Files
daqbuffer/disk/src/agg/scalarbinbatch.rs
Dominik Werder 72006fbf17 Factor more
2021-05-20 13:27:46 +02:00

476 lines
14 KiB
Rust

use crate::agg::binnedt::{AggregatableTdim, AggregatorTdim};
use crate::agg::streams::Bins;
use crate::agg::{AggregatableXdim1Bin, Fits, FitsInside};
use crate::binned::MakeBytesFrame;
use crate::frame::makeframe::make_frame;
use crate::streamlog::LogItem;
use bytes::{BufMut, Bytes, BytesMut};
use err::Error;
use netpod::log::*;
use netpod::timeunits::SEC;
use netpod::{EventDataReadStats, NanoRange};
use serde::{Deserialize, Serialize};
use std::mem::size_of;
#[allow(dead_code)]
#[derive(Serialize, Deserialize)]
pub struct MinMaxAvgScalarBinBatch {
pub ts1s: Vec<u64>,
pub ts2s: Vec<u64>,
pub counts: Vec<u64>,
pub mins: Vec<f32>,
pub maxs: Vec<f32>,
pub avgs: Vec<f32>,
}
impl MinMaxAvgScalarBinBatch {
pub fn empty() -> Self {
Self {
ts1s: vec![],
ts2s: vec![],
counts: vec![],
mins: vec![],
maxs: vec![],
avgs: vec![],
}
}
pub fn len(&self) -> usize {
self.ts1s.len()
}
#[allow(dead_code)]
fn old_from_full_frame(buf: &Bytes) -> Self {
info!("MinMaxAvgScalarBinBatch construct from full frame len {}", buf.len());
assert!(buf.len() >= 4);
let mut g = MinMaxAvgScalarBinBatch::empty();
let n1;
unsafe {
let ptr = (&buf[0] as *const u8) as *const [u8; 4];
n1 = u32::from_le_bytes(*ptr);
trace!(
"MinMaxAvgScalarBinBatch construct --- +++ --- +++ --- +++ n1: {}",
n1
);
}
if n1 == 0 {
g
} else {
let n2 = n1 as usize;
g.ts1s.reserve(n2);
g.ts2s.reserve(n2);
g.counts.reserve(n2);
g.mins.reserve(n2);
g.maxs.reserve(n2);
g.avgs.reserve(n2);
unsafe {
// TODO Can I unsafely create ptrs and just assign them?
// TODO What are cases where I really need transmute?
g.ts1s.set_len(n2);
g.ts2s.set_len(n2);
g.counts.set_len(n2);
g.mins.set_len(n2);
g.maxs.set_len(n2);
g.avgs.set_len(n2);
let ptr0 = &buf[4] as *const u8;
{
let ptr1 = ptr0.add(0) as *const u64;
for i1 in 0..n2 {
g.ts1s[i1] = *ptr1.add(i1);
}
}
{
let ptr1 = ptr0.add((8) * n2) as *const u64;
for i1 in 0..n2 {
g.ts2s[i1] = *ptr1.add(i1);
}
}
{
let ptr1 = ptr0.add((8 + 8) * n2) as *const u64;
for i1 in 0..n2 {
g.counts[i1] = *ptr1.add(i1);
}
}
{
let ptr1 = ptr0.add((8 + 8 + 8) * n2) as *const f32;
for i1 in 0..n2 {
g.mins[i1] = *ptr1.add(i1);
}
}
{
let ptr1 = ptr0.add((8 + 8 + 8 + 4) * n2) as *const f32;
for i1 in 0..n2 {
g.maxs[i1] = *ptr1;
}
}
{
let ptr1 = ptr0.add((8 + 8 + 8 + 4 + 4) * n2) as *const f32;
for i1 in 0..n2 {
g.avgs[i1] = *ptr1;
}
}
}
info!("CONTENT {:?}", g);
g
}
}
}
impl std::fmt::Debug for MinMaxAvgScalarBinBatch {
fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
fmt,
"MinMaxAvgScalarBinBatch count {} ts1s {:?} ts2s {:?} counts {:?} mins {:?} maxs {:?} avgs {:?}",
self.ts1s.len(),
self.ts1s.iter().map(|k| k / SEC).collect::<Vec<_>>(),
self.ts2s.iter().map(|k| k / SEC).collect::<Vec<_>>(),
self.counts,
self.mins,
self.maxs,
self.avgs,
)
}
}
impl FitsInside for MinMaxAvgScalarBinBatch {
fn fits_inside(&self, range: NanoRange) -> Fits {
if self.ts1s.is_empty() {
Fits::Empty
} else {
let t1 = *self.ts1s.first().unwrap();
let t2 = *self.ts2s.last().unwrap();
if t2 <= range.beg {
Fits::Lower
} else if t1 >= range.end {
Fits::Greater
} else if t1 < range.beg && t2 > range.end {
Fits::PartlyLowerAndGreater
} else if t1 < range.beg {
Fits::PartlyLower
} else if t2 > range.end {
Fits::PartlyGreater
} else {
Fits::Inside
}
}
}
}
impl MinMaxAvgScalarBinBatch {
#[allow(dead_code)]
