Files
daqbuffer/crates/items_2/src/eventsdim1.rs
Dominik Werder 1efef86ae0 Move code
2024-06-21 16:35:41 +02:00

1214 lines
36 KiB
Rust

use crate::binsdim0::BinsDim0;
use crate::eventsxbindim0::EventsXbinDim0;
use crate::framable::FrameType;
use crate::ts_offs_from_abs_with_anchor;
use crate::IsoDateTime;
use crate::RangeOverlapInfo;
use crate::TimeBinnableType;
use crate::TimeBinnableTypeAggregator;
use err::Error;
use items_0::collect_s::Collectable;
use items_0::collect_s::CollectableType;
use items_0::collect_s::Collected;
use items_0::collect_s::CollectorType;
use items_0::collect_s::ToJsonBytes;
use items_0::collect_s::ToJsonResult;
use items_0::container::ByteEstimate;
use items_0::overlap::HasTimestampDeque;
use items_0::scalar_ops::ScalarOps;
use items_0::timebin::TimeBinnable;
use items_0::timebin::TimeBinned;
use items_0::timebin::TimeBinner;
use items_0::Appendable;
use items_0::AsAnyMut;
use items_0::AsAnyRef;
use items_0::Empty;
use items_0::Events;
use items_0::EventsNonObj;
use items_0::MergeError;
use items_0::WithLen;
use netpod::is_false;
use netpod::log::*;
use netpod::range::evrange::SeriesRange;
use netpod::timeunits::MS;
use netpod::timeunits::SEC;
use netpod::BinnedRangeEnum;
use serde::Deserialize;
use serde::Serialize;
use std::any;
use std::any::Any;
use std::collections::VecDeque;
use std::fmt;
use std::mem;
#[allow(unused)]
macro_rules! trace2 {
(EN$($arg:tt)*) => ();
($($arg:tt)*) => (trace!($($arg)*));
}
#[derive(Clone, PartialEq, Serialize, Deserialize)]
pub struct EventsDim1NoPulse<STY> {
pub tss: VecDeque<u64>,
pub values: VecDeque<Vec<STY>>,
}
impl<STY> From<EventsDim1NoPulse<STY>> for EventsDim1<STY> {
fn from(value: EventsDim1NoPulse<STY>) -> Self {
let pulses = vec![0; value.tss.len()].into();
Self {
tss: value.tss,
pulses,
values: value.values,
}
}
}
#[derive(Clone, PartialEq, Serialize, Deserialize)]
pub struct EventsDim1<STY> {
pub tss: VecDeque<u64>,
pub pulses: VecDeque<u64>,
pub values: VecDeque<Vec<STY>>,
}
impl<STY> EventsDim1<STY> {
#[inline(always)]
pub fn push(&mut self, ts: u64, pulse: u64, value: Vec<STY>) {
self.tss.push_back(ts);
self.pulses.push_back(pulse);
self.values.push_back(value);
}
#[inline(always)]
pub fn push_front(&mut self, ts: u64, pulse: u64, value: Vec<STY>) {
self.tss.push_front(ts);
self.pulses.push_front(pulse);
self.values.push_front(value);
}
pub fn serde_id() -> &'static str {
"EventsDim1"
}
pub fn tss(&self) -> &VecDeque<u64> {
&self.tss
}
}
impl<STY> AsAnyRef for EventsDim1<STY>
where
STY: ScalarOps,
{
fn as_any_ref(&self) -> &dyn Any {
self
}
}
impl<STY> AsAnyMut for EventsDim1<STY>
where
STY: ScalarOps,
{
fn as_any_mut(&mut self) -> &mut dyn Any {
self
}
}
impl<STY> Empty for EventsDim1<STY> {
fn empty() -> Self {
Self {
tss: VecDeque::new(),
pulses: VecDeque::new(),
values: VecDeque::new(),
}
}
}
impl<STY> fmt::Debug for EventsDim1<STY>
where
STY: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
if false {
write!(
fmt,
"EventsDim1 {{ count {} ts {:?} vals {:?} }}",
self.tss.len(),
self.tss.iter().map(|x| x / SEC).collect::<Vec<_>>(),
self.values,
)
} else {
write!(
fmt,
"EventsDim1 {{ count {} ts {:?} .. {:?} vals {:?} .. {:?} }}",
