\n",
+ " "
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "c2d243feba4c49a795ee9232b0dee9de"
+ }
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "execution_count": 5
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.13.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/notebooks/.ipynb_checkpoints/Messbericht26725-checkpoint.ipynb b/notebooks/.ipynb_checkpoints/Messbericht26725-checkpoint.ipynb
new file mode 100644
index 0000000..bbb23de
--- /dev/null
+++ b/notebooks/.ipynb_checkpoints/Messbericht26725-checkpoint.ipynb
@@ -0,0 +1,103 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "ee798c5daafd13a4",
+ "metadata": {},
+ "source": [
+ "# 📊 Resultate Messung und Ausblick\n",
+ "\n",
+ "**Autor:** Roman Berti\n",
+ "**Datum:** 26.07.25\n",
+ "**Versuchsbezeichnung:**\n",
+ "\n",
+ "---\n",
+ "\n",
+ "## 1. Bearbeitete Punkte\n",
+ "\n",
+ "- Wie besprochen habe ich das verhalten der Achse untersucht, nach dem \"Betriebstemperatur\" erreicht wurde.\n",
+ "- Ebenfals habe ich begonnen mit der Optimierung des Regelkreises.\n",
+ "- Nach Recherche habe ich eine grobe Temperatur kompensation modelliert aufgrund eine Papers der EFEL über einen Aufbau mit vergleichbahren genauigkeitsanforderungen\n",
+ "---\n",
+ "## Messung\n",
+ "Es wurde über Nacht gemessen, mit einer Zykluszeit von 20s. Dammit wurde die Aufheizzeit verkürzt und mehr messungen durchgeführt wie mit einer Zykluszeit von 50s. In der Zeit, in der die Raumtemperatur konstant/glatt gestiegen und die Baugruppe aufgeheizt ist konnten akzeptable resultate erreicht werden. Die Temperaturschwankungen am Morgen hatten einen erheblichen einfluss auf die x Achse. Es ist noch ein leichter Anstieg erkennbar welcher eine korrelation zu der Raumtemparatur aufweisst.\n",
+ "| | |\n",
+ "|--------|--------------|\n",
+ "|Messdauer |15.5h |\n",
+ "| Zyklusszeit| 20s |\n",
+ "\n",
+ "### Stabieler Zeitrahmen\n",
+ "\n",
+ "\n",
+ "\n",
+ "### Gesammte Messung\n",
+ "\n",
+ "\n",
+ "## Room Temperatur\n",
+ "Die Raumtemperatur ist über den \"stabielen\" Zeitraum konstannt gesunken, was Statistisch eine starke negative korrelation mit der Position der X Achse hat.\n",
+ "\n",
+ "\n",
+ "\n",
+ "## Temperataurkorrektur\n",
+ "\n",
+ "Von der EPFL gibt es ein Paper, welches sich mit der Thematik von thermischen Einflüssen bei \"high pressision positioning\" befasst. (THERMAL BEHAVIOR OF AN ULTRA HIGH-PRECISION LINEAR AXIS OPERATING IN INDUSTRIAL ENVIRONMENT Emanuele Lubrano, Prof. Reymond Clavel) In diesem Paper wurde eine 10x verbesserung erreicht. Ich habe die verwendeten Methoden getestet (etwa 40' investiert). Ich habe ein modell anhanden von einer Statischen Messung berrechnet und dann an den neuen Daten(oben) getested. Ich konnte eine erhebliche verbesserung erzielen.\n",
+ "\n",
+ "Kleine unterschiede konnte ich schon nach einem kleinen Datensatz korrigieren, bei gösseren Unterscheiden èberreagiert das modell noch etwass... das könnte aber mit bessere Datenaufberreitung und mehr Daten erheblich verbessert werden.\n",
+ "\n",
+ "| Farbe | Typ | STD [um] |\n",
+ "|-------|------------|-----------|\n",
+ "| orang | Korrigiert | 0.0797 |\n",
+ "| blau | Messung | 0.2358 |\n",
+ "\n",
+ "\n",
+ "\n",
+ "## Aktuelle einschätzung\n",
+ "Es kann mit dem aktuellen aufbau in einer Kontrollierteren umgebung die geforderte präzission erreicht werden. Es könnte mit wenig aufwand durch einbindung von 3-12 Temperatursensoren noch eine sprübare verbesserung erreicht werden.\n",
+ "## Controller tuning\n",
+ "Der geschwindigkeits regler war sehr vorsichtig eingestellt. Von Beckhof ist ein PI-Regler vorgegeben jedoch wäre ein Lead regler mit DC-Verstärkung besser gewesen. Ich konnte trozdem die Bandbreite verdoppeln. Die Dämpfung ist knapp unter dem Idealwert und kann bei Bedarf noch reduziert werden.\n",
+ "\n",
+ "| Regler | Gain Margin | Gain Margin | Bandbreite (rad/s) |\n",
+ "|--------|-------------|-------------|--------------------|\n",
+ "| Alt | 15.5h | 15.5h | 497 |\n",
+ "| Neu | 5.31 | 53deg | 1080 |\n",
+ "| Ideal | 6dB | 60deg | - |\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "70b189cd3543994",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-07-26T19:11:29.972122Z",
+ "start_time": "2025-07-26T19:11:29.966473Z"
+ }
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.13.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/notebooks/Analytics.ipynb b/notebooks/Analytics.ipynb
index d09e55e..38ad8da 100644
--- a/notebooks/Analytics.ipynb
+++ b/notebooks/Analytics.ipynb
@@ -1,13 +1,25 @@
{
"cells": [
{
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "ca3c9c7af43b4e58",
"metadata": {
"ExecuteTime": {
- "end_time": "2025-07-24T06:29:19.643098Z",
- "start_time": "2025-07-24T06:29:19.585285Z"
+ "end_time": "2025-07-26T12:41:08.574768Z",
+ "start_time": "2025-07-26T12:41:08.481768Z"
}
},
- "cell_type": "code",
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Path exists: C:\\Users\\berti_r\\Python_Projects\\StagePerformaceDocu\\Scripts\n",
+ "Path exists: C:\\Users\\berti_r\\Python_Projects\\StagePerformaceDocu\\Config\\config.json\n"
+ ]
+ }
+ ],
"source": [
"import sys\n",
"from time import sleep\n",
@@ -63,40 +75,57 @@
"import ad\n",
"import sys\n",
"import os"
- ],
- "id": "ca3c9c7af43b4e58",
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Path exists: C:\\Users\\berti_r\\Python_Projects\\StagePerformaceDocu\\Scripts\n",
- "Path exists: C:\\Users\\berti_r\\Python_Projects\\StagePerformaceDocu\\Config\\config.json\n"
