Files
camserver_sf/configuration/user_scripts/SAROP21-ATT01PD_proc.py
2025-01-13 16:20:01 +01:00

146 lines
4.8 KiB
Python

from collections import deque
from logging import getLogger
import numpy as np
from scipy.signal import savgol_filter
_logger = getLogger(__name__)
initialized = False
def initialize(params):
global initialized, buffer_savgol, device, step_length, edge_type, refinement, dark_event, fel_on_event, use_dark, calib, use_filter, filter_window, buffer
device = params["device"]
step_length = params["step_length"]
edge_type = params["edge_type"]
refinement = params["refinement"]
dark_event = params["dark_event"]
fel_on_event = params["fel_on_event"]
buffer_savgol = deque(maxlen=params["buffer_length"])
use_dark = params["use_dark"]
calib = params["calib"]
filter_window = params["filter_window"]
# use_filter = params['filter']
buffer = deque(maxlen=params["buffer_length"])
initialized = True
def _interpolate_row(y_known, x_known, x_interp):
y_interp = np.interp(x_interp, x_known, y_known)
return y_interp
def find_edge(data, step_length=50, edge_type="falling", refinement=1):
# refine data
data_length = data.shape[1]
refined_data = np.apply_along_axis(
_interpolate_row,
axis=1,
arr=data,
x_known=np.arange(data_length),
x_interp=np.arange(0, data_length - 1, refinement),
)
# prepare a step function and refine it
step_waveform = np.ones(shape=(step_length,))
if edge_type == "rising":
step_waveform[: int(step_length / 2)] = -1
elif edge_type == "falling":
step_waveform[int(step_length / 2) :] = -1
step_waveform = np.interp(
x=np.arange(0, step_length - 1, refinement), xp=np.arange(step_length), fp=step_waveform
)
# find edges
xcorr = np.apply_along_axis(np.correlate, 1, refined_data, v=step_waveform, mode="valid")
edge_position = np.argmax(xcorr, axis=1).astype(float) * refinement
xcorr_amplitude = np.amax(xcorr, axis=1)
# correct edge_position for step_length
edge_position += np.floor(step_length / 2)
return {
"edge_pos": edge_position,
"xcorr": xcorr,
"xcorr_ampl": xcorr_amplitude,
"signal": data,
}
def process(data, pulse_id, timestamp, params):
if not initialized:
initialize(params)
output = {}
# Read stream inputs
prof_sig = data[params["prof_sig"]]
try:
prof_sig_savgol = savgol_filter(prof_sig, filter_window, 3)
except:
output[f"{device}:raw_wf"] = prof_sig
return output # added for intermitent cases with prof_sig shorter than filter window
events = data[params["events"]]
if events[dark_event] and use_dark:
buffer.append(prof_sig)
if prof_sig_savgol.ndim == 1:
prof_sig_savgol = prof_sig_savgol[np.newaxis, :]
if events[dark_event] and use_dark:
buffer_savgol.append(prof_sig_savgol)
edge_results = {"edge_pos": None, "xcorr": None, "xcorr_ampl": None, "signal": None}
else:
if events[fel_on_event] and buffer_savgol:
prof_sig_norm = prof_sig_savgol / np.mean(buffer_savgol, axis=0)
edge_results = find_edge(prof_sig_norm, step_length, edge_type, refinement)
elif events[fel_on_event] and not use_dark:
edge_results = find_edge(prof_sig_savgol, step_length, edge_type, refinement)
else:
edge_results = {"edge_pos": None, "xcorr": None, "xcorr_ampl": None, "signal": None}
# # calib edge
# edge_results["arrival_time"] = np.polyval(calib, edge_results["edge_pos"])
# # sort edge by parity
# if pulse_id % 2 == 0:
# try:
# edge_results["arrival_time_even"] = edge_results["edge_pos"] * calib
# except:
# edge_results["arrival_time_even"] = None
# edge_results["arrival_time_odd"] = None
# else:
# edge_results["arrival_time_even"] = None
# try:
# edge_results["arrival_time_odd"] = edge_results["edge_pos"] * calib
# except:
# edge_results["arrival_time_odd"] = None
# # push pulse ID for debuging
# edge_results["pulse_id"] = pulse_id
# Set bs outputs
for key, value in edge_results.items():
output[f"{device}:{key}"] = value
# output[f"{device}:raw_wf"] = prof_sig
# output[f"{device}:raw_wf_savgol"] = prof_sig_savgol
# if events[dark_event]:
# output[f"{device}:dark_wf"] = prof_sig
# output[f"{device}:dark_wf_savgol"] = prof_sig_savgol
# else:
# output[f"{device}:dark_wf"] = None
# output[f"{device}:dark_wf_savgol"] = None
# if buffer:
# output[f"{device}:avg_dark_wf"] = np.mean(buffer, axis=0)
# else:
# output[f"{device}:avg_dark_wf"] = None
# if buffer_savgol:
# output[f"{device}:avg_dark_wf_savgol"] = np.mean(buffer_savgol, axis=0)
# else:
# output[f"{device}:avg_dark_wf_savgol"] = None
return output