self.tss.len(),
self.tss.front().map(|x| x / SEC),
self.tss.back().map(|x| x / SEC),
self.values.front(),
self.values.back(),
)
}
}
}
impl<STY> WithLen for EventsDim1<STY> {
fn len(&self) -> usize {
self.tss.len()
}
}
impl<STY> ByteEstimate for EventsDim1<STY> {
fn byte_estimate(&self) -> u64 {
let stylen = mem::size_of::<STY>();
let n = self.values.front().map_or(0, Vec::len);
(self.len() * (8 + 8 + n * stylen)) as u64
}
}
impl<STY: ScalarOps> HasTimestampDeque for EventsDim1<STY> {
fn timestamp_min(&self) -> Option<u64> {
self.tss.front().map(|x| *x)
}
fn timestamp_max(&self) -> Option<u64> {
self.tss.back().map(|x| *x)
}
fn pulse_min(&self) -> Option<u64> {
self.pulses.front().map(|x| *x)
}
fn pulse_max(&self) -> Option<u64> {
self.pulses.back().map(|x| *x)
}
}
items_0::impl_range_overlap_info_events!(EventsDim1);
impl<STY> TimeBinnableType for EventsDim1<STY>
where
STY: ScalarOps,
{
// TODO
type Output = BinsDim0<STY>;
type Aggregator = EventsDim1Aggregator<STY>;
fn aggregator(range: SeriesRange, x_bin_count: usize, do_time_weight: bool) -> Self::Aggregator {
let self_name = std::any::type_name::<Self>();
debug!(
"TimeBinnableType for {self_name} aggregator() range {:?} x_bin_count {} do_time_weight {}",
range, x_bin_count, do_time_weight
);
Self::Aggregator::new(range, do_time_weight)
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct EventsDim1ChunkOutput<STY> {
tss: VecDeque<u64>,
pulses: VecDeque<u64>,
values: VecDeque<Vec<STY>>,
scalar_type: String,
}
impl<STY: ScalarOps> EventsDim1ChunkOutput<STY> {}
#[derive(Debug)]
pub struct EventsDim1Collector<STY> {
vals: EventsDim1<STY>,
range_final: bool,
timed_out: bool,
needs_continue_at: bool,
}
impl<STY> EventsDim1Collector<STY> {
pub fn self_name() -> &'static str {
any::type_name::<Self>()
}
pub fn new() -> Self {
Self {
vals: EventsDim1::empty(),
range_final: false,
timed_out: false,
needs_continue_at: false,
}
}
}
impl<STY> WithLen for EventsDim1Collector<STY> {
fn len(&self) -> usize {
WithLen::len(&self.vals)
}
}
impl<STY> ByteEstimate for EventsDim1Collector<STY> {
fn byte_estimate(&self) -> u64 {
ByteEstimate::byte_estimate(&self.vals)
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct EventsDim1CollectorOutput<STY> {
#[serde(rename = "tsAnchor")]
ts_anchor_sec: u64,
#[serde(rename = "tsMs")]
ts_off_ms: VecDeque<u64>,
#[serde(rename = "tsNs")]
ts_off_ns: VecDeque<u64>,
#[serde(rename = "pulseAnchor")]
pulse_anchor: u64,
#[serde(rename = "pulseOff")]
pulse_off: VecDeque<u64>,
#[serde(rename = "values")]
values: VecDeque<Vec<STY>>,
#[serde(rename = "rangeFinal", default, skip_serializing_if = "is_false")]
range_final: bool,
#[serde(rename = "timedOut", default, skip_serializing_if = "is_false")]
timed_out: bool,
#[serde(rename = "continueAt", default, skip_serializing_if = "Option::is_none")]
continue_at: Option<IsoDateTime>,
}
impl<STY: ScalarOps> EventsDim1CollectorOutput<STY> {
pub fn ts_anchor_sec(&self) -> u64 {
self.ts_anchor_sec
}
pub fn ts_off_ms(&self) -> &VecDeque<u64> {
&self.ts_off_ms
}
pub fn pulse_anchor(&self) -> u64 {
self.pulse_anchor
}
pub fn pulse_off(&self) -> &VecDeque<u64> {
&self.pulse_off
}
/// Note: only used for unit tests.