- ]
- }
- ],
- "execution_count": 1
+ ]
},
{
- "metadata": {},
"cell_type": "markdown",
+ "id": "ca5359d36ec7f8ff",
+ "metadata": {},
"source": [
"## Temperature time plot analysis\n",
"\n",
"The two CrNi temperature probes show a peridical temperature fluctuation of 1${\\textdegree}$C which is unlikely to be true.\n",
"Reason, only the CrNi probes have this fluctuation and the P304 at the same place dont show that fluctuation.\n",
"For future data analysis i recomand to pass them throug a BP or LP filter since it looks like the avg is still usable.\n"
- ],
- "id": "ca5359d36ec7f8ff"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "52db5e2c12fea30c",
"metadata": {
"ExecuteTime": {
- "end_time": "2025-07-24T06:29:37.586679Z",
- "start_time": "2025-07-24T06:29:37.451627Z"
+ "end_time": "2025-07-26T12:41:09.122901Z",
+ "start_time": "2025-07-26T12:41:08.783281Z"
}
},
- "cell_type": "code",
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "dfe003a0269643f28919d7bfa98d9f61",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAH0CAYAAACuKActAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA/rBJREFUeJzsnQeYE9X6xr9sZ+mw0rGAgBWxYfdarhexoKJi74oNe0WxN2yIDfQKKiqK2LBXLH/0ilhAVBQpFkDaAgLbW/7PN/Fsvjk501J2k9339zyrSzaZOXNmksx73q+EwuFwmAAAAAAAAAAAANCoZDXu7gEAAAAAAAAAAMBAoAMAAAAAAAAAAGkABDoAAAAAAAAAAJAGQKADAAAAAAAAAABpAAQ6AAAAAAAAAACQBkCgAwAAAAAAAAAAaQAEOgAAAAAAAAAAkAZAoAMAAAAAAAAAAGkABDoAAAAAAAAAAJAGQKADAAAAAAAAAABpAAQ6AAAAAAAAAACQBkCgAwAAAAAAAAAAaQAEOgAAAAAAAAAAkAZAoAMAAAAAAAAAAGkABDoAAAAAAAAAAJAGQKADAAAAAAAAAABpAAQ6AAAAAAAAAACQBkCgAwAAAAAAAAAAaQAEOgAAAAAAAAAAkAZAoAMAAAAAAAAAAGkABDoAAAAAAAAAAJAGQKADAAAAAAAAAABpAAQ6AAAAAAAAAACQBkCgAwAAAAAAAAAAaQAEOgAAAAAAAAAAkAZAoAMAAAAAAAAAAGkABDoAAAAAAAAAAJAGQKADAAAAAAAAAABpAAQ6AAAAAAAAAACQBkCgAwAAAAAAAAAAaQAEOgAAAAAAAAAAkAZAoAMAAAAAAAAAAGkABDoAAAAAAAAAAJAGQKADAAAAAAAAAABpAAQ6AAAAAAAAAACQBkCgAwAAAAAAAAAAaQAEOgAAAAAAAAAAkAZAoAMAAAAAAAAAAGkABDoAAACQAYTD4cYeAgAAAABSTE6qdwAAAADEy7XXXkuvvfaa63MGDhxIzz77LDVlXnrpJVq0aJE1H43N0qVL6YknnqDPP/+cVq1aRW3btqXtttuOTj75ZNp7770bbVwHHHAALVu2zPU5I0aMsJ4za9Ys+vjjjxtsbAAAAIBfQmEsyQMAAEhT/vzzT1q7dm39v8eNG0fz5s2jRx55pP6xVq1a0ZZbbklNGRafvBAxevToRh3Hl19+SRdeeCF16dKFTjnlFOrdu7d1ft566y368MMP6bTTTqPrrruuUcbG10VVVZVNjG+zzTZ0wQUX1D/G4+bnlJSUWH8DAAAA0g046AAAANKWTTfd1PpRdOjQgfLy8mjAgAGNOq7myMqVK+niiy+mnXbaiR599FHKz8+v/9vBBx9MTz/9NN11113Up08fOvbYYxt8fLrg5uuErxdcKwAAADIJ5KADAADIeL755hsrxHqHHXawnOZrrrnG5ry/+uqrtP3221vPO/roo63fBw0aZIU5L1682HJ++bUHHXQQvf3227bX9evXj77//ns66qijqH///nT44YfTe++9Z9t/ZWUl3XPPPfSvf/3LCvfm57zzzjsxLvidd95p7Yu3c/3111uP//LLL5bbu/vuu9O2225L++yzD91+++1UUVFR/zoOy+ZQfx4Lh5g//PDD1u86/Bj/jeHn8b+feuopS0Dz8b3yyivW33799Vc699xzLbHNP+yKL1myxHWOWYCXlZVZY5PiXHH66adbYnj8+PFWvvxjjz1mzcX69etjtsPHuWbNGuvff/31F11++eXWeeMx8vywG65wO4544DQBnlMF/84RGXxudtttN9pxxx3piiuuoNLSUvrvf/9L++67L+2888500UUX0bp162JSDw499FDrOPfbbz9r7mtra+MeGwAAAACBDgAAIKP5+uuvLXFYUFBAY8eOtUKsOcf41FNPrRe5TE1NjSW8jj/+eEtEtmjRgq688ko677zzLHHFgrJTp06WuF+xYoVtHyxmDzzwQEvIbbHFFnTppZfSZ599Zv2NxSgL3ClTptAZZ5xhbZtF3mWXXUbTpk2zbWfy5MnW4gCH6h9zzDFWDvdJJ51E5eXlVvg653az4OOc+meeecZ6De9zk002scT/iy++aI0xCCwazznnHGsBYa+99qLffvvNmgMWyHfffTfdcccdljg/4YQT6kWzCc4533rrra0wcScGDx5sLSb8/PPP1iIFz/kHH3xgew4vgHCueseOHa1FFB7LTz/9RDfccAPdf//9VFdXZ80J59y7HUcyefLJJ2n58uX0wAMP0Pnnn2+F7PNCDh/zbbfdZi0gTJ8+nR566KH61zz++OPWmPfYYw/r2uEx8/njxwAAAIB4QYg7AACAjIZFHYtmFkzZ2dnWY+yystBlp5WFE8PCj8W4Cr/esGGDJaLZsWVhzbRu3doSZj/++KNNiHK+NYtwhh1udtM5zJtF8//+9z+aMWOGJe4OOeSQ+uew6L7vvvvosMMOo5ycyNdtt27drEUBXfQ++OCDVi49s+eee9IXX3xBX331FQ0fPtwK3U4kXJtFMx+TghcpeHGCnWy1TxaZ//73v2nChAnWAoUJdrLZTXZjs802s/7PIp3Hveuuu1piV8051xSYO3euNVfMpEmT6O+//6YXXniBunfvbj3G++B55DmRglg/jmTC88Bj4vPE88/RChzSzw45XxMMn+PvvvvO+n3jxo3WIstxxx1Ho0aNsh7jRYd27dpZ/+briUP9AQAAgKDAQQcAAJCxsAjm8HMWyuxks2PLPz179rQKmLHQlbCzrWAHV4l5BQssJd4lLMgVoVDICoVnockOPRdO48d4DGr//MOh06tXr6YFCxbUv5bFuIRF3XPPPWeFjC9cuNByadmBZ2dZFjxLBH2fM2fOtMLJOeJAjZUF6i677GItNjjB86sWGpxQCySq/uyQIUOsCAeeB+We875UiDnPHY+vc+fO9WPJysqyRLo+Fv04kgmnHMhjKyoqshZ9lDhX1wYLc2b27NnWuefj0M85o193AAAAgF/goAMAAMhYWEizM86hxfyjo+dKK8dYwm6yF3pYOYt7FqG8f3aA+XfO5TbBYexKXBYWFtr+xmMfM2aMFfrO+d1du3a1xKIpxzte9H3yeDk/Xs+RZ9ild4Idbq82ZiqPnSMFGM4Z5xDxd99910o5YIHOuf+8OKDG8scff1g56U4LME7HkUxM14Xb/njcDEc4OJ1zAAAAIB4g0AEAAGQsLVu2tNxrzkHnkPZ4xLcfWJCxq6ooLi623GJ2VdllZTGncsadwr5NcBEyDjW/5ZZb6D//+U+9Y8v56W7wMTNckEy51lzUzA+8Dw7jVmH9EjeHnN1hztVmka7C0XW4eB4vMqiK6rwvfh0LdC6Cx9EEMkeb/85u/tVXX23cHof2pyNt2rSx/s8pDJtvvnnM3+W1AgAAAAQBIe4AAAAyFnY+WQxyJXYuvqZ+OP+Xi4pxHncy+Oijj+p/Z7ecC59xZW8WkCww2f3mx+UYuFI656lz6LMT3377rdXDnXOrlTjn3Gd+LbvrCg771o+bkcXseFt+4PFyOD27+mqsXIWcFwq4l7kTnIfP+x05cqSt+J7i+eeft4rzcUE9Od4jjjiC5syZY+WZs7PO+5dj4aJ1HE4u5+7111+nl19+uX7xId3gtIjc3FzrXMlx8wIHR0Rwvj4AAAAQD3DQAQAAZDRcYZtDjbn4Gec8s6vMTi/npl9wwQVJ2QdXDudWaiwkuXAYVxjnAmcM555zMTTeF/9w7jvnp3OBMy4W5xY2zuHsXGyMnXQuAMfh3lzsjvPPZXg3O7bceowFML+G98k9x2+88UY666yzrArkvBjAEQVe8Bi5cjoLaa7czuH0XB2eFyFkUTZTmD8XbuNe6EOHDrVC1vlYuY0aO+Qcvs4F+XibEp4DjjTgfZx99tn17j/DkQ8sxvn/Z555JrVv394KvZ86daq1EJCu8Dj5WHg+SkpKrPZsLNb533x8W221VWMPEQAAQIYCgQ4AACCj4UJrEydOtNqRsXhkZ5NzmrlvdjxVz03cfPPNlnDmHGt27HkBgIuqMewWs8BmccbP4VZlXPSMQ8hV5XcnWCRzb20Oj2eBzeHh7DizyONtcY47i3MWr9ynm8U4Hxfvm1ukcUE5Xpxgocy53vzjBYtHznnnquUcWs7Of9++fa39cys5NzhMnVvHsdvO4+CFAR4fu8dcA4DFuA67yqp1HC+gSHieuD0dV+LnOeZFEA4Z59ZvXmH+jQ232uP2dxw5wNXv27Zta1XD5wUjWVwOAAAACEIorEqtAgAAAMDGq6++ajm5XF29R48ejT0cAAAAADRxkIMOAAAAAAAAAACkARDoAAAAAAAAAABAGoAQdwAAAAAAAAAAIA2Ag95AcHVXLl7ELWW4iA5X3+ViOMyMGTOswjlcmZf//9lnnzluh9dTuBgS95XlIkGcG+m39y0AAAAAAAAAgPQFAr0BYFHN4pxb5