Files
camserver_sf/configuration/user_scripts/psss.py
2022-02-24 15:05:36 +01:00

165 lines
6.0 KiB
Python

from logging import getLogger
from cam_server.pipeline.data_processing import functions
from cam_server.utils import create_thread_pvs, epics_lock
import json
import numpy as np
import scipy.signal
import scipy.optimize
import numba
numba.set_num_threads(4)
_logger = getLogger(__name__)
channel_names = None
output_pv, center_pv, fwhm_pv, ymin_pv, ymax_pv, axis_pv = None, None, None, None, None, None
roi = [0, 0]
initialized = False
sent_pid = -1
nrows = 1
axis = None
@numba.njit(parallel=False)
def get_spectrum(image, background):
y = image.shape[0]
x = image.shape[1]
profile = np.zeros(x, dtype=np.float64)
for i in numba.prange(y):
for j in range(x):
profile[j] += image[i, j] - background[i, j]
return profile
def initialize(params):
global ymin_pv, ymax_pv, axis_pv, output_pv, center_pv, fwhm_pv
global channel_names, spectra_buffer
camera_name = params["camera_name"]
output_pv_name = camera_name + ":SPECTRUM_Y"
center_pv_name = camera_name + ":SPECTRUM_CENTER"
fwhm_pv_name = camera_name + ":SPECTRUM_FWHM"
ymin_pv_name = camera_name + ":SPC_ROI_YMIN"
ymax_pv_name = camera_name + ":SPC_ROI_YMAX"
axis_pv_name = camera_name + ":SPECTRUM_X"
com_pv_name = camera_name + ":SPECTRUM_COM"
std_pv_name = camera_name + ":SPECTRUM_STD"
channel_names = [output_pv_name, center_pv_name, fwhm_pv_name, ymin_pv_name, ymax_pv_name, axis_pv_name, com_pv_name, std_pv_name]
def process_image(image, pulse_id, timestamp, x_axis, y_axis, parameters, bsdata=None, background=None):
global roi, initialized, sent_pid, nrows, axis
global channel_names
if not initialized:
initialize(parameters)
initialized = True
[output_pv, center_pv, fwhm_pv, ymin_pv, ymax_pv, axis_pv, com_pv, std_pv] = create_thread_pvs(channel_names)
processed_data = dict()
camera_name = parameters["camera_name"]
if ymin_pv and ymin_pv.connected:
roi[0] = ymin_pv.value
if ymax_pv and ymax_pv.connected:
roi[1] = ymax_pv.value
if axis_pv and axis_pv.connected:
axis = axis_pv.value
else:
axis = None
if axis is None:
_logger.warning("Energy axis not connected");
return None
if len(axis) < image.shape[1]:
_logger.warning("Energy axis length %d < image width %d", len(axis), image.shape[1])
return None
# match the energy axis to image width
axis = axis[:image.shape[1]]
processing_image = image.astype(np.float32) - np.float32(parameters["pixel_bkg"])
nrows, ncols = processing_image.shape
# validate background data if passive mode (background subtraction handled here)
background_image = parameters.pop('background_data', None)
if isinstance(background_image, np.ndarray):
background_image = background_image.astype(np.float32)
if background_image.shape != processing_image.shape:
_logger.info("Invalid background shape: %s instead of %s" % (
str(background_image.shape), str(processing_image.shape)))
background_image = None
else:
background_image = None
processed_data[camera_name + ":processing_parameters"] = json.dumps(
{"roi": roi, "background": None if (background_image is None) else parameters.get('image_background')})
# crop the image in y direction
ymin, ymax = int(roi[0]), int(roi[1])
if nrows >= ymax > ymin >= 0:
if (nrows != ymax) or (ymin != 0):
processing_image = processing_image[ymin: ymax, :]
if background_image is not None:
background_image = background_image[ymin:ymax, :]
# remove the background and collapse in y direction to get the spectrum
if background_image is not None:
spectrum = get_spectrum(processing_image, background_image)
else:
spectrum = np.sum(processing_image, axis=0)
# smooth the spectrum with savgol filter with 51 window size and 3rd order polynomial
smoothed_spectrum = scipy.signal.savgol_filter(spectrum, 51, 3)
# check wether spectrum has only noise. the average counts per pixel at the peak
# should be larger than 1.5 to be considered as having real signals.
minimum, maximum = smoothed_spectrum.min(), smoothed_spectrum.max()
amplitude = maximum - minimum
skip = True
if amplitude > nrows * 1.5:
skip = False
# gaussian fitting
offset, amplitude, center, sigma = functions.gauss_fit_psss(smoothed_spectrum[::2], axis[::2],
offset=minimum, amplitude=amplitude, skip=skip, maxfev=20)
smoothed_spectrum_normed = smoothed_spectrum / np.sum(smoothed_spectrum)
spectrum_com = np.sum(axis * smoothed_spectrum_normed)
spectrum_std = np.sqrt(np.sum((axis - spectrum_com) ** 2 * smoothed_spectrum_normed))
# outputs
processed_data[camera_name + ":SPECTRUM_Y"] = spectrum
processed_data[camera_name + ":SPECTRUM_X"] = axis
processed_data[camera_name + ":SPECTRUM_CENTER"] = np.float64(center)
processed_data[camera_name + ":SPECTRUM_FWHM"] = np.float64(2.355 * sigma)
processed_data[camera_name + ":SPECTRUM_COM"] = spectrum_com
processed_data[camera_name + ":SPECTRUM_STD"] = spectrum_std
if epics_lock.acquire(False):
try:
if pulse_id > sent_pid:
sent_pid = pulse_id
if output_pv and output_pv.connected:
output_pv.put(processed_data[camera_name + ":SPECTRUM_Y"])
if center_pv and center_pv.connected:
center_pv.put(processed_data[camera_name + ":SPECTRUM_CENTER"])
if fwhm_pv and fwhm_pv.connected:
fwhm_pv.put(processed_data[camera_name + ":SPECTRUM_FWHM"])
if com_pv and com_pv.connected:
com_pv.put(processed_data[camera_name + ":SPECTRUM_COM"])
if std_pv and std_pv.connected:
std_pv.put(processed_data[camera_name + ":SPECTRUM_STD"])
finally:
epics_lock.release()
return processed_data