pub fn values_to_f32(&self) -> VecDeque<Vec<f32>> {
self.values
.iter()
.map(|x| x.iter().map(|x| x.as_prim_f32_b()).collect())
.collect()
}
pub fn range_final(&self) -> bool {
self.range_final
}
pub fn timed_out(&self) -> bool {
self.timed_out
}
pub fn is_valid(&self) -> bool {
if self.ts_off_ms.len() != self.ts_off_ns.len() {
false
} else if self.ts_off_ms.len() != self.pulse_off.len() {
false
} else if self.ts_off_ms.len() != self.values.len() {
false
} else {
true
}
}
pub fn info_str(&self) -> String {
use fmt::Write;
let mut out = String::new();
write!(
out,
"ts_off_ms {} ts_off_ns {} pulse_off {} values {}",
self.ts_off_ms.len(),
self.ts_off_ns.len(),
self.pulse_off.len(),
self.values.len(),
)
.unwrap();
out
}
}
impl<STY> AsAnyRef for EventsDim1CollectorOutput<STY>
where
STY: ScalarOps,
{
fn as_any_ref(&self) -> &dyn Any {
self
}
}
impl<STY> AsAnyMut for EventsDim1CollectorOutput<STY>
where
STY: ScalarOps,
{
fn as_any_mut(&mut self) -> &mut dyn Any {
self
}
}
impl<STY: ScalarOps> WithLen for EventsDim1CollectorOutput<STY> {
fn len(&self) -> usize {
self.values.len()
}
}
impl<STY: ScalarOps> ToJsonResult for EventsDim1CollectorOutput<STY> {
fn to_json_result(&self) -> Result<Box<dyn ToJsonBytes>, Error> {
let k = serde_json::to_value(self)?;
Ok(Box::new(k))
}
}
impl<STY: ScalarOps> Collected for EventsDim1CollectorOutput<STY> {}
impl<STY: ScalarOps> CollectorType for EventsDim1Collector<STY> {
type Input = EventsDim1<STY>;
type Output = EventsDim1CollectorOutput<STY>;
fn ingest(&mut self, src: &mut Self::Input) {
self.vals.tss.append(&mut src.tss);
self.vals.pulses.append(&mut src.pulses);
self.vals.values.append(&mut src.values);
}
fn set_range_complete(&mut self) {
self.range_final = true;
}
fn set_timed_out(&mut self) {
self.timed_out = true;
}
fn set_continue_at_here(&mut self) {
debug!("{}::set_continue_at_here", Self::self_name());
self.needs_continue_at = true;
}
// TODO unify with dim0 case
fn result(
&mut self,
range: Option<SeriesRange>,
_binrange: Option<BinnedRangeEnum>,
) -> Result<Self::Output, Error> {
// If we timed out, we want to hint the client from where to continue.
// This is tricky: currently, client can not request a left-exclusive range.
// We currently give the timestamp of the last event plus a small delta.
// The amount of the delta must take into account what kind of timestamp precision the client
// can parse and handle.
let vals = &mut self.vals;
let continue_at = if self.timed_out {
if let Some(ts) = vals.tss.back() {
Some(IsoDateTime::from_u64(*ts + MS))
} else {
if let Some(range) = &range {
match range {
SeriesRange::TimeRange(x) => Some(IsoDateTime::from_u64(x.beg + SEC)),
SeriesRange::PulseRange(x) => {
error!("TODO emit create continueAt for pulse range");
Some(IsoDateTime::from_u64(0))
}
}
} else {
warn!("can not determine continue-at parameters");
Some(IsoDateTime::from_u64(0))
}
}
} else {
None
};
let tss_sl = vals.tss.make_contiguous();
let pulses_sl = vals.pulses.make_contiguous();
let (ts_anchor_sec, ts_off_ms, ts_off_ns) = crate::ts_offs_from_abs(tss_sl);
let (pulse_anchor, pulse_off) = crate::pulse_offs_from_abs(pulses_sl);
let values = mem::replace(&mut vals.values, VecDeque::new());
if ts_off_ms.len() != ts_off_ns.len() {
return Err(Error::with_msg_no_trace("collected len mismatch"));
}
if ts_off_ms.len() != pulse_off.len() {
return Err(Error::with_msg_no_trace("collected len mismatch"));
}
if ts_off_ms.len() != values.len() {
return Err(Error::with_msg_no_trace("collected len mismatch"));
}
let ret = Self::Output {
ts_anchor_sec,
ts_off_ms,
ts_off_ns,
pulse_anchor,
pulse_off,
values,
range_final: self.range_final,