qjKuZ988gmNHTvWaqkzYsQIq2UNt6g56qijrKq/Tj1UuU0NVyrmKrHcU5aFP7cWAgAAAAAAAACQ2UCgNwCLFy+mOXPmWK55nz59LOebBftbb71FK1asoGHDhlk9YHv27Gm15SksLLR66Jp47rnnrOccdthh1rZGjx5Nn376qbUPAAAAAAAAAACZC/qgNwDcJ5V7pBYVFdkeLykpod122836Yaqrq63+slVVVVa4uwnuwbvDDjvU/7tTp07UoUMHawGgV69eKT4SAAAAAAAAAACpAgK9AWjTpo2Vd66oq6uznPDdd9+9/jEOdR88eDDV1tZaIetO/XY7duxohbUrysrKaP369bRu3boUHwUAAAAAAAAAgFQCgd4I3HvvvTRv3jx6+eWX6x9jF5z/PXv2bCtsfbPNNqNBgwbFvPaQQw6hxx9/nHbeeWdLxPNzlfsOAAAAAAAAACBzgUBvBHE+adIkq1Bc37596x9v3bo1bbPNNtbPokWLLIfdJNAvuOACK8z90EMPpZycHDr++ONpq622olatWgUax5o1G6mxGuyFQhwJ0LpRx5DpYA4TA/OXOJjDxMEcJgbmL3Ewh4mB+UsczGHjz6F6PUgfINAbkNtuu82qvM4iXYnvBQsWWCHqXDhO0bt3b5o1a5ZxG1xA7sEHH6SNGzdSKBSyhPkee+xB3bt3DzQWfgM39gdhOowh08EcJgbmL3Ewh4mDOUwMzF/iYA4TA/OXOJjDxMEcNh1Qxb2B4NZoU6ZMoTFjxljut4LbrY0aNcpqxab46aefHAu+3XPPPfTaa69ZjjuLc672zmJ9xx13bJDjAAAAAAAAAACQGiDQGwAOWR83bhydc845Vu746tWr63+GDBli/f++++6j33//3eqT/sYbb9C5555rvZYruvPfuXicqtrOYp+F+Y8//khXXXUVnXDCCdSuXbtGPkoAAAAAAAAAAImAEPcGYPr06ZbAHj9+vPUjmT9/Pk2cOJHuvPNOK++cQ9U5hH3bbbe1/s5F40499VRrG1wU7pRTTqFly5ZZYj8rK4uOOOIIuvLKKxvpyAAAAAAAAIh0KaqtrQmc/1xRUUHV1VUIz44TrznMzs6xNAPIHEJhGVsNmg3FxY1bJK6oqHWjjiHTwRwmBuYvcTCHiYM5TAzMX+JgDhMD8xeBpcSGDWupvLwkrtezeGRxD+LHaw5btGhFbdp0sOpXOV3HIH2Agw4AAAAAAACICyXOW7VqT3l5+UYR6EZ2dohqa5vxCkcScJpDXjypqqqkkpJ11r/btu3YCKMDQYFABwAAAAAAAASmrq62Xpy3atUmrm3k5GRRTQ0c9ERwm0NeNGFYpLdu3R7h7hkAzhAAAAAAAAAgMKqIsRKBID1R5ydojQDQOECgAwAAAAAAAOImaFg7aFhwfjILCHQAAAAAAAAAACANgEAHAAAAAAAANDs2bNhADz/8AB177BA68MC96KSTjqGpU5+3VUTfe+9d6LvvvmmU8bnte926tTRq1DU0aNC/6JBDDqJx4x6imhqEsDcFUCQOAAAAAAAA0KxYv/5vOvfcM6ioaBO69tobqGvXbvTzzz/RAw/cS8uWLaXLLrua0plbbhllha4/9thTVFq6gW688Xpq1aoVnXrqmY09NJAgEOgAAAAAAACAZsVjjz1Cubm5dP/9D1N+fqSIWrdu3Sk/v4BGjryCjj76ONp0080oHamqqqIOHTrSmWcOpx49elpV3Pff/0CaO3dOYw8NJAEIdAASZPHiEH30UQ6dcko1tWjR2KMBAAAAAABeAvejjz6gCy+8uF6cK/baax968MHx1KVL1/rHWPiOHXsvLV26hLbZZjsaNeqW+r9//vlnNHHi4/THH79TXl4e7bbbnnTNNaOosLDQepxf07JlS/rgg/esv59wwsl00kmn1fcpnzRpIr322stUWVlB/fvvSJdffg116dLFdfy8nRtvvK3+34sXL6LPP/8/GjLkqCTPFGgMkIMOQILsuWdLGjWqgO6/P6+xhwIAAAAA0OiEw0SlpQ37w/v0C4ewl5eX0VZbbRvzNw4b32mnXSwRrHjjjdfo0kuvoieeeIY2btxA48c/VL8dzgM/6qhjafLkl+nWW0fTt9/OojfeeLX+tZ988pG1rSeffI5OPPEUGj/+Yfrzzz+sv73yyov0wQfv0k033U6PP/40dejQgS6//MJAueQjRgynE088llq1ak1Dhw7zPwkgbYGDDkCC1NVFWld88QW/naoaezgAAAAAAI0GC+XDDiukr7/ObtD9DhxYQ2++WU5+OoqVlGy0/s8523447bSzLNHOHHroEfT6669Yv3MxORbuyrnmPPaddx5Iv/22uP61bdu2pQsvvJSys7PpxBNPpeeem0S//PKzFT7//PPPWo652vZVV11HRxxxMM2c+T/ae+99fY3tkkuupLKyErr//rvp5puvo7vvfsDX60D6AoEOAAAAAAAASBqhUAA7uxFg0cywG+6H7t171P/Oop5D5JmePTel3Nw8K0ydw8x//32xJc4HDTqk/vldu3a3xLmCQ99ra2uorKyMVq1aSTfdNJKysqJBzZWVlbRkyZ++j6VPn75WDvp1191EZ599Ki1f/pe1UAAyFwh0AJJEkNAqAAAAAICmCDvY7GSXlfl7PovLmppoW7N4KSyM7NsP3br1sIT2/Pk/09Zbx4a5X3vt5VaRuF133c36txTQKnecWbDgV7rggrMtt3vAgJ3o+ONPoqlTX7A9NycnVm7x62tra63fb7vt7phidG3atHEdf2lpieWy77//v+vHtvnmveqr00OgZzbIQQcAAAAAAAAkDRbKLVs27I9fca5E84EH/odeeWUqVVdX2/7Gxdb4h9uvefH+++/QgAE7WjnkRx11jCX2ly79s17Au9G6dWtq374DrV1bbFVi55/OnbtY/cxVjroTFRUVdNNN19G8eT/WP8aLDezUs6sPMhsIdAAAAAAAAECzgluUlZaW0uWXj6DZs7+1Cr699dY0uuOOm+nYY0+gLbaIONJeofKLFi20hDKL6ocffoB+/nkeVVf7q0l03HEn0n//O95aEOCw9tGjb6MffvieNt10c9fXdexYRP/61/40Zsw99Ouvv9CcOd9Zrz366GHUsqW/vHqQviDEHQDBsmUhGj06n4YPr6Lttw8WboUQdwAAAACAzIBF7vjxE+nJJ/9Lt956A61fv566d+9OZ599Lh155DG+tnHMMcfTr7/Op0svvdCq1M5u+hlnnEMfffS+r9efcMIpVi76vffeYS0WbLXVNjRmzMOeIe7MyJE30UMP3U+XXXYhxyzQwQcfQuedd5Gv/YL0JhT2E4MBmhzFxRsbTVByCFJRUetGHYMThx3WgmbNiqxbrVoVqfDpRadOra3/DxhQSx984DPhqgnPYSaA+UsczGHiYA4TA/OXOJjDxMD8keUUr1mznDp27GoVS4uHZOWgN2e85tDtPKnrGKQPCHEHGUFlJdEPP2Sl/Avwxx/jbwnSXL+cAQAAAAAAAMkBAh1kBKed1oIOPLAlvfBCarMyamrify0EOgAAAAAAACARINBBRvDxxxFhPmFCfOFTDSHQAQAAAAAAACARINBBRpEdfwS6L+rqAvTo0ICDDgAAAAAAAEgECHSQUeSkcd8BCHQAAAAANEdQczq9wfnJLCDQQUaRnZ2+HzD47AMAAABAcyL7n9DGqqrKxh4KcEGdn+zsNHa6QD04SyCjgIMOAAAAAJAeZGVlU4sWraikZJ3177y8fApx366A6YW1tbiJSgSnOWTnnMU5nx8+T1lZ8GYzgTSWOwA0fA56IkCgAwAAAKC50aZNB+v/SqQHhUVjXR36oCeC1xyyOFfnCaQ/EOggo0hngQ4AAAAA0Nxgx7xt247UunV7qq0N1g6Hzfb27VvSunWlMDrixGsOOawdznlmAYEOMgoIdAAAAACA9INFYFZWXmBxWVBQQLm51RDocYI5bHpgOQWkPbI3OXLQAQAAAAAAAE0VCHSQ9lRUNE4V9wceyKPffw/5FuUQ6AAAAAAAAIBEgEAHaU9ZWVQkN2QKzV135dPgwYWuz6mtjf4OgQ4AAAAAAABIBAh0kPaUl0d/r64O1rojUdasyfIdfg+BDgAAAAAAAEgECHSQ9pSXR0V5VRWlFRDoAAAAAAAAgGQBgQ4yzEGntEKGuAMAAAAAAABAIkCgg7SnoiKdHfTo2MLhhg2/BwAAAAAAADQtINBB2tNQOeh1dYmFuMNNBwAAAAAAACQCBDrIqCrulZWp20887rwU5VKsAwAAAAAAAEBQINBB2iNFeSpz0OMR/1KU89juvjuPbrwxP6njAgAAAAAAADQPINAbiJUrV9LFF19MAwcOpH322YfuuusuqvxHEc6YMYOGDBlC/fv3t/7/2WefOW4nHA7Tww8/TPvuuy/tuuuudOmll9LatWupKSNDz6uqUhfiXllp3va0aTl00kkt6O+/7Y+XlBDNnJltqzZ///359NhjebRkCfLRAQAAAAAAAMGAQG8AWFSzOC8vL6fJkyfTAw88QJ988gmNHTuW/vjjDxoxYgQNHTqU3n77bTrqqKPowgsvpKVLlxq39eKLL9LLL79M9913n7WtVatW0fXXX0/NRaA3hoM+fHgL+vDDHLr3XrszfuSRhTRiRIv6f2/caG4NBwAAAAAAAAB+gEBvABYvXkxz5syxXPM+ffrQLrvsYgn2t956i1asWEHDhg2j008/nXr27ElnnHEGFRYW0ty5c43bYnf9kEMOsZz4vn370tlnn00zZ86kpozsL57KKu5eonrZMvvf586Nuud6Ffd0qzYPAAAAAAAASH8g0BuATTbZhCZMmEBFRUW2x0tKSmi33Xard8Crq6vppZdeoqqqKivc3US7du3o008/tULmKyoqLNd96623pqZMQ4W4r1/v/vcg+y4pgYMOAAAAAAAACEZOwOeDOGjTpo2Vd66oq6uj5557jnbffff6xzjUffDgwVRbW0tXXHEF9ejRw7gtDn8///zzrRz07OxsS/xz2HtQQo2oH9W+/Y6hri5kC3FP1dg3bHDfMLvifvddVpbaOQ46h8AO5i9xMIeJgzlMDMxf4mAOEwPzlziYw8afQ8x9+gGB3gjce++9NG/ePCuXXNGhQwfr37Nnz6bRo0fTZpttRoMGDYp57bJly6igoIAee+wxS/jfc889dN1119GTTz4ZaAwdO7amxsbvGFq2tLvYRUWtUx5Kb6KuLsf3vrOyCkkLmEgJ6XAeMxnMX+JgDhMHc5gYmL/EwRwmBuYvcTCHiYM5bDpAoDeCOJ80aZJVKI5zyBWtW7embbbZxvpZtGiR5bDrAp2LzV1zzTV09dVX0/777289xoXm+Pfvv/+edthhB9/jWLNmo6cgTRW8UscfIn7HsGFDLhEV1PcdX7lyI2Xb07+TwtKl0f2YKC2tpeLiMvGI8wfh8uXlVFxckzZzyKjnYaU0vvkDdjCHiYM5TAzMX+JgDhMD85c4mMPGn0P1epA+QKA3ILfddhu98MILlkhX4nvBggW0fv16q3Cconfv3jRr1qyY13M7teXLl1O/fv3qH+vatSu1b9/ectaDCHR+Azf2B6HfMbAo10PNC5x1dNysX+8d4u53zjgHvSHm1+8c8nOGDWthzeUrr5RDpKfR+yDTwRwmDuYwMTB/iYM5TAzMX+JgDhMHc9h0QJG4BuKRRx6hKVOm0JgxY+jQQw+tf5zbrY0aNcpyxxU//fQT9erVK2Ybbdu2pby8PMthl6L977//dsxZbwroHzapqJDOwvXvv0NxtWHLhCJx3MP9s89y6PPPc2jlyvQaGwAAAAAAACACHPQGgAX1uHHjaPjw4bTzzjvT6tWr6/82ZMgQevzxx62+5sceeyx98cUX9MYbb9QXfuOK7uywc456Tk6O1S/97rvvtlxzFuz8Ozvn22+/PTWHKu7RaurJWyLkgm777tuS/vwzK2miu7SU0oqsLOf5BAAAAAAAAKQHcNAbgOnTp1vV2cePH09777237adLly40ceJE+vrrr+mII46gyZMn04MPPkjbbrut9VouGsfP49B2hgvC/ec//7EqvZ9yyilWoTgW/6EmHLOsC8qaJKd2/9//ZXuKc8bNYW/RIpzWDrpbygAAAAAAAAAgPYCD3gCwc84/TgwYMICmTp1q/Bv3SZ8/f379v/Pz861CcfzTXIh10JO7fb9rGxUVIWss0o1WdOgQpmXLQmkr0KUoh4MOAAAAAABAegIHHVBzd9Bln3UvRo3Kt0LiTQI9nUPca2ujxwiBDgAAAAAAQHoCgQ7SHl1AV1cn150uKfH/3AkT8uihh/JiHm/TJr1D3KUoR4g7AAAAAAAA6QkEOqDmXsV9w4ZgYnrevNi3TU6OuWVbeTnRNdfk06efpqBxe5wCPdkLHAAAAAAAAIDkAIEO0h7d8U12iPvGjcEEq0ng6kXi1q2LPGf8+Dx66qk8GjaskNJFoCd7/gAAAAAAAADJAQIdpD16znR1dXK3v2FDsOebBO6mm5oF+m+/ZaXdIgcEOgAAAAAAAOlJeqgHAAIJ9FCjOuimHO4ttqiLCZtnIZwuBdnkmJO9wAEAAAAAAABIDhDogJq7gx48xD32sc03r6P99quJ6ZueLgJd5vHX1CAHHQAAAAAAgHQEAh1kXJG45Ie4RwVrKKTtzIBJ4PboEaZJk8rpo49K6yu6c5i7PvZ0aLOGEHcAAAAAAADSEwh0kPakPsQ98v+srDC9/76hybmGErj5+WGbg96iBVH//nXUvn3k8ZkzswM76JWVRCee2IIefTSXkgmKxAEAAAAAAJD+QKCDtEcXuamq4v7CC+U0YIC3olYOfuifdYIPPiil/Pzo39XjV1xREDh8/tVXc+ijj3LollsKKJkgBx0AAAAAAID0BwIdZJxAT3Yf9IqKiIhmBzyI2FX/32QTexz7779H31bFxcEEellZ/NEBPC9vvplDa9d6CXTkoAMAAAAAAJCOQKCDtKeuLpRSB10Jfhmy7icHXYne7Gz736+5prL+99JSajDGjMmjs85qQUcdFdtzXebCm6rQAwAAAAAAABofCHTQbHPQ58/PomnTcqy8byYvz/m52dlhW4g4C161cKAL9Msvr6LWrSPPLy0NNlYVHh8Pr70WyVv/+WdtQAhxBwAAAAAAICPIaewBAOCFXgk9WSHu++zT0vZvNwe9TRuuyh75vazMLnileFciu0uXOtq4MZtKShpOoLtVjJfjdYtA4G0kMgYAAAAAAABA/MBBB9Tci8Qp3Bx01TpNueJ2gR77fJXPXlLiLIQnTcqlH36wvwWzxD+T2aJNzqFTBMLppxfQgQcWoso7AAAAAAAAjQQEOsjAEPfU7EdWYme22CK648LCqFouLw/ZxmAW6JHnh8NmMfzGGzl01VUsiO0uvnSvkymUZR6/03bfeSeXfvwxm2bPxscCAAAAAAAAjQHuxAE19z7oirw8u2Xdr18tPf54Ob34YmxvdCnQpeutKCx0P45vvjGoek2gBwnlnzs3y1Y93m3fJoEu3Xq9KB8AAAAAAACgYYBAB83SQde3aQpxLyggOuqoGtp//9iy51VVURGbk+PsoEukMK6oIE+BHuQ4//1vuxMftEgcKrsDAAAAAADQ+ECgg2aZg86F3rxC3OW/9XxwKbBNIe4mB10KY9V73Q25CJAo9iJxIdexJTP3HQAAAAAAAOAfCHSQgVXcExeunEcuycoKxzjh7dqFfY3BFOJuctClSFat3XTk4kMyc+29QtzhoAMAAAAAAND4QKCDZumgl5c7u+W33lpB229fS5dd5qCihcBmYW9qS2Zy0K++uoA++SSbfv6Z+69HepbrQlweW7LaycVWcY/9O3qjAwAAAAAA0PigDzpIe1TRsoKCsBUangwxWVYWcsw/P++8auvHTy92U3i7XvVd8eqrudZP7951MYsFuf/odXlskWJ45nhz3v+SJdF2bok66DLsHSHuAAAAAAAANA5w0EHao8SlEtHJEOi6g65XcNdxCnF3EuhuwnnRoizHxQJZod7NQR80qJA23ZRozhx/b+HaWvM+Uh1aDwAAAAAAAPAPBDrIIIEeTlqbNd1B54rtbnTrFjYWiQvioCt69qxzLFjnVW1dwf3KmZdeiobKuyG3a8o3lwI9mf3XAQAAAAAAAP6BQAcZI9CViE6Ng+7+/DFjKuiAA6LKVY0hHgd98831EHfpbqemiruMAPDKQYeDDgAAAAAAQOMAgQ7SHiUukxniHpuD7h7i3rNnmKZMKaf27SPPq6z0CnEP+w6Xl4sFQUPN/eaLe/dBdw+BBwAAAAAAAKQeCHSQMQ56fr4KcU9+H3S9B7oT2dlhrUicWSG3bOm8Db0Hut1B95eD7sVRR7WgDz/MjqsPOkLcAQAAAAAAaBxQxR1kkEBPnsOr90H3ctAVqle6Es+mHuhM27bO21P569GxJL9Y2xdf5Fg/q1ZtDNwHHSHuAAAAAAAANA5w0EEGFolrPAddCXQV4q7+rdOmTdizwJtpscDeBz2UkhB3k0CHgw4AAAAAAEDjAwcdZJyDngwBqTvoek66EyrnvLLS/u8gDrqiQ4c6Wrs2y+agBy3W5iXQV6wI0axZ2baoA9N27c49ctABAAAAAABoDCDQQdqjRKgS6Mmobr5mjX0bq1eH4nLQ4wlxV7RrR7R2rX1xwO6gU8Lsu29L+vvvEG27bdRCNy1wyLx0hLgDAAAAAADQOCDEHaQ9dXUhW4i7Xwedhf0rr+TQvHmxl/mSJfbHiotDcRaJMz+vVSvvbamK8HYHPbnV1FmcMz/9lG0U48uXh+i553JpYyRV/Z+/U9rCofpTpuTQokVw+QEAAAAAQNMDDjrIwCJx/l738cfZdP75kYbkqliaYsmSxELcvaq4OznrZoEeMuaK8z7mzs2in37KouOPr6FQyLwI4TcPXSEXBA45pJCWLcuifv1qM8JBf/XVHLr4YvM5BQAAAAAAINOBQAdNVqDPnm22t1nQ/vlnfMEjeoi7k4PuB1VIzinvfOTIgvrfO3Yso//8R6h3cSxS1PuhpCSq9FmcM/Pnmx32dGPu3AQmHAAAAAAAgDQHIe4gA6u4+xOQeqg2i9mJE3Pp7bdzqLQ0so1Jk8qpVaswPf64sJUDtFlLRKC3bOku0CXffee8o6Ah6Rs3hnw77OmGW3V8AAAAAAAAMh046CBjBHpBQTBBqj/vs8+yba50UVEdDR5cQwsXlvgKSQ9Sxd0PKk9dLjg4uddqQSEZAr2kxP3vDzyQT3vvXUv77BPQmm8AZPE9bpVXWNiowwEAAAAAACCpwEFvIFauXEkXX3wxDRw4kPbZZx+66667qPIflTdjxgwaMmQI9e/f3/r/Z5995ridfv36GX+mTZtGzcVB91vdfN06u6hdvNh+uStx51ecMzk5agyJh7i3aBFb9M5JbOt92yWJhLg7ceGF0YWMROBxey0gcGSD16KBIi/PuRI/AAAAAAAAmQ4EegMQDoctcV5eXk6TJ0+mBx54gD755BMaO3Ys/fHHHzRixAgaOnQovf3223TUUUfRhRdeSEuXLjVu6/PPP7f9nH322dS9e3c68MADqekLdP+O8YQJufTss1E1t2EDxRRZKygIHi6th7i7iftx48pp003rPLclw9qdBbqbgx5MqPK2vES9ilZIBJ7zvn1b0eGHu9vcV1+dT716taYffvD+OJJz5bfyPgAAAAAAAJkCBHoDsHjxYpozZ47lmvfp04d22WUXS7C/9dZbtGLFCho2bBidfvrp1LNnTzrjjDOosLCQ5s6da9zWJptsUv9TUVFBzz77LN1+++3UunVrai4h7n5y0K+7zq4wt9yyNa1cGXJ0Y/2iHHMlDp2quDPHHFND33xT6vj33NxYUe6Ugy4ddDUf8RaJY7wc63gWL3Q+/TTHijT49tvIpPE4Tf3mJ02KnIixY71PiIyegEAHAAAAAABNDQj0BoDF9IQJE6ioqMj2eElJCe222250/fXXW/+urq6ml156iaqqqqxwdy8eeugh2mOPPWjPPfek5lHFPbaoWhA+/NBeckFVhY9HoM+YEdlWOBy/SFTiPmgOuhTk8Qp0r0JxyXDQdQE9bFgL2nbbVjR7tvljp10770UBlVpg2n48sOBfsQJCHwAAAAAApAcoEtcAtGnTxso7V9TV1dFzzz1Hu+++e/1jHOo+ePBgqq2tpSuuuIJ69Ojhus2//vrLcuCnTJlCTZ26upDN8Y5XoOvh40rwB0GFpSv++CN+cRfMQTcLdP31wfLQnY8/nrnRWbvWPjdqUePZZ3Npxx0rbcX2mA4d/Ah05xoD8XDwwYX0ww/Z9MknpbTtts7pCAAAAAAAADQEEOiNwL333kvz5s2jl19+uf6xDh06WP+ePXs2jR49mjbbbDMaNGiQ4zb4udtttx3tsMMOcY1Bz8duSNS+/Y6BXWJ7FfdQXMcgQ8OV4A+6DVUkTrFqVVbcc6kEOotytQ0lvtldr60N2ULc9eckGuLuNu4WLRK/RmQRN33u1bZXrQoF2qdcwOCFm3jHqF7H4px59dUc2m47n9UHQVzvYxAL5jAxMH+JgzlMDMxf4mAOG38OMffpBwR6I4jzSZMmWYXi+vbtW/8455Bvs8021s+iRYssh91NoL///vt0/PHHxz2Ojh0bP2fd7xhUIbaiomjcddu2rQPnkIfD9pLrrVvnUFFRsHkwtfXy2sb06UR33hn5v2LiRF5oiBxPVlYuFRXl2oRsy5Yhq8iaoqIiu34/StgzBQV51KZN8GT6rKyWpGVcJDw3bnnufL4ULVrkUVFRZMzz58sx5VNRkXvegayaX1Dg/Xy/5Ocnb1vNjXT4LMl0MIeJgflLHMxhYmD+EgdzmDiYw6YDBHoDctttt9ELL7xgiXQlvhcsWEDr16+3CscpevfuTbNmzXLczvLly2nhwoUJVW5fs2ZjvTPd0PBKHX+I+B1DVRWr4myqrCxneWc9tnz5RmrZ0u1VsR9SVVWsfqP5z6FQNRUXVwQae20ti2qhkK1c6I2ur+FyApyJsMkmkTGFQmEaMqSEnn+e334tqLS0hoqLy/8R4nxQWVRQUEcbNkTHunFjHRUXRwrOrVsXPb7y8ipavZptZdfJiGHZsnIqLubYePOHeTxzo7N8eYv6j5gVKzbW76uysoqKiyOx7T//HJkDZu3a6ONOrF/PIjoi7jdsqKTi4qqErkFFaan3vkFi72MQC+YwMTB/iYM5TAzMX+JgDht/DvV7ItD4QKA3EI888oiVLz5mzBg6+OCD6x/ndmuvvvoqvfvuuxT6J8bkp59+ol69ejlu6/vvv6euXbtSt27d4h4Pv4Eb+4PQ7xj0InEqF9nkZrvlceuPswMfdA70vucvvlgWeBscEcCvkW3W1DZUPrlepI3D+tVzZFE5fiyenPz166PbM8EF9BK9PmSIuxyjPO+y0Ft5ufc+5XY4tD9Z1zBfY439fshU0uGzJNPBHCYG5i9xMIeJgflLHMxh4mAOmw6o4t4AcMj6uHHj6JxzzqGdd96ZVq9eXf8zZMgQ6//33Xcf/f7771af9DfeeIPOPfdc67Vc0Z3/zsXjFOy6s8veXFACXYZ2u7VaY/FpQhYkS0aRuE02qaP99w+eAK5C9t2KxBUWhl1yr6O/c556PDnoL76YYxPQTmNMBCm+5fnidSg+5o8/zra1Xauo8E6Cqqx0zmtPBHyhAQAAAACAdAAOegMwffp0S2CPHz/e+pHMnz+fJk6cSHfeeaeVd969e3d68MEHadttt7X+zkXjTj31VGsbqrJ7cXExtW3blpoLSoixe81F2thNdqtcvn69+fHy8lDCbdZkkTi5YBCPCx910GWbtcj/9fB9ebxSkPPv8VRx/+qrHDrhhEhouYl4K+Urvvgim1aujKp8fRFhwoRcuvFGe5gAO+heOC1UJEoytwUAAAAAAEC8QKA3AMOHD7d+nBgwYABNnTrV+Dfuk84iXnLLLbdQc0K5m+zqclg6C1LZbkvn77/NTqwuAIMWmdND3OMV6FEHPXJgUmCrPt+6gy6PV4pdfm0QB71Tpzqr8jwzZ44Wry+Ix5VXLFsWoqOOKnQU1uygv/Za7ORJB/3bb7Ms0bzrrnW+5iFRINABAAAAAEA6AIEO0h4lnljYKtfZzTUuLQ259lNXFBSEExTo4YTaWcg2azfemE9ff51NG/+pN6fn1/PYWZDy/nU3XbZj86JnzzCtWuX9vEQcdBm2btoeH3+bNmHHBRR+7uDBkRCCX37ZSB06xC5gMEGO2wsIdAAAAAAAkA4gBx1klEBXotgtB91vyHc8DrrMQU/UQVfbYpH92GN59O232RQOR46rZcuwo8iVYpKPNUiI+6ab+lOiiYhfOUcK1bte0bZt2NFB557vip9/trv8cNABAAAAAEBTBgIdpD3K+WbnVbrOibq/jR/iHlv4TKGHuDNKiEvxHDQHvWdPf0o0EQfdJJz1MZoFuvp/9PgWLrR/ROnV4JMFisQBAAAAAIB0AAIdZJCDHvYp0P25v/GEuCdSJO6++yqsCIAnnii3bWvtWpNAj329co+l2GVnOoiTzNu9+mrvft/xFJ5ze618jBdaTAJdhbjLWgHz59s/ouwh7pSWDvqnn2bTm28iewgAAAAAAAQHAh1kWIi73WX1EoOpDXEPJvBPPbWafv+9hPbbL6Is1bGYitqZQ9xDxiJxQcQ0RwCceGJ1igV69Hiys1VKgv05ep93eU6lg75okS7QKUUCPZQ0J37YsEI666wWtHx58nLkk3l+AAAAAABA+gKBDjKqirsSxUceWUiLFoWob99WVoG1eMKz4+mDnmiIu3yNKVfbzUE35aDz73p+txs8hy1aOB/3RRdVJiwAlXDu06eWNttMVaq390E3OdYqxF32q9fPpfx3ogJdhrUny0GXCwimyIhkcN11+dZ1z9XyAQAAAABA0wICHWSUgy6F3ogRLaikJGQVWLv//jz66qtsm3A78EB3lRlfH/TEc9C9Xs+h7yZ3XolTe4i7u1Dt3NmuPDlNoIVD+/MPPiilgQMjGzOJfj4PsoCbE2p8PFcqjF8PcTctAKg+9bJfvX5sMsQ90bxxue1kCXS5uCAXc5LJhAl51nU/blwcISAAAAAAACCtgUAHGSXQ16+PPi5F3t1359PhhxfaQsG9QtAbq4p79PVhx3GZth1PiLu+CMHCmx9joa4ji/CZtnnEES1oyy1b0d9/O+9PvpYFqpov3Qk3VYlnB51Ft3LSI8+jlIW4y2NMlkCXiwupRhUbBAAAAAAATQfc4oG0R4knFpDr10cFkPxdosSgWwh5vEXipLCNtw+6wml8LJLNAj02X5qFrptQ1cP4S0sj82hy0VlQK9fXlCbw1Vc5lsD/+GP3iVXj4eMzCX4nB52PhfdrF+ghF4GemBiW8/bZZ9l08835tu3Hgxx7IpXw/QCBDgAAAADQ9MAtHmgUPvqI6Jpr8m0Vu/046LJC+8aNsc8dPTqvXvx5OdyN76A7PR6tVi9Rgk930NW/Dzqohnbbrcb1GMvKQsY2bvzabbetq9+vm+hfudJdGKvweLuD7p2DrgSuLBKnPy+ZOehykaC4OMsKGX/22cROqmyZl6jY9wICHQAAAACg6YFeQKBROOgg/m8eFRWF6corq3wXiZOYqp+PGZNPRxxR7ctBb2yB7jQ+Hpds5+aWgx7pg64EcZjy8kKuIe4qh1w66NtvX0uTJ0dWSqIOun07UgzfdFOBtc+LLqrycNDDjmLVSVxziLhbiLsUwImGpZtc/D/+SEz1yrHLfPlUYEpTAAAAAAAAmQ08GNCo/P57ViAHXeIU4qyqZ3uFoLdvn2gV98QEktPrnUPcY3PQIwI9Kvj19mV6obLS0lgHXS5UqDHp4lUKT+a22/JtBdG8Qtz11zvlzesOui7QpYOeqEA3LRIkWtjNLtAppcBBBwAAAABoeuAWDzQqfipxq5xrv4KEQ6j9OOh6hXM/SGHrtX0v5Ov32SeqWPPyzCHu55xTYIliKUxliDtvT88579AhTKedVmUQ6OaFAjUmXUCbip/98kuWZ5E4JXil8/3EE3n05ZfZvhx0eawszqUrrY57/vwsY7qDF6ZFAtW3PV7k4kIqctDl+wUCHQAAAACg6YFbPNAgcPX1H37I8i3QuZjZ7NlZ1t+jDro/8aScXa8Q9LZtKTBt2iQWIi+R42MhLR83ueurV2fRCy/kam3WIoXVlGDTHXTm3nujVnfHjpHtyl7oct9OVdd1B5zZuNEcwSAdfXWM8+bZz/2CBdlGYezmoJeU2PfDf5s7N4v22acl7b9/S0qGQE900UXOk1yUSBYyakEtRAEAAAAAgKYDBDpoEPbaqyUdeGBL+t//sn0J9GOOKaRBg1rSSy/l2Kq4v/aadyNuJRy9xFY8Aqd16+Q56FKgK+GsHndaXNiwgau22wVscXGoXmjrlelDoci/p0wpo0MOqabrr6+MyUHv2jX2mPT0AZOD7iTQpaOv8tCffDLPV7oBi3OnKu76/vi6+PTTyID//DOymJOoQE/UlZaiPBUOuhTocNABAAA0JE8+mUunn16Q8hQuAJo7uMUDDcKqVZFL7b337KrWSVR9+21EyD//fK4tB32vvWpp0CCXxt+W0+pPoMdDmzYydzuxcGgpsKSLzXPiJNB5nzLsm8Xw8uVZ9UJbd9A33TSy3QMOqKWnn66gTp0i/27XLuwg0MNGcWmqtq872gpZtM5vIT0l0Hk/cjHA7qDrAj1E3bpFJ2P16lDCOeiJil45T6m4gZHRBUEXJAAAAIBEuPbaAnrnnVx66aUEq+QCAFyBQAcNSjxFuPQq7nqetY5yWhMt4pZqB92pYB2LY2eBbnd++fcVKyLH27Vrna1qO1dnv/pqcyW3fv2iwrZLlzqDg06eDroumOWY1Lb8zBELeZU6oDvocjFCd9B5jFJQL1qUlbCDnqjolQI6FVXcpYPuVGgPAAAASCVOC/QAgOQAgQ4aFD2P3EsQyZ7ZUYHu74vDTRxKURpvDnqiFb8lsmgbh0lL4SnnjI9dr+IuHXS5ePHooxW28Uq23jq6kW7d7OH1/h10PyHu5Mq111bS/Pkl9TnxvB8pQqVAN+WgS5d64cIs6zmHHlpIDz3kXSDAJHATdb3l2FPhoMttprqNGwAAAGAiFRGKAIAoEOigQdFFrRRgM2dm07ffxl6SukDX86yd2pE5udD//ncNTZvmncvu5aA7tRmLBymsWRzLHuLbbVdnc5ulQOdjXb486qDL3HK3BYSttopuU4W926u4h2yLJ6YicVzIz0348vnyimIoKoq45yo0371IXKyDLkXqqlUhevrpXPr662y6/fb8uELc5b7jQUYapCIHXY4PDjoAAIDGADVQAEgteIuBRv1QVyKQq7wPGVJIgwe3jBEeukD3Wz3daYX3mWfKqVev+GKZ5b5NYd9B2WmniEo84IAam0u60051dMUVlfT00+WaYx6y/Xv9+hCVlYWMDrpby7AePcLUr1+tlcO92WYyxD36Grkf07FyzveBBxbSzTfnG3PQef69ogzU/qIOesjm1ssxmIrESUeZrxsnV9+ESeAmsujC25s8ObfBQtxRpAcAAEBDIRftkxlBCACIBQIdNCj6h7r6wF+zxuyaMrKKu58Qd4WTe5us0CxT2HdQ3nqrjH77bSN16EA255WP9ZprquiQQ2q0sObYCutMq1Zhyz2XReLcvkB5sWP69DL63/9KbfMpow5kazSTg85i9IcfsmncuDyHEHfvInHRqIjofqRLbApxV+fVJNCDuMrJDnGfNi2Hfvsty3FbySjqluoq8QAAAIAJ+Z0DgQ5AaoFABylHChMnB10iBTr/PRwOBQpxV/itIB4vyXDQebGgpdbCW3dedVFmCs1WVeDl3HgtRHA0gMx91790//3v6MCUS69XUXcTvrwtr3OgxqjGzXPq1WatbduwMcQ90hPe/zlJdoi73utd3sy8+moObbttSyuNIxHk3CAHHQAAQEMhv3/cIvQAAIkDgQ5SjnQSWbRJUa5+l49J11T+7rdIXEMVMTG5yslAd17lv50EumqbJucmnhVuJ0Htday6k+23SJwao8qdd8tBVwJdHSuLd32/prlpqBD3Lbaw37DIsZ13XgsqLs6iM87Q+uAFBA46AACAxiDRGi0AAP9AoIOUI0UPi2wpLEwCXYosu0BXItS8cqvymN1C3PfdN3mVtXbZJYAaDIDujNoFuj0HXaFcZRniHk8RFydR7xUtIPPD7VXcw772pxx0vc2aPFZVlK5tW3IMcQ8iWs0h7vHfgOjHatqWKRIh3vcSBDoAAICGQn7/mFLtAADJA40SQMqRrh+LbCkslABXYey6sJFfAkrMOTno7KxKIam7t7ffXkHHHJO4qpk5s4Q+/TSHTj65usHnjwWp6fhVH/W8PBniHjwETeX5B3XQN2wg6tjRXiSOz1dQB53z+p1y0EtLQ7ZK+vw33VEOkudtDnGnuFHH7ZbPnqiotgt03CABAABoGLBADEDDAYEOUo4UKnoVcoUUVmVl7iHuTmHYLNyWL4/+WxeHw4cn5xuFK8D36pW6b6dYJ9Z/iLs85mQWcfFy0CPV08NaiLt3kTiVx+bHQVfbVQsU/Dd5k8D/DiLQU1HFXWK6gdFFfKKLNenGxo38PmzsUQAAAEg2aPMJQMOBEHeQcqToiYQhRz/klXMuhZgMA5ZfAkpwcnsvRY8eskd4wxaJSzYvvlhmtTx76SV7efhWrfQQ95CjQJfHHK9AHzy4OkYE6sL18MPt6nPDBqcQd79F4swOukmgq9SFSJE4+9wEEcBqe/3719LQodUxAtgPvCCwdm3sWOPZVqY7GC+9lEO9e7emxx/PsDceAACAjP7+AaCpAYEOUo4ehiw/2JVIkkJcOuj2qqHRbZj6kku3vSGKxCWb/fevpa+/LqW99rIrveeei04IH7vJOY066LIPenzjeOKJiphzoa+WH3VUjaNAl1XcW7Z0t7RVVISqHxDroMeGu6tzHslBt+83yKq+EtTs3p94YnVcrvSVV+bTVlu1pk8+yfbloCeKXLxItyruF14YyVO44YbECuEBAABI93u59Pr+AaCpAYEOGjjE3S6ilIhxctDl70pwnnlmNe24Yy3ddVeFLedadzCd+qBnGrvuWkdXXVVZP5emMOz27SlpDjoLYDV3Ku9bisHrr6+kNm3CMTnoJged+7O7oRZRZA66Hk6vhLkS6+oYdQc93j7oPAYVNh+0Su2zz0ZWC+65Jz9m3zy2H37Iossu89l2wAemxS0AAAAg1cjFc3z/AJBaMsxjBJmIFD286ipFhvrdyUGXAl25rZ06hen99yNPmjw5qkhVde9MddDdUK7xpEl5tPfeNY5V3JOVg8790devV/Mfrj8/d9xRQeecU01z5mQZctAjqDDziEAnn1XcY514BQtxPvdqDGpRhvuwm9q7yfBzp6J38vk8BpUDH28OOu9LLSBwXn2kBVyIDjxQa3KfIPJ4E81B53n9/feQVVPBbZ4AAAAAtPkEoOGAgw4awUGPDdOVj0lRrlprcfV3k4iQjvFZZ1XR5pvX2f523HHV9X/LZGTo+uefx648qOPedNO6hNqsKVRoulosUV/Gar5VJXW3HHQWql4h7nqbtb//Ngt0rjuwbFnItlgRcdDtCwPyOtJTHkzbVWNQ24xX9LJAV4JfRQOkooibaXErXi68sID22KMVvfBC8ley1q1L+iYBAACkUT0hAEDqgEAHKUevQm4KcZdiSgp0JcCc3HAZxs552G+9FbXfWXjdd18Fvf56Gd16awLludMAmWtvol+/uvoogs8/L6Wvvy5JyBUtLLSHuKt8s6hAJ88cdD8h7qqKuxK169aZBfq227aiX3/Nto3B1AddXlumavfOIe5hX9Xq/Qn0cMoEulyQSDQH/dVXIxP5wAPJC8FX9OuHUu4AANBUQ9yRgw5AamlCQcAgU1pzBAlx9wrXlg46Cy0lLJVA49ziPfbwUGoZgFdFevn3vn09rGMftPwnMlt30JWTr+egm1qj8TnzH+IetoXKqzBxuT2FCnGPreJuD2nna8ptYcNezC6aA+8VGu+EGicf8+rVzlXc+Xnxph+YFrcSxSvSAAAAAJDfaXDQAUgtcNBBynFzOaMh7tHHlGsrcQrXls46izHOnU5GT+t0QxbDU+y1V+T/J56YfKs21kFX47DnjCtMueB+qrjrReKi+4/+rgtdu4Nuv2GQYt7LQZeh+Op4Oa9dLjbE46Cr8P85c8wqXKVt+GXVqhB9/XXkDaAvSCQDr3kCAAAA0GYNgIYDDjpo4LwlLhIX8qjiHrsNJ8dROqTs7koh35S+QEwh/mefTTR6dCn16pV8C1QJ5FgH3fx8U+9yPyHu6nwpB13Bwn7jRvvigMKeg26/trhWgT4OPyHuckGAUyxUmHowgR4y5ufrcJSAHoHgxs47t7QWKd54o0x77yQnxBACHQAAQNBoSABA6oBA98Fff/1Fa9asoaysLCoqKqLOnTs39pAyOizK7qCTa5E4L4Eui6cp4VZUVEfFxVm0885NJ3bXFKrNrvNWW9VZ4jDZKOd7/Xp7ET+Z89+nTy0tWBA5MbpQVudGhY47oQS/7shLwazncqsxmHLQs7L0avLOkyOdfv5hUc456Oxwd+xIcVRxJ18C3bQA5ef9M2RIoXVtK5KV4w6BDgAAwAvkoAPQcECgO/Dtt9/SCy+8QJ9//jn9/fff9Y+HQiHq2LEj7bPPPnTsscfSTjvt1KjjzASkkODCVKo4VbAc9LAPBz3y/2+/LbVEfseOTaMPulMOui5qkwkX3GP++988q62aOodyvj/+uIzGjcuju+7KN1Z3ldXRnVALL7pjzY46u+Eccq7fCKie5ZFWZvb9ysUKvw66GgMvSkQEuruw9wpx98q7jxxPfNcmLzxFt0NJIRULPAAAAJoWqUixAgCYQQ66xqJFi+iUU06hG2+8kbp06UIPPPAA/d///R/NnTuXvv/+e/rkk0/ojjvuoE022YSuvvpqOumkk2jhwoWe2125ciVdfPHFNHDgQEvc33XXXVT5j6qZMWMGDRkyhPr372/9/7PPPnPd1nvvvUeDBg2iAQMG0JlnnknLli2jTAmL0lE5xE5V3IPmoCtnuSmJc925bgiBPnx45Nt36dIs+u03bl8WO98slLt1q4uJkpAh7l7oVdwV/G8lnHWnWG03NsTdnk7hNwddbU+59kFzxOX+Ga+w/mQ53yz0kyGuVTG+RDAdE4rPAQBA00FGOiLEHYDUAoGuccstt9CIESPo7bffpiuvvJL22GMP6tSpE+Xl5VF+fr4l2v/1r3/R5ZdfTh999BGdf/751mvcCIfDljgvLy+nyZMnW6Kfhf7YsWPpjz/+sPY3dOhQa59HHXUUXXjhhbR06VLjtr777ju64oor6IwzzqBXX33VGhePJZ1xW2lNtIp7nz51xnD3pkZDO+hcCX6TTerqF1H0Puj6GEwOuj+BHt2ujJJgB91JoKuFGFOIu2mhwNtBD9vC+p9+Oi+wuAwS4p7M9mvJuEni3vOPPOLRJsCDkpLYx3ADBwAATQf5vQgHHYDUAoGu8cwzz9Buu+3m+/l77703Pfvss67PWbx4Mc2ZM8dyzfv06UO77LKLJdjfeustWrFiBQ0bNoxOP/106tmzpyW8CwsLLcfexJNPPmm57Mcffzz16tWLrr/+elq9ejWtXbuW0hW3D/JoDrp7FXcnsXfeeVW044611LNnHXXr1nQFuilUPJUCXe6Tz5GKdNCdfPUcJYw//zybvvwycrL8tBKTz5HHw+68iprQ+33bc9DtRdNkjpyTQFy/nmjixFz66y/7GJSDPnVqLr35Zg69806OdTzBi8S5PzdI7p6XmI9H7C9dGqKnnrIL8ltvTexiMr1nIdABAKBpCnTppgMAkg9y0B1gZ7tbt26UKyzDL7/80nLTe/fuHWhbHA4/YcIEq8CcpKSkxFoMUAsC1dXVNG3aNKqqqrLC3U3MmjWLRo8eXf9vFvUff/wxpTNuN+qcY8zOo72Ku/8QdxZVb79dZvWtjre3dCZg6sudaoGuLn0Wgeoc6g56fn7Y5qBfd11+TETDOedU0RNPmJPR5cIL56Erocdt5dT51Bd4VA4654tz33IFX0NS/Do56BddVEDvvRc9EBVeL1vCffRRDr34YuQ5K1ZsdLz+TDnoekV6nSDt/+TxmYjHxTjooEJasya5a7Oqf70EIe4AANB0gIMOQMMBgW4IR+cc8+eff56efvppK2dcwU45h6afdtppdM0111gF4/zQpk0bK+9cUVdXR8899xztvvvutgWBwYMHU21trRXC3qNHj5jtbNiwgdavX28956yzzqJffvnFEvI333xz4MryPoeeFLxWWvmDXubBmkQJizWnMZvCv5saJqeUBXoqz6PqvR5pjReda7lPtUjw44/Z9L//ZduqtrP45ufeeWclTZ6c61idX21Pd9CdBLpT4Tl+nnwuL/6EQrFiWYpzJcx5DKoXOqPEObNhA1H79uSJWhDwuh5ZyPs9b271GxhekDAdoxtO4jzotaSez/835e3zfDTk50wmIucQBAfzlziYw8RoTvMnF70/+SSHVq4MUZcuiUcuNqc5TBWJziHmPv2AQDeEuL/zzjv06KOP2sQ5M27cOMutHjlyJG266aZ04oknxrWPe++9l+bNm0cvv/xy/WMdOnSw/j179mzLId9ss82sQnCSsn+Ss2+//Xa67LLL6JJLLqEHH3yQzj33XCsfndvA+aVjR4843CTBIcdegqVNm9Y2cVZZGWuF5+Vxi7uGGXM6YnLL+bFUnkcV8t2iRWG9O9y5c0uSgSByXejIIws18chtwaKi2lRboHPnVvUtzWT189atc0XxNvt2i4rsFeX69SOaP58FeZZNoLdubR+rE5tskk9FRfmOjm9tbWvP7WRnZ1s/TLt27qENBQXRefFCNJAw0qZNK9/b8iLe9xdfg6YUlHbtvOcNNOzncVMF85c4mMPEaA7zp6LXFOec04q+/DJ5228Oc5hqMIdNBwh0jalTp9INN9xA+++/v/HvBxxwgFU8joV8PAKdxfmkSZOsQnF9+/atf7x169a0zTbbWD9cSZ4ddl2gKwHA7d2OPPJI6/f77ruP9tprLyvHPUjLtzVrNqa8vdLbb+fQ6ae3+MeJdV6eW768hNav50sxImw2bmSlpC821FJxccAG0k2I9u15PuxNxTk0O5XnMSuLhXG2Ne9VVSyKQ7RxYwkVF0d3WFYWOy5Fq1ZlVFwcWXLPyuLnxC4g/f13dPy5uZH9MXV1VRQK8TWRRcXFHFIRFeXl5XwdREV7//7VNH9+LlVVhf8R6JFrrbi4lIqLTarb/gUWDldQcXE1rV0b3b/k11/LqKgoNl4+Mu7ItmpqaqmsjPeVS+XlnAjvLNL5eIqL/SVoL1vmPL/MihUlniH1sZi/wIuLNwZeceebAb4Gly3jc2VfOFm5kivHNd26EMlAziHa3QUH85c4mMPEaE7zV1rKCj0awjZzZvDvjeY+h6ki0TlUrwfpAwS6Brcsc8r/VnBoOofBB+W2226zequzSFfie8GCBVbYOheOU3COO+ea67Rv397KieficPKxdu3aWcXmgsBv4FR/ELI4NxX50pE5zm456M35g7tfvzq6+upKuueefJuDznOXqnlRxdg4zFpWZpf701fUFVtuWUt77VVb/1yn4A55XmWUADvuKsRdz9nWIzK23FJVm4+EtTv1RXeCQ9v5eaZK5Exxsb2dGYdz89hkzQNZJE5WozfBx+P3nJmiDiT83uK0nGQQ72ac5s7v/IOG+TxuymD+EgdzmBjNYf5MUWbJPObmMIepBnPYdEAVd42OHTt69hVnMcyiOAiPPPIITZkyhcaMGUOHHnpo/eOc0z5q1CjbTfZPP/1kE+GKnJwc2nbbba3ccwVXb1+3bh11796dMhV2PU1t1tq2jc5JUy4A55chQ2oapYo7nx+VA6+LY5WnrnP88TW2nKZjjqnxUcU9bBToev69Xkm+V6/IXYOs4O6nzZpCRdBv3GheSFq92l54bt99W9IOO7Sy7U8WiXO6VtW4g1Rx50J4DdWyLdlF4vzOPwAAgPRH1gpShV0BAKkBAl3joIMOoocfftiqqG6ipqbGEtvcXs0vHLLO+evnnHMO7bzzzlZbNPXDLdP4/xyq/vvvv1t90t944w0rr5zhiu78dy4Mx3AbNi5W9+6771rbve6662jrrbf2dP3TGb1InHJBi4og0J2EKRcGS3VxPLV9FqLhsLnNmtMigd6T/vrrK+nCC2PVpDyvqpp6bBV3+02B7tpvsUVEoEv3nFmxwt/HmyoOd9xx5vf8Dz9k2Vq0LVmSRevWhWjBgixjH3RTPvb++9fQQQfVBBbVqajingrQZg0AAJqXg96mDQQ6AKkCAl3jggsuoJUrV9LQoUOtfHQu5rZkyRL68ccf6cUXX6SjjjrK+vdFF13ke5vTp0+3BPb48eMtYS9/unTpQhMnTqSvv/6ajjjiCEugc+E3dsoZLhrHz1u+fLn174MPPtgqUsdh8jxG3i6Lf78V5ZMNh7YuW5bYvjlM13QzX1QU/TaAQLdXL091BffI/sIx4kuvoO7koOvPY1F95JGxalKKWd1Bj/ZBd34N41RF9swzW1iV5VVwyuLFIRoxosDRQb/88qr6tnGSyZPzaO7cLFqzJkTnnRddRfj1V7tAl2kAOi++WF6/ABFMoHt3QEgHnKq4AwAAaBpAoAPQcCAH3dASjYU5O9pcTb38HwuLQ9C5kNshhxxiiXO9p7kbw4cPt36cGDBggLVPE9wjfT6XqBYMGzbM+kkHjjuukL7+Opu++KKU+vSpS0qIu6JjR+mg44tACj+n3O9kokS2rAmgi0+ncZhEqikPXT4mtyVD3GPbrEWvhS5d6hwXCVRl+ZEjK+myy6po2LBC+vPPLEcHnfd56KE19OqrsaEJixdn0X335dCnn0YPbP786KoRR4DU1oZdF5OiKQPmnuEs+Pv2rbPNiZODzhEUHNUQJFy+4UPc+TG8bwEAoCkK9NaoKQZAyoBAN8D55dzK7MYbb7Tccu4/zo9xazVVSR1EYHHOTJyYS6NHa9W8fBIp7hX7uPzwx7TbhWlEVIYaJMRduqN6WL2TQDeJZun4H3xwNfXurYfLh237UYsyepFBOYbu3cPGxQDJXXflWwLdJM4Z2cXNqZgdLxJ8+KF9Rz//HH3yb79lWT8qvJ/D2fXnqznRi94xt96aT+PG5dEll1TS9ddXuRZMVGPm85IuOegmBz3eEHeORpg3L8uqLSDTHgAAADQe+n0aipEBkDoQ4m6A875LS0spLy/Pqqi+44470hZbbAFx7sJ330Xn5scfs2j5cv/ikV1A081869bIQXcSpnoIeSpQ+1Ah7llZ0bxwhZM4Nj0uv8wffriCbrrJrlTtVdyj+9JFqDz2bt3qPAW6Fy1bRgfmtC2+PvUCOUuWmK9x3saECeXUu3edY9E9HRbnzIMP5vuq4q7GnC4h7iYH3amvvBdvvZVD++/f0op+AAAAkB7oaUt6YVYAQPKAQNd4/fXX6eijj6azzjrL6lUO/ME5usxvv4XooIMKaY89nHs3m8KHH34431WgOzmbzVWgB+99Hc/+wjaRGKQonddzTQsuMv9b5qDrIlS+tls3bwfdC+mg68XtFJWVId/54Tw+dn4HDqw1zolpW0447aPlP28vrxaGjSnQ43XQX3ghMlGzZ2NVDgAA0gW16Hr00dWBv8sAAMGA7NEYO3Ys3XnnnTRp0iSreBv3KAfeqAraHNbLTqNTaK6Jyy83x0m3ahX9HQ66LtBTvz8Vvq7OZRAhbBLo0lE1bcupD7ouQqWI7tGjLuFrQ+WgM07bkq3WvNwDdWw9e+oOenDX20nkqjEns1L68OEFcbveyQ5xTwU876ec0oLGjGmA8BMAAGiiDrr6/jGlawEAkgMEugaHtH/++ec0Y8YMqyc6F4YD/vnkk+B2pmrhpdOqFULcJTKKwK0wWvJz0EOBw+r1dmy68PIW6LLNmruDzrntTs63F1xsTe7XaRFiwwb/DrraxgUXVNGJJ1bRc8+V2eYvSN64uiHabbcao+ufzBz0adNyrar38WCaHz0lIB4OOaSQpkxJTqmUGTOy6f33c2j06Py4FyIAAKC5ou7V1PcPBDoAqQMCXeP++++3Wpd999139Nxzz1EWYqsDsXCh//nyCtNGDrozDeGgq0UAFeLuJYLbt7cXeXMT6Kbz6dRmTb8J4Mc33zyisPbZp8YzpN6tAwDfaMjidU4Cff16/w662h9ve+zYSvrPf2o1ge5fuNbURJ67xRbhlOSg6+f0jz+Cf959+mk2/fxztrXY8fnnpdS2bTihNmvyfHzzTTZdfHFyKsVJUf7XXwjNBACAIKjP9BYtIp/xFRX4HAUgVaCKu0bbtm1pxIgRjT2MjCXIiioLOrdicnYHHeVCJQ3RZk130J1E8DPPlNGsWdmW8Pzvf/N8CXRTD/fYNmtmEcoi+tNPS63H27b1XsBxC81XNxoKfTs77FBL33+fTRs2kG+H2Gl/KqogHgddH6f6dzw56KpFm1roKSlJTLiyM80cc0yN1SaOC/etX5+ddn3QN24M2RYSe/RIswE2cfh6OOmkFlb7zEcfRXUpADINtcgJBx2A1AN7WOPUU0+lr7/+2vfz//e//9Epp5xCzRFTmGiQoiHScTWBNmvOyIJqqa/iTq4C/eCDa+nGG6tsYzI9d+ut6yyRuumm5vhie5G4cL2DrotQvhb4BkGJcz2PXMft2tEXOqSjfP31lTRgQG2MuPPCSaC7VXF3QolcPWJCjTseB12mKujCPx6Brt7zXbvW2eY7mfnxyWDduuixLVqEr76G5quvsunjj3PopZdykWIAQAaiLxhzB550W4gFoKmAuxSNG264gR566CE65JBDaMyYMTRz5kxavXo11dTUWO3XVq5cSf/3f/9nVXg/6KCD6JFHHqFRo0ZRU+DFF3Nohx1a0g8/+LssTB/MQVZU27VDiHtmhLgrB939fElRbnouVzZfuLCEvvzSUFHsn7/LbfnJQVcUFTmPzS1LJVag27epjskU4u6E07UaT4i7k4OuxhWPQJfnSe8zvnRp8K8EFRGgjk/NoRo7L/A8/XQurViRmnDISy4poAMOKPT87JHn8PffG/6rr6F7Bn/ySbaVftDQY+drkjt5XHBBgWP6U7Kct0suyaeddkpuLQYAgBm1sCa/N+CiA5AaEOKu0adPH3r22WctF33KlCl0ySWX0AYtvrVdu3a011570R133EEDBw6kpsJFF0U+dS+7rIA++sihAbNAd8j4Ji5IX0w3B33kyEpbiDtKATSeg65aaHkViZN/d3LbdUHop82afvNtuhbcBLq7g+4c4s4h9kpsmoqgOZHMEHf1HtPnU22LHYz4Fl5CxrkxVav3QuUhqkUjtU0l0O+4I58mTMijiRNracYM78+VeNuyffZZdn2+v4m1a6PHVl5ODQrPK4vWY46pplGjqlxvgJPxWcdpC8cdF4lD/f33jbZWgkG5+OICK4Xl449LfW3n22+zrbQQ/nnkkYr64/ntN7tAd/ss8Mvzz+fVL0a4nXsnfvopi77+OptOPbUa3zEA+FyokwvG/F5O5PMFAGAGAt2BXXfd1fphli5dSmvXrqVQKERFRUXUtWvXxh5eWqA76HzTq9qt+UH1cjZx/PHVtgUAOOiNl4OuOg163VDbHfTg+3Ou4u59TbkJdDcH0M1B59+VEDbloDvhVExPD0vnMfF7yC1HXr3H5HN44UrNry72+T3j1Q5Pnhs91DhIKL/uoKjFDlU7QBW4e/PNyIDmz0/tm9itavyHH2bT449HV5DiWdhIhHHj8uivv7LooYfyHQX6Bx9k0/nnt6CHH66gQw5JLD9AFm/iBTa3FBA3+BqdMiVywXz+uT8RLPfFnx3t20d+X7QopKVFJG+RUV1rQdl//8iXUIcOYRoyJM1yMgBIM9T3ES+g8/ccv+8inzWoEQRAssGasQ969OhB/fv3p+23375ZiHNVIVp9ID/ySC59+22Wp4Ouion54YMP3EOmWURIIQGB7nyOUh3iHm2t4r5P2frNKxzehFMfdD8hdJtsEnYNbT79dHNOgN6uTl5nEYEe3EF3ulbVtlTO9plnFtDOO7e0FWlzEp2ySCJXSTfls48enUdbbtmKFi4M+Y500N/DiQn0yP/VAoES/0GdSVMBQSfk+N3CsEeOtJ//hg6J9pOKcPLJhdb8n356cqrWKxKpBfD339Hf27QJfv7WrIn+Y/Xq6IUQJNLKD4nmtKMmAQDeyM909Xmf7PcyACACvpVADDJcid2TW28toMGDW3q6FqqYmB8OOsg9ZJqFkxToQW7amzIXX1xJPXrU0QUXJNhfywe6C55qB10PcXfKQQ8q0Jl33831lcsv3W/evxKbQRw65yJx9qr0b7+dS8uXZ9GHH+Z4iisp+tu0kQ56dFxjxuRb9QLuvNM9vEK+l5Yts38FbNwYPFc6GuKuHHTnsScbeXPoNu5Onex/TLQ9XVAaupCS3F8iN9B8fQbtpCEXP9asyTKmFQQpJpoqgS4X/rwicAAA0QVjFujq8z7Z72UAQAQIdBCDdErnzs3yfdOpcpX94ibiWORIdxOVQiNweOy335Y2yA2lvoCiFypze34yQtzV/lat8v6YKiqqS8oxSjHJUQDxHIfXvvSIALeQdCU85HO4eKJ6b5jc0UTCt/kGLMhCm8lB1wW6dNCTXShN3hy6ibS+fWsb1UFv6M8veV2oIo/xIAv7uaUQOF1/0kGX5yrZhaXiEejy2GS9EwCAGfX5zYt16vMeReIASA0Q6CDmxlnmhjvdyL79do4VUpuIQHd30O2iBG15Gj6aQA9T93LQpfucDAd94MCIqlm82I9Aj+8GWy8Sp+egO+WTu+HkzqoFCHac5fvNzWE2iVwONVbjNL0/vcSnFIt33x1rrwZ9Hyvh5RTiLq9XP7n8QUS8dIfdjluvjZFoDjqnJdxwQ74x9ScdBLq8BhMpiCcddLXN99/Ptj77nc6T3Pcff4Tqb+DljXwywmLld0I8Cz+mYwMAeH+OyRD3RBYAAQDOQKD7YMGCBfThhx9SWVkZLVmyhMIN3S+nASgrMzvoTi2hzjijBU2ebFfYQZ03tzxlFi1SwEOgNzyy0BSjQtqckEIs0Rx0Fvj771+TlI4AbugLCfYq7sEXGg4+uJo228w8lmhIoF0QuIUOm4rEcYi7W091L7Gh3ksffVRKZ5wR++Qg+fZSeMWGuIdiPhfiqRLvZ9+m61WixPtOO9UmxUG/9958q+icKfXHREN/ftlD3OOf87/+CsUsFp1