Files
2024-01-17 15:16:20 +01:00

91 lines
2.5 KiB
Python

import json
from logging import getLogger
from cam_server.pipeline.data_processing import functions
from collections import deque
_logger = getLogger(__name__)
Nbg=10
bg = deque([],Nbg)
#pattern = [1, 1, 1, 1, 0]
pix_min = 750
pix_max = 1750
x_profile_BG = []
def _interpolate_row(y_known, x_known, x_interp):
y_interp = np.interp(x_interp, x_known, y_known)
return y_interp
def find_edge(data, step_length=100, edge_type="rising", refinement=1):
# refine data
data_length = data.shape[0]
refined_data = np.apply_along_axis(
_interpolate_row,
axis=0,
arr=data,
x_known=np.arange(data_length),
x_interp=np.arange(0, data_length - 1, refinement),
)
# prepare a step function and refine it
step_waveform = np.ones(shape=(step_length,))
if edge_type == "rising":
step_waveform[: int(step_length / 2)] = -1
elif edge_type == "falling":
step_waveform[int(step_length / 2) :] = -1
step_waveform = np.interp(
x=np.arange(0, step_length - 1, refinement), xp=np.arange(step_length), fp=step_waveform
)
# find edges
xcorr = np.apply_along_axis(np.correlate, 0, refined_data, v=step_waveform, mode="valid")
edge_position = np.argmax(xcorr, axis=0).astype(float) * refinement
xcorr_amplitude = np.amax(xcorr, axis=0)
# correct edge_position for step_length
edge_position += np.floor(step_length / 2)
return {"edge_pos": edge_position, "xcorr": xcorr, "xcorr_ampl": xcorr_amplitude, "signal":data}
def process_image(image, pulse_id, timestamp, x_axis, y_axis, parameters, bsdata=None):
# Add return values
return_value = dict()
prefix = parameters["camera_name"]+":"
#(min_value, max_value) = functions.get_min_max(image)
(x_profile, y_profile) = functions.get_x_y_profile(image)
# Could be also y_profile.sum() -> it should give the same result.
# Add return values
intensity = x_profile.sum()
sig = x_profile / x_profile_BG -1
edge_pos= find_edge(sig[ pix_min : pix_max ])["edge_pos"] + pix_min
xcorr= find_edge(sig[ pix_min : pix_max ])["xcorr"]
#return_value[prefix+"min_value"] = min_value
#return_value[prefix+"max_value"] = max_value
return_value[prefix+"x_profile"] = x_profile
return_value[prefix+"y_profile"] = y_profile
return_value[prefix+"intensity"] = intensity
return_value[prefix+"sig"] = sig
return_value[prefix+"edge_pos"] = edge_pos
return_value[prefix+"xcorr"] = xcorr
return return_value