timed_out: self.timed_out,
continue_at,
};
if !ret.is_valid() {
error!("invalid:\n{}", ret.info_str());
}
Ok(ret)
}
}
impl<STY: ScalarOps> CollectableType for EventsDim1<STY> {
type Collector = EventsDim1Collector<STY>;
fn new_collector() -> Self::Collector {
Self::Collector::new()
}
}
#[derive(Debug)]
pub struct EventsDim1Aggregator<STY> {
range: SeriesRange,
count: u64,
min: STY,
max: STY,
sumc: u64,
sum: f32,
int_ts: u64,
last_seen_ts: u64,
last_seen_val: Option<STY>,
did_min_max: bool,
do_time_weight: bool,
events_taken_count: u64,
events_ignored_count: u64,
}
impl<STY> Drop for EventsDim1Aggregator<STY> {
fn drop(&mut self) {
// TODO collect as stats for the request context:
trace!(
"taken {} ignored {}",
self.events_taken_count,
self.events_ignored_count
);
}
}
impl<STY: ScalarOps> EventsDim1Aggregator<STY> {
pub fn new(range: SeriesRange, do_time_weight: bool) -> Self {
/*let int_ts = range.beg;
Self {
range,
count: 0,
min: NTY::zero_b(),
max: NTY::zero_b(),
sum: 0.,
sumc: 0,
int_ts,
last_seen_ts: 0,
last_seen_val: None,
did_min_max: false,
do_time_weight,
events_taken_count: 0,
events_ignored_count: 0,
}*/
todo!()
}
// TODO reduce clone.. optimize via more traits to factor the trade-offs?
fn apply_min_max(&mut self, val: STY) {
trace!(
"apply_min_max val {:?} last_val {:?} count {} sumc {:?} min {:?} max {:?}",
val,
self.last_seen_val,
self.count,
self.sumc,
self.min,
self.max
);
if self.did_min_max == false {
self.did_min_max = true;
self.min = val.clone();
self.max = val.clone();
} else {
if self.min > val {
self.min = val.clone();
}
if self.max < val {
self.max = val.clone();
}
}
}
fn apply_event_unweight(&mut self, val: STY) {
trace!("TODO check again result_reset_unweight");
err::todo();
let vf = val.as_prim_f32_b();
self.apply_min_max(val);
if vf.is_nan() {
} else {
self.sum += vf;
self.sumc += 1;
}
}
fn apply_event_time_weight(&mut self, ts: u64) {
/*if let Some(v) = &self.last_seen_val {
let vf = v.as_prim_f32_b();
let v2 = v.clone();
if ts > self.range.beg {
self.apply_min_max(v2);
}
let w = if self.do_time_weight {
(ts - self.int_ts) as f32 * 1e-9
} else {
1.
};
if vf.is_nan() {
} else {
self.sum += vf * w;
self.sumc += 1;
}
self.int_ts = ts;
} else {
debug!(
"apply_event_time_weight NO VALUE {}",
ts as i64 - self.range.beg as i64
);
}*/
todo!()
}
fn ingest_unweight(&mut self, item: &<Self as TimeBinnableTypeAggregator>::Input) {
/*trace!("TODO check again result_reset_unweight");
err::todo();
for i1 in 0..item.tss.len() {
let ts = item.tss[i1];
let val = item.values[i1].clone();
if ts < self.range.beg {
self.events_ignored_count += 1;
} else if ts >= self.range.end {
self.events_ignored_count += 1;
return;
} else {
error!("TODO ingest_unweight");
err::todo();
//self.apply_event_unweight(val);
self.count += 1;
self.events_taken_count += 1;
}
}*/
todo!()
}
fn ingest_time_weight(&mut self, item: &<Self as TimeBinnableTypeAggregator>::Input) {
/*let self_name = std::any::type_name::<Self>();
trace!("{self_name}::ingest_time_weight item len {}", item.len());
for i1 in 0..item.tss.len() {
let ts = item.tss[i1];
let val = item.values[i1].clone();
trace!("{self_name} ingest {:6} {:20} {:10?}", i1, ts, val);
if ts < self.int_ts {
if self.last_seen_val.is_none() {
info!(
"ingest_time_weight event before range, only set last ts {} val {:?}",
ts, val
);
}
self.events_ignored_count += 1;
self.last_seen_ts = ts;
error!("TODO ingest_time_weight");
err::todo();
//self.last_seen_val = Some(val);
} else if ts >= self.range.end {
self.events_ignored_count += 1;
return;
} else {
if false && self.last_seen_val.is_none() {
// TODO no longer needed or?