fn old_serialized(&self) -> Bytes {
let n1 = self.ts1s.len();
let mut g = BytesMut::with_capacity(4 + n1 * (3 * 8 + 3 * 4));
g.put_u32_le(n1 as u32);
if n1 > 0 {
let ptr = &self.ts1s[0] as *const u64 as *const u8;
let a = unsafe { std::slice::from_raw_parts(ptr, size_of::<u64>() * n1) };
g.put(a);
let ptr = &self.ts2s[0] as *const u64 as *const u8;
let a = unsafe { std::slice::from_raw_parts(ptr, size_of::<u64>() * n1) };
g.put(a);
let ptr = &self.counts[0] as *const u64 as *const u8;
let a = unsafe { std::slice::from_raw_parts(ptr, size_of::<u64>() * n1) };
g.put(a);
let ptr = &self.mins[0] as *const f32 as *const u8;
let a = unsafe { std::slice::from_raw_parts(ptr, size_of::<f32>() * n1) };
g.put(a);
let ptr = &self.maxs[0] as *const f32 as *const u8;
let a = unsafe { std::slice::from_raw_parts(ptr, size_of::<f32>() * n1) };
g.put(a);
let ptr = &self.avgs[0] as *const f32 as *const u8;
let a = unsafe { std::slice::from_raw_parts(ptr, size_of::<f32>() * n1) };
g.put(a);
}
g.freeze()
}
}
impl AggregatableXdim1Bin for MinMaxAvgScalarBinBatch {
type Output = MinMaxAvgScalarBinBatch;
fn into_agg(self) -> Self::Output {
todo!()
}
}
impl AggregatableTdim for MinMaxAvgScalarBinBatch {
type Output = MinMaxAvgScalarBinBatch;
type Aggregator = MinMaxAvgScalarBinBatchAggregator;
fn aggregator_new_static(ts1: u64, ts2: u64) -> Self::Aggregator {
MinMaxAvgScalarBinBatchAggregator::new(ts1, ts2)
}
fn is_range_complete(&self) -> bool {
false
}
fn make_range_complete_item() -> Option<Self> {
None
}
fn is_log_item(&self) -> bool {
false
}
fn log_item(self) -> Option<LogItem> {
None
}
fn make_log_item(_item: LogItem) -> Option<Self> {
None
}
fn is_stats_item(&self) -> bool {
false
}
fn stats_item(self) -> Option<EventDataReadStats> {
None
}
fn make_stats_item(_item: EventDataReadStats) -> Option<Self> {
None
}
}
impl Bins for MinMaxAvgScalarBinBatch {
fn bin_count(&self) -> u32 {
self.ts1s.len() as u32
}
}
pub struct MinMaxAvgScalarBinBatchAggregator {
ts1: u64,
ts2: u64,
count: u64,
min: f32,
max: f32,
sum: f32,
sumc: u64,
}
impl MinMaxAvgScalarBinBatchAggregator {
pub fn new(ts1: u64, ts2: u64) -> Self {
Self {
ts1,
ts2,
count: 0,
min: f32::MAX,
max: f32::MIN,
sum: 0f32,
sumc: 0,
}
}
}
impl AggregatorTdim for MinMaxAvgScalarBinBatchAggregator {
type InputValue = MinMaxAvgScalarBinBatch;
type OutputValue = MinMaxAvgScalarBinBatch;
fn ends_before(&self, inp: &Self::InputValue) -> bool {
match inp.ts2s.last() {
Some(&ts) => ts <= self.ts1,
None => true,
}
}
fn ends_after(&self, inp: &Self::InputValue) -> bool {
match inp.ts2s.last() {
Some(&ts) => ts >= self.ts2,
_ => panic!(),
}
}
fn starts_after(&self, inp: &Self::InputValue) -> bool {
match inp.ts1s.first() {
Some(&ts) => ts >= self.ts2,
_ => panic!(),
}
}
fn ingest(&mut self, v: &mut Self::InputValue) {
for i1 in 0..v.ts1s.len() {
let ts1 = v.ts1s[i1];
let ts2 = v.ts2s[i1];
if ts2 <= self.ts1 {
continue;
} else if ts1 >= self.ts2 {
continue;
} else {
self.count += v.counts[i1];
self.min = self.min.min(v.mins[i1]);
self.max = self.max.max(v.maxs[i1]);
let x = v.avgs[i1];
if x.is_nan() {
} else {
if self.sum.is_nan() {
self.sum = x;
} else {
self.sum += x;
}
self.sumc += 1;
}
}
}
}
fn result(self) -> Vec<Self::OutputValue> {
let min = if self.min == f32::MAX { f32::NAN } else { self.min };
let max = if self.max == f32::MIN { f32::NAN } else { self.max };
let avg = if self.sumc == 0 {
f32::NAN
} else {
self.sum / self.sumc as f32
