g1->Fit("pol1","QRC","",rangemin_g1,rangemax_g1);
fit_g1 = (TF1*) grap_g1->GetFunction("pol1");
if (fit_g1) {
fit_g1->SetLineColor(kGreen+2);
fit_g1->SetParName(0,"G1 const");
fit_g1->SetParName(1,"G1 grad");
grap_g1->GetXaxis()->SetTitle("Signal generator voltage [mV]");
grap_g1->GetYaxis()->SetTitle("ADC [ADU]");
grap_g1->GetYaxis()->SetTitleOffset(0.9);
grap_g1->SetMinimum(1000);
grap_g1->SetMaximum(15000);
grap_g1->GetXaxis()->SetLimits(*min_element(r1_filter.begin(),r1_filter.end()),*max_element(r1_filter.begin(),r1_filter.end()));
// TPaveStats *st0 = (TPaveStats*)grap_g1->FindObject("stats");
// st0->SetX1NDC(0.6);
// st0->SetX2NDC(0.94);
// st0->SetY1NDC(0.18);
// st0->SetY2NDC(0.37);
// st0->SetBorderSize(0);
// st0->SetTextColor(kGreen+2);
grap_g1->Draw("AP");
fit_g1->Draw("same");
A5->Update();
//sprintf(savename,"plots/M%s/%s/pixel_%s_%d_g1_M%s.png", module_str.c_str(), plotfolder_str.c_str(), pixel_type.c_str(), i, module_str.c_str());
//mapcanvas->SaveAs((const char *)(savename));
vector<double> r1_adc_norm;
for (size_t j = 0; j < r1_adc.size(); j++) {
r1_adc_norm.push_back(r1_adc[j] - fit_g1->Eval(r1_filter[j]));
}
A6->cd();
TGraphErrors *norm_g1 = new TGraphErrors(r1_adc.size(),&(r1_filter[0]),&(r1_adc_norm[0]),&(r1_ferr[0]),&(r1_adcerr[0]));
norm_g1->SetMarkerColor(kGreen+2);
norm_g1->SetLineColor(kGreen+2);
TF1* flat_g1 = new TF1("flat_gi","0",rangemin_g1,rangemax_g1);
flat_g1->SetLineColor(kGreen+2);
TF1* lin_g1_p02pc = new TF1("lin_g1_p02pc","[0]+[1]*x",rangemin_g1,rangemax_g1);
lin_g1_p02pc->SetParameter(0,fit_g1->GetParameter(0)/500.);
lin_g1_p02pc->SetParameter(1,fit_g1->GetParameter(1)/500.);
lin_g1_p02pc->SetLineColor(kOrange);
TF1* lin_g1_p01pc = new TF1("lin_g1_p01pc","[0]+[1]*x",rangemin_g1,rangemax_g1);
lin_g1_p01pc->SetParameter(0,fit_g1->GetParameter(0)/1000.);
lin_g1_p01pc->SetParameter(1,fit_g1->GetParameter(1)/1000.);
lin_g1_p01pc->SetLineColor(kYellow);
TF1* lin_g1_m02pc = new TF1("lin_g1_m02pc","[0]+[1]*x",rangemin_g1,rangemax_g1);
lin_g1_m02pc->SetParameter(0,fit_g1->GetParameter(0)/-500.);
lin_g1_m02pc->SetParameter(1,fit_g1->GetParameter(1)/-500.);
lin_g1_m02pc->SetLineColor(kOrange);
TF1* lin_g1_m01pc = new TF1("lin_g1_m01pc","[0]+[1]*x",rangemin_g1,rangemax_g1);
lin_g1_m01pc->SetParameter(0,fit_g1->GetParameter(0)/-1000.);
lin_g1_m01pc->SetParameter(1,fit_g1->GetParameter(1)/-1000.);
lin_g1_m01pc->SetLineColor(kYellow);
norm_g1->GetXaxis()->SetRangeUser(*min_element(r1_filter.begin(),r1_filter.end()),*max_element(r1_filter.begin(),r1_filter.end()));
norm_g1->SetMinimum(1.5*lin_g1_m02pc->Eval(rangemin_g1));
norm_g1->SetMaximum(1.5*lin_g1_p02pc->Eval(rangemin_g1));
norm_g1->GetXaxis()->SetTitle("Signal generator voltage [mV]");
norm_g1->GetYaxis()->SetTitle("Normalised ADC [ADU]");
norm_g1->GetYaxis()->SetTitleOffset(0.9);
norm_g1->Draw("AP");
flat_g1->Draw("same");
lin_g1_p02pc->Draw("same");
lin_g1_p01pc->Draw("same");
lin_g1_m02pc->Draw("same");
lin_g1_m01pc->Draw("same");
norm_g1->Draw("P");
A6->Update();
//sprintf(savename,"plots/M%s/%s/pixel_%s_%d_g1norm_M%s.png", module_str.c_str(),plotfolder_str.c_str(), pixel_type.c_str(), i, module_str.c_str());
//mapcanvas->SaveAs((const char *)(savename));
//delete norm_g1;
//
}
}
}
if(fit_g1){
A7->cd();
TGraph* linearityGraph = new TGraph();
double x, y;
for(size_t i = 0; i < grap_g1->GetN(); i++){
grap_g1->GetPoint(i, x, y);
auto ADU = y;
auto fitADU = fit_g1->Eval(x);
linearityGraph->SetPoint(i, ADU, fitADU - ADU);
}
//linearityGraph->GetXaxis()->SetTitle("Injected signal [mV]");
linearityGraph->GetXaxis()->SetTitle("Injected signal [ADU]");
linearityGraph->GetYaxis()->SetTitle("fit - signal [ADU]");
linearityGraph->SetMarkerStyle(20);
linearityGraph->SetMarkerColor(kGreen+2);
linearityGraph->SetLineColor(kGreen+2);
linearityGraph->Draw("AP");
A7->Update();
}
// get ratio measurements
// if (fit_g0 && fit_g1) {
// double this_g0overg1 = fit_g0->GetParameter(1)/fit_g1->GetParameter(1);
// double this_g0overg1er = sqrt(pow(fit_g0->GetParError(1)/fit_g0->GetParameter(1),2) + pow(fit_g1->GetParError(1)/fit_g1->GetParameter(1),2));
// cout << "G0overG1 =" << this_g0overg1 << "+/-" << this_g0overg1er << endl;
// }
rootapp.Run();
return 0;
}