info!(
"call apply_min_max without last val, use current instead {} {:?}",
ts, val
);
// TODO: self.apply_min_max(val.clone());
}
self.apply_event_time_weight(ts);
self.count += 1;
self.last_seen_ts = ts;
error!("TODO ingest_time_weight");
err::todo();
//self.last_seen_val = Some(val);
self.events_taken_count += 1;
}
}*/
todo!()
}
fn result_reset_unweight(&mut self, range: SeriesRange, _expand: bool) -> BinsDim0<STY> {
/*trace!("TODO check again result_reset_unweight");
err::todo();
let (min, max, avg) = if self.sumc > 0 {
let avg = self.sum / self.sumc as f32;
(self.min.clone(), self.max.clone(), avg)
} else {
let g = match &self.last_seen_val {
Some(x) => x.clone(),
None => NTY::zero_b(),
};
(g.clone(), g.clone(), g.as_prim_f32_b())
};
let ret = BinsDim0 {
ts1s: [self.range.beg].into(),
ts2s: [self.range.end].into(),
counts: [self.count].into(),
mins: [min].into(),
maxs: [max].into(),
avgs: [avg].into(),
};
self.int_ts = range.beg;
self.range = range;
self.count = 0;
self.sum = 0f32;
self.sumc = 0;
self.did_min_max = false;
ret*/
todo!()
}
fn result_reset_time_weight(&mut self, range: SeriesRange, expand: bool) -> BinsDim0<STY> {
// TODO check callsite for correct expand status.
/*if expand {
debug!("result_reset_time_weight calls apply_event_time_weight");
self.apply_event_time_weight(self.range.end);
} else {
debug!("result_reset_time_weight NO EXPAND");
}
let (min, max, avg) = if self.sumc > 0 {
let avg = self.sum / (self.range.delta() as f32 * 1e-9);
(self.min.clone(), self.max.clone(), avg)
} else {
let g = match &self.last_seen_val {
Some(x) => x.clone(),
None => NTY::zero_b(),
};
(g.clone(), g.clone(), g.as_prim_f32_b())
};
let ret = BinsDim0 {
ts1s: [self.range.beg].into(),
ts2s: [self.range.end].into(),
counts: [self.count].into(),
mins: [min].into(),
maxs: [max].into(),
avgs: [avg].into(),
};
self.int_ts = range.beg;
self.range = range;
self.count = 0;
self.sum = 0.;
self.sumc = 0;
self.did_min_max = false;
self.min = NTY::zero_b();
self.max = NTY::zero_b();
ret*/
todo!()
}
}
impl<STY: ScalarOps> TimeBinnableTypeAggregator for EventsDim1Aggregator<STY> {
type Input = EventsDim1<STY>;
type Output = BinsDim0<STY>;
fn range(&self) -> &SeriesRange {
&self.range
}
fn ingest(&mut self, item: &Self::Input) {
if true {
trace!("{} ingest {} events", any::type_name::<Self>(), item.len());
}
if false {
for (i, &ts) in item.tss.iter().enumerate() {
trace!("{} ingest {:6} {:20}", any::type_name::<Self>(), i, ts);
}
}
if self.do_time_weight {
self.ingest_time_weight(item)
} else {
self.ingest_unweight(item)
}
}
fn result_reset(&mut self, range: SeriesRange) -> Self::Output {
/*trace!("result_reset {} {}", range.beg, range.end);
if self.do_time_weight {
self.result_reset_time_weight(range, expand)
} else {
self.result_reset_unweight(range, expand)
}*/
todo!()
}
}
impl<STY: ScalarOps> TimeBinnable for EventsDim1<STY> {
fn time_binner_new(&self, binrange: BinnedRangeEnum, do_time_weight: bool) -> Box<dyn TimeBinner> {
let ret = EventsDim1TimeBinner::<STY>::new(binrange, do_time_weight).unwrap();
Box::new(ret)
}
fn to_box_to_json_result(&self) -> Box<dyn ToJsonResult> {
let k = serde_json::to_value(self).unwrap();
Box::new(k) as _
}
}
impl<STY> items_0::TypeName for EventsDim1<STY> {
fn type_name(&self) -> String {
let sty = std::any::type_name::<STY>();
format!("EventsDim1<{sty}>")
}
}
impl<STY: ScalarOps> EventsNonObj for EventsDim1<STY> {