};
let v = MinMaxAvgScalarBinBatch {
ts1s: vec![self.ts1],
ts2s: vec![self.ts2],
counts: vec![self.count],
mins: vec![min],
maxs: vec![max],
avgs: vec![avg],
};
vec![v]
}
}
#[derive(Debug, Serialize, Deserialize)]
pub enum MinMaxAvgScalarBinBatchStreamItem {
Values(MinMaxAvgScalarBinBatch),
RangeComplete,
EventDataReadStats(EventDataReadStats),
Log(LogItem),
}
impl AggregatableTdim for MinMaxAvgScalarBinBatchStreamItem {
type Output = MinMaxAvgScalarBinBatchStreamItem;
type Aggregator = MinMaxAvgScalarBinBatchStreamItemAggregator;
fn aggregator_new_static(ts1: u64, ts2: u64) -> Self::Aggregator {
Self::Aggregator::new(ts1, ts2)
}
fn is_range_complete(&self) -> bool {
if let MinMaxAvgScalarBinBatchStreamItem::RangeComplete = self {
true
} else {
false
}
}
fn make_range_complete_item() -> Option<Self> {
Some(MinMaxAvgScalarBinBatchStreamItem::RangeComplete)
}
fn is_log_item(&self) -> bool {
if let MinMaxAvgScalarBinBatchStreamItem::Log(_) = self {
true
} else {
false
}
}
fn log_item(self) -> Option<LogItem> {
if let MinMaxAvgScalarBinBatchStreamItem::Log(item) = self {
Some(item)
} else {
None
}
}
fn make_log_item(item: LogItem) -> Option<Self> {
Some(MinMaxAvgScalarBinBatchStreamItem::Log(item))
}
fn is_stats_item(&self) -> bool {
if let MinMaxAvgScalarBinBatchStreamItem::EventDataReadStats(_) = self {
true
} else {
false
}
}
fn stats_item(self) -> Option<EventDataReadStats> {
if let MinMaxAvgScalarBinBatchStreamItem::EventDataReadStats(item) = self {
Some(item)
} else {
None
}
}
fn make_stats_item(item: EventDataReadStats) -> Option<Self> {
Some(MinMaxAvgScalarBinBatchStreamItem::EventDataReadStats(item))
}
}
impl AggregatableXdim1Bin for MinMaxAvgScalarBinBatchStreamItem {
type Output = MinMaxAvgScalarBinBatchStreamItem;
fn into_agg(self) -> Self::Output {
self
}
}
impl MakeBytesFrame for Result<MinMaxAvgScalarBinBatchStreamItem, Error> {
fn make_bytes_frame(&self) -> Result<Bytes, Error> {
Ok(make_frame(self)?.freeze())
}
}
pub struct MinMaxAvgScalarBinBatchStreamItemAggregator {
agg: MinMaxAvgScalarBinBatchAggregator,
}
impl MinMaxAvgScalarBinBatchStreamItemAggregator {
pub fn new(ts1: u64, ts2: u64) -> Self {
let agg = <MinMaxAvgScalarBinBatch as AggregatableTdim>::aggregator_new_static(ts1, ts2);
Self { agg }
}
}
impl AggregatorTdim for MinMaxAvgScalarBinBatchStreamItemAggregator {
type InputValue = MinMaxAvgScalarBinBatchStreamItem;
type OutputValue = MinMaxAvgScalarBinBatchStreamItem;
fn ends_before(&self, inp: &Self::InputValue) -> bool {
match inp {
MinMaxAvgScalarBinBatchStreamItem::Values(vals) => self.agg.ends_before(vals),
_ => false,
}
}
fn ends_after(&self, inp: &Self::InputValue) -> bool {
match inp {
MinMaxAvgScalarBinBatchStreamItem::Values(vals) => self.agg.ends_after(vals),
_ => false,
}
}
fn starts_after(&self, inp: &Self::InputValue) -> bool {
match inp {
MinMaxAvgScalarBinBatchStreamItem::Values(vals) => self.agg.starts_after(vals),
_ => false,
}
}
fn ingest(&mut self, inp: &mut Self::InputValue) {
match inp {
MinMaxAvgScalarBinBatchStreamItem::Values(vals) => self.agg.ingest(vals),
MinMaxAvgScalarBinBatchStreamItem::EventDataReadStats(_) => panic!(),
MinMaxAvgScalarBinBatchStreamItem::RangeComplete => panic!(),
MinMaxAvgScalarBinBatchStreamItem::Log(_) => panic!(),
}
}
fn result(self) -> Vec<Self::OutputValue> {
let ret: Vec<_> = self
.agg
.result()
.into_iter()
.map(MinMaxAvgScalarBinBatchStreamItem::Values)
.collect();
ret
}
}