fn into_tss_pulses(self: Box<Self>) -> (VecDeque<u64>, VecDeque<u64>) {
info!(
"EventsDim1::into_tss_pulses len {} len {}",
self.tss.len(),
self.pulses.len()
);
(self.tss, self.pulses)
}
}
impl<STY: ScalarOps> Events for EventsDim1<STY> {
fn as_time_binnable_ref(&self) -> &dyn TimeBinnable {
self
}
fn as_time_binnable_mut(&mut self) -> &mut dyn TimeBinnable {
self
}
fn verify(&self) -> bool {
let mut good = true;
let mut ts_max = 0;
for ts in &self.tss {
let ts = *ts;
if ts < ts_max {
good = false;
error!("unordered event data ts {} ts_max {}", ts, ts_max);
}
ts_max = ts_max.max(ts);
}
good
}
fn output_info(&self) -> String {
let n2 = self.tss.len().max(1) - 1;
format!(
"EventsDim1OutputInfo {{ len {}, ts_min {}, ts_max {} }}",
self.tss.len(),
self.tss.get(0).map_or(-1i64, |&x| x as i64),
self.tss.get(n2).map_or(-1i64, |&x| x as i64),
)
}
fn as_collectable_mut(&mut self) -> &mut dyn Collectable {
self
}
fn as_collectable_with_default_ref(&self) -> &dyn Collectable {
self
}
fn as_collectable_with_default_mut(&mut self) -> &mut dyn Collectable {
self
}
fn take_new_events_until_ts(&mut self, ts_end: u64) -> Box<dyn Events> {
// TODO improve the search
let n1 = self.tss.iter().take_while(|&&x| x <= ts_end).count();
let tss = self.tss.drain(..n1).collect();
let pulses = self.pulses.drain(..n1).collect();
let values = self.values.drain(..n1).collect();
let ret = Self { tss, pulses, values };
Box::new(ret)
}
fn new_empty_evs(&self) -> Box<dyn Events> {
Box::new(Self::empty())
}
fn drain_into_evs(&mut self, dst: &mut dyn Events, range: (usize, usize)) -> Result<(), MergeError> {
// TODO as_any and as_any_mut are declared on unrelated traits. Simplify.
if let Some(dst) = dst.as_any_mut().downcast_mut::<Self>() {
// TODO make it harder to forget new members when the struct may get modified in the future
let r = range.0..range.1;
dst.tss.extend(self.tss.drain(r.clone()));
dst.pulses.extend(self.pulses.drain(r.clone()));
dst.values.extend(self.values.drain(r.clone()));
Ok(())
} else {
error!("downcast to EventsDim0 FAILED");
Err(MergeError::NotCompatible)
}
}
fn find_lowest_index_gt_evs(&self, ts: u64) -> Option<usize> {
for (i, &m) in self.tss.iter().enumerate() {
if m > ts {
return Some(i);
}
}
None
}
fn find_lowest_index_ge_evs(&self, ts: u64) -> Option<usize> {
for (i, &m) in self.tss.iter().enumerate() {
if m >= ts {
return Some(i);
}
}
None
}
fn find_highest_index_lt_evs(&self, ts: u64) -> Option<usize> {
for (i, &m) in self.tss.iter().enumerate().rev() {
if m < ts {
return Some(i);
}
}
None
}
fn ts_min(&self) -> Option<u64> {
self.tss.front().map(|&x| x)
}
fn ts_max(&self) -> Option<u64> {
self.tss.back().map(|&x| x)
}
fn partial_eq_dyn(&self, other: &dyn Events) -> bool {
if let Some(other) = other.as_any_ref().downcast_ref::<Self>() {
self == other
} else {
false
}
}
fn serde_id(&self) -> &'static str {
Self::serde_id()
}
fn nty_id(&self) -> u32 {
STY::SUB
}
fn clone_dyn(&self) -> Box<dyn Events> {
Box::new(self.clone())
}
fn tss(&self) -> &VecDeque<u64> {
&self.tss
}
fn pulses(&self) -> &VecDeque<u64> {
&self.pulses
}
fn frame_type_id(&self) -> u32 {
// TODO make more nice
panic!()
}
fn to_min_max_avg(&mut self) -> Box<dyn Events> {
let mins = self
.values
.iter()
.map(|x| STY::find_vec_min(x))
.map(|x| x.unwrap_or_else(|| STY::zero_b()))
.collect();
let maxs = self
.values
.iter()
.map(|x| STY::find_vec_max(x))
.map(|x| x.unwrap_or_else(|| STY::zero_b()))
.collect();
let avgs = self
.values
.iter()
.map(|x| STY::avg_vec(x))
.map(|x| x.unwrap_or_else(|| STY::zero_b()))
.map(|x| x.as_prim_f32_b())
.collect();
let item = EventsXbinDim0 {
tss: mem::replace(&mut self.tss, VecDeque::new()),
pulses: mem::replace(&mut self.pulses, VecDeque::new()),
mins,
maxs,
avgs,
};
Box::new(item)
}
fn to_json_vec_u8(&self) -> Vec<u8> {
let ret = EventsDim1ChunkOutput {
// TODO use &mut to swap the content
tss: self.tss.clone(),
pulses: self.pulses.clone(),
values: self.values.clone(),
scalar_type: STY::scalar_type_name().into(),
};
serde_json::to_vec(&ret).unwrap()
}
fn to_cbor_vec_u8(&self) -> Vec<u8> {
let ret = EventsDim1ChunkOutput {
// TODO use &mut to swap the content
tss: self.tss.clone(),
pulses: self.pulses.clone(),
values: self.values.clone(),
scalar_type: STY::scalar_type_name().into(),
};
let mut buf = Vec::new();
ciborium::into_writer(&ret, &mut buf).unwrap();
buf
}
fn clear(&mut self) {
self.tss.clear();
self.pulses.clear();
self.values.clear();
}
}
#[derive(Debug)]
pub struct EventsDim1TimeBinner<STY: ScalarOps> {
edges: VecDeque<u64>,
agg: EventsDim1Aggregator<STY>,
ready: Option<<EventsDim1Aggregator<STY> as TimeBinnableTypeAggregator>::Output>,
range_complete: bool,
}
impl<STY: ScalarOps> EventsDim1TimeBinner<STY> {
fn type_name() -> &'static str {
any::type_name::<Self>()
}
fn new(binrange: BinnedRangeEnum, do_time_weight: bool) -> Result<Self, Error> {
/*if edges.len() < 2 {
return Err(Error::with_msg_no_trace(format!("need at least 2 edges")));
}
let self_name = std::any::type_name::<Self>();
trace!("{self_name}::new edges {edges:?}");
let agg = EventsDim1Aggregator::new(
NanoRange {
beg: edges[0],
end: edges[1],
},
do_time_weight,
);
let ret = Self {
edges,
agg,
ready: None,
range_complete: false,
};
Ok(ret)*/
// trace!("{}::new binrange {:?}", Self::type_name(), binrange);
// let rng = binrange
// .range_at(0)
// .ok_or_else(|| Error::with_msg_no_trace("empty binrange"))?;
// let agg = EventsDim0Aggregator::new(rng, do_time_weight);
// let ret = Self {
// binrange,
// rix: 0,
// rng: Some(agg.range().clone()),
// agg,
// ready: None,
// range_final: false,
// };
// Ok(ret)
todo!()
}
fn next_bin_range(&mut self) -> Option<SeriesRange> {
/*let self_name = std::any::type_name::<Self>();
if self.edges.len() >= 3 {
self.edges.pop_front();
let ret = NanoRange {
beg: self.edges[0],
end: self.edges[1],
};
trace!("{self_name} next_bin_range {} {}", ret.beg, ret.end);
Some(ret)
} else {
self.edges.clear();
trace!("{self_name} next_bin_range None");
None
}*/
todo!()
}
}
impl<STY: ScalarOps> TimeBinner for EventsDim1TimeBinner<STY> {
fn bins_ready_count(&self) -> usize {
match &self.ready {
Some(k) => k.len(),
None => 0,
}
}
fn bins_ready(&mut self) -> Option<Box<dyn TimeBinned>> {
match self.ready.take() {
Some(k) => Some(Box::new(k)),
None => None,
}
}
fn ingest(&mut self, item: &mut dyn TimeBinnable) {
/*let self_name = std::any::type_name::<Self>();
trace2!(
"TimeBinner for EventsDim1TimeBinner {:?}\n{:?}\n------------------------------------",
self.edges.iter().take(2).collect::<Vec<_>>(),
item
);
if item.len() == 0 {
// Return already here, RangeOverlapInfo would not give much sense.
return;
}
if self.edges.len() < 2 {
warn!("{self_name} no more bin in edges A");
return;
}
// TODO optimize by remembering at which event array index we have arrived.
// That needs modified interfaces which can take and yield the start and latest index.
loop {
while item.starts_after(self.agg.range().clone()) {
trace!("{self_name} IGNORE ITEM AND CYCLE BECAUSE item.starts_after");
self.cycle();
if self.edges.len() < 2 {
warn!("{self_name} no more bin in edges B");
return;
}
}
if item.ends_before(self.agg.range().clone()) {
trace!("{self_name} IGNORE ITEM BECAUSE ends_before\n------------- -----------");
return;
} else {
if self.edges.len() < 2 {
trace!("{self_name} edge list exhausted");
return;
} else {
if let Some(item) = item
.as_any_ref()
// TODO make statically sure that we attempt to cast to the correct type here:
.downcast_ref::<<EventsDim1Aggregator<NTY> as TimeBinnableTypeAggregator>::Input>()
{
// TODO collect statistics associated with this request:
trace!("{self_name} FEED THE ITEM...");
self.agg.ingest(item);
if item.ends_after(self.agg.range().clone()) {
trace!("{self_name} FED ITEM, ENDS AFTER.");
self.cycle();
if self.edges.len() < 2 {
warn!("{self_name} no more bin in edges C");
return;
} else {
trace!("{self_name} FED ITEM, CYCLED, CONTINUE.");
}
} else {
trace!("{self_name} FED ITEM.");
break;
}
} else {
panic!("{self_name} not correct item type");
};
}
}
}*/
todo!()
}
fn push_in_progress(&mut self, push_empty: bool) {
/*let self_name = std::any::type_name::<Self>();
trace!("{self_name}::push_in_progress");
// TODO expand should be derived from AggKind. Is it still required after all?
// TODO here, the expand means that agg will assume that the current value is kept constant during
// the rest of the time range.
if self.edges.len() >= 2 {
let expand = true;
let range_next = if let Some(x) = self.next_bin_range() {
Some(x)
} else {
None
};
let mut bins = if let Some(range_next) = range_next {
self.agg.result_reset(range_next, expand)
} else {
let range_next = NanoRange {
beg: u64::MAX - 1,
end: u64::MAX,
};
self.agg.result_reset(range_next, expand)
};
assert_eq!(bins.len(), 1);
if push_empty || bins.counts[0] != 0 {
match self.ready.as_mut() {
Some(ready) => {
ready.append_all_from(&mut bins);
}
None => {
self.ready = Some(bins);
}
}
}
}*/
todo!()
}
fn cycle(&mut self) {
/*let self_name = std::any::type_name::<Self>();
trace!("{self_name}::cycle");
// TODO refactor this logic.
let n = self.bins_ready_count();
self.push_in_progress(true);
if self.bins_ready_count() == n {
if let Some(range) = self.next_bin_range() {
let mut bins = BinsDim0::<NTY>::empty();
bins.append_zero(range.beg, range.end);
match self.ready.as_mut() {
Some(ready) => {
ready.append_all_from(&mut bins);
}
None => {
self.ready = Some(bins);
}
}
if self.bins_ready_count() <= n {
error!("failed to push a zero bin");
}
} else {
warn!("cycle: no in-progress bin pushed, but also no more bin to add as zero-bin");
}
}*/
todo!()
}
fn set_range_complete(&mut self) {
self.range_complete = true;
}
fn empty(&self) -> Box<dyn TimeBinned> {
let ret = <EventsDim1Aggregator<STY> as TimeBinnableTypeAggregator>::Output::empty();
Box::new(ret)
}
fn append_empty_until_end(&mut self) {
// nothing to do for events
}
}
impl<STY> Appendable<Vec<STY>> for EventsDim1<STY>
where
STY: ScalarOps,
{
fn push(&mut self, ts: u64, pulse: u64, value: Vec<STY>) {
Self::push(self, ts, pulse, value)
}
}