ySqGVTvHuu+bQD3n93XRTAe25Z8sYUZ6MsFh5jPEsgCxfHmq0ooEAZCLqc4w/47fYIvKP2bMhIwBIBXhnubB+/Xo6/fTT6YgjjrDara1Zs8ZqrXbYYYfRsmXLKNPhG64//wzFFIeSwjjIjWxQ580ttJfFnhRLTXBNJO056KCaQA66XaAH3590iVm09u4dDeX2ol077+cccECN5zUY66B7b3fo0GqaNKmcfvihhJ55psIxwiHqoNuFpXsV99h2aBzirsSwyb3wK9CdxunH5Z42LYeuuy7fEkbqWNTnhlpw4L/x+3bduuiOiosT+8rhlJtLL82vD08uL/fXOk2NURVXTKRwGvPzz8GOw294uOKVVxJrsCJrJiTioMsQdX3OpMB1u/6WLMmKWShIRlisFOWJhrjDQQfA/3uOvzv22y/ygfDpp2gGBUAqgEB34fbbb6cWLVrQzJkzKf+feJ4777yTunTpYv0t07ngggLaZZdWVgsi6Zo99lieFcboJNCdboaCCnSnGzwTyEFveDjVQYZAe+WgS+IR6FydXO6bbwLYLQ76WsWpp0Yv3uHDq+jSS2MvZr3CuAxpl1Xc3WCxPHhwDXXu7D5WJapZqEix4payoEQRj6tdu8jrDzuspj6kv7jYJNBDvsMUTfip5D58eAt64ok8eucdGeIeWySOxb4Up1KsO+E2H//+d0ur9/UllxTECD0p1nVUJJAS6E6RQX4JWvgu6OcXt1uLF74mzj23ICkOuvz81wslOl0/TnMrHfRExhQdT2ICXS5uJbpgA0Bzc9D33DPyofbDD5ARAKQCvLNcmDFjBl1++eXURvSX6dChA40cOZK+/vprynSmTYuoDw7VVL2uFRzG6HSzJcPhJSqUlR2+ZLe2gUBvHOS5lNX9U+Ggs0P/+eelNGNGaX1+mxKlQQQ6h8a/9FIZ3XlnpW1xwRRKrosMe4g7F4kLJ1RLwRSBwI6mFCsmcbF4cchqcaWuex4Xz80bb5TRv/5VW1+VfNWq2PenV9RLtNBPfAJduo38WaCORUUIqIgAHvvff+u53xQX+vv/11+zYkKl2RH9/Xfz2JWQb9UqsXE0lEBPhFGj8mnevGzPz2s/yMUeXcQ6LaSYxC4/JgV+Mhx0+b6JR6DL1zR00UAAMr3Nmlo8d1sYBQDEDwS6B5WGO4m1a9dSjp/Y1wyB23Y53ZTLGxf14ezU71w97legn3ii/S45K8v5dchBbxxkdeMgDnq8hez69q2jfv2iJ7ttW3+vU4JeiSEWsVI4szg2vWX1InDyObzI4Odt7legK4eZ+8rLiJXvvrOrPRaZu+/einbdtZVNoLMo3333WltbOVNOt3eIe7RVTjwCXS4K8NqlXiROiVceu37zFq8w049J7UOGb7OjP3BgK1q2zHnRQl3PiQp0+VnlJ/2mIT6/eBxz5mTFOFp8Djg1IGiNEH2e/Ap0k9jVi8IlP8Q9lNDrg7RRBKC5IgW6WpBFFXcAUgMEuguca84551wkLhQKWUXiONz9hhtuoEMOOYQyGemYd+0aNoan83PkDZq68XK60ePKxm4CXS8ydtxxNbTLLrW+XKl4bsBA4rRu7dwzvCGqy5tC170wLSDx4oJJbOvXnJ6D7icSwG+evJy/9eujY7zvPnvf8hkzcuqfYyoSxygHfe3arBix6RW+HQ1xD8eVgy5TU/gzIdpmLbZInO7e+hHGJjGri0O1uGAqNjZnTuwHiZoTJdDjCXF/550cOuWUFlbdDrm44cehjsdBD7qI8NxzufSf/7SkBQvsxz9lSq6VGjB0qEcIjIfY1sfjtMBjErv6ezI5Ie6yBVzw18uFFeSgA+CNug/jz3h1P8cpTHj/AJB8INBduPrqq2mHHXagoUOHWuL8yCOPpLPPPpv22GMP62+ZzB9/RE89ixCT6/Hnn1m2G1n1HKe2GkrkS1Hn5jSyoNtrrxrPGz4GDnrjIBdbvBz0dBHoJsHUrZtZoLuHuNuF8TnnVCXooPMchWMEuhtKgOrj5Kr1KmRfz0P3WyTO6f3m1TZHtqdiZzQ2xD1cvx/dQfcjjP1UplfnydSuS2+dl4wQdy4Kd/rpLej993No331b2sSdn6r38QjIoMXdnnrKvJo0e3a27f9BkAsjquhfPA66vqib7BD3eASCPCcQGAAEKxIno9bgogOQfJpOnHYKmDt3Ll122WV06aWXWu3VamtrqWfPntRSNgrPUJYutfeANd2gcPXd2NY4YccQ96hAN4uq7bevpS++yHGsDO7uoDv/DTRUiLv7czt2TH6pfb9F4iTy+nzooXIrhJwLq5n6qcc66HqROFm4LpyQQOebGhaxLLz0mg9O17oqqqaH4rO45jB3zrvmH46C8ZtP6yXQvYShdNBvvjnqqihhrLbL4k7f1tVXF1DXrnU0aJBdsbLwu/zyfOv/JjEbyYWOHqNanDDdGJrOhx7iHiTnmBd8/vWvlrYFjGXLopPHiy1y/oN+fn35JdHFF8e627y4EeT6d1vgjIe7786j997LtZ0DeW6C5KDr3xnJaLMm9xNPkbdEBT4AzbdIXNgm0PmzSt4rAAASBw66CxdeeCH99ttvVFBQQH369KGtttqqSYhz3WXkmxOTs8W5sPLGym+Iu5OQGTeugk44odrqv2xyZd1uMFEkrnFQjqOfPuic933++VX08MMJ9HXS8FskTiKvz+OPr6F77qm0hLifInH2EHe76+701vcb4i5dZr14mul9JNtcmRavlCh84IG8QFXcvQW6++tXroz+/ZdfYoWxmrOIQI/dlipAqYv+yZPzrArta9fGvkYXYNEc9NjnmtISlCBU5zCIIDOl/8gCl36iIdzarP3730TffJPt+Bn9v/9l04IFWUkvXOfF/ffnx5wDOW9OKRJmB10PcU98fPI7IZ6UBXlOEq3qD0BzQH538I9alIWDDkDygUB3gUU5u+hNEZm/xzcnppuqH3/MtokF9SHs5KC/+26ua64yC4oHH6ygHXaoM7qy7v2gnf8GUodcFfcqhsWO2i23VFq1BZKFaKDgG6fr008Ouh7iLsWek0MgnQQv1CKHm0CXf1PizyS+zjor8qb96CP7gaXaQXcKgVfzoOaZ9+O3grgsdmcS3a+8kkv77ltoyEGP3ZbJTY110P0LMpP7La8xP33j3T6/nOaI52HhwhAdeWQh7bVXy5Q46G+9xSH7hTRvnveLeV79OejenT+8buh5wWa//Qpp0qRcn0XeKDDyvKLNGgDB2qzJz3wIdACSD0LcXWjbti3ddNNN9NBDD1GPHj0oT4udfOaZZyhTkU5IxEGPfc6332bb+harEHevm24vp9XpuRGH03zX56dSMkg+cgGlMW5igzjoo0ZV0u2359PYsWZ7LmiROBbnUqA7RYYEaSmnbmj8CnTTuBQHHVRTL4jkufGbg+7kuHrloDvdjKnt2UPcnXtiy4U86cqbInRuuy3fuC9TqLSbQFfn0O1a/uOPkPXZd+SRNdaxeF33/hx0CgwvlMyf798WN0WIeHHmmZE3OOfXz5rlXuZdd9Cd8Oegu88Zv4+5VdxVV2XTaadV+3DQKTAIcQcgGNECo9H7N67BEfmcx00aAMkEAt2Frbfe2vppiug39Kaw2N9+s7sq0RB395srk6PIRa1MyN7abkXG4KA3DvKcqMrhDUmQInEXX1xFp51W5diazSRI9TDd2CJxMgfdvF1TUTInVEqHm0A3hXibxu5UpIfd4U8+ybYWDgYOrKXJkyMrCCedVG2Foes3WUEddK/84WiIO9+4meeGP1u23jqqkP76KzoYr88XOR9Tp8Z+hXHNAQ5LP/zwmpgxq5QNvqGcPTvLKnjXuXMd7bxzdCzc3o6pri63okG8BLrXgoZXDjqPSUYqye0GEZ6J5KD//rv9xaZj5oWIPfeMvgkmTMiju+/Op4MPrqG77qr0yEG3/9vLcdu4MViIeuJF4lIb4s4LzKkooglAQ6JHX6HVGgCpAwLdhREjRlBTxS7QQ1RZ6S0yvELcFaYQ9w4dzNuXOegoEpeeTJ5cZhVY22mnhj8JQau4u/VN9+OgS8Gut1lj9/Wiiyrp4Yfz4yoSJ98bbq6rXpXdNE7GrYruccdFVr4ef7ycrrkmstOiorBVLI/7sDNOgsErB93rZkw5uaYq7lIQSoHOhe6CCF6+QZw5k3OzYyeGRSPz9tultOuudUYHnRk0KCo2V62KVYSzZmX7Euh+IkvcFhi564VJoPNCiR6K/8svWfT119nWYotb/YREMZ1jbuO2Zk10p3PnRuZ+4sQ8m0A3pQ/o3xmqtoIT6hoN8h2Wrg76BRcUWF0A3n+/LNBnBQDpL9DDSWubCACwA4HuwsiRI13/ftddd1HTyEH3G7oYci0SpzBVHu7Y0Szu/Oeg4wugsTjoIFYXjRPCIAU6i+cPP/SZ1GxAr4TutSgUKRIXskV73HBDFV19dRVtv32rehc8mED3dtDNAt08dh4jv5dfeskcZ8+dGBS8TylqnI49Hgd9552j14csEueUDqMLQNm6zQ88H8uWuX8mcOE1FujsXioBF6TSsFpMkZ+VnTrV0apV3m5zEIEuCzFKeHFDd9C5xVtkbGE69tialFVxNzn3fhZO5Hzss08NzZiRYxTo77yTS0uXVlKPHuG4F2Tlc+IJcU80h90vL78ceW9+/nk2HXAAQsFA5qI6dqjPGuSgA5A6UCQuADU1NVZV93feeYc6dOhAmYwU5Hxz4qdoklcfdIWpzZqTgy4rYHMBORZkt98em0OM8MDmiVzsufRSFsbxu/i6IO3cmQutOa9M6UXilPvKNyVS7MdTxd2tzZrJXXRavFI3SDfcUOAZLv/II3nUp0+rmGiBMWMqrPfs5ZdX+nLQTRW4n366PGaeWQA5bUsXRLJ1mx/0c+M2j1K8OYlhU40LlbqgPiuLiuqsOgc6fhY35QKjvi+n1AleKJE3vlKQqp7mXNxt4sRca67jEehObdxM3wd+XWY135xeoRZE1ELN3nvXUGFh5LGvvnJeHfNTcyTRPuZyH7rAT4Wj3lhRYMivB8lCvefUgrH6/oGDDkDygYMeh0M+YcIE+vXXXymTkTfIfHPix4FQzplXkTi+KZs+vdS6ibzyymh4rQkpPHbcsZbmzy+x3WjedVcF3X9/Ht17bxL68oCMI542a07Ia23QoBp6550cWrs2bLtRl6G1/HwpxKX7KreVbAfd9Dcnt5u355ZyIos86jUl1Pvs5JOr6cQTq62Q8TFj/DjosY/JfvFKOPNnivqcYSHIxYScBLoMcfcDz4dXqy61OGEX6M6twfTaGeq8qptS/rupvoaf6B4pzvR8ZKdFg0gOuvOc8ZiPO64FrVyZRUuXZsXVZo0/l9V54fPq5oj5rXyvxsnzp8akrlG+Dvbeu5Y++CDH9abej5hNNMRdnrdIvYRIRBcvHBx7bAsaObKSzj+/Om0E+jffZNEXX+TQhRdW+U5n+OmnLBo0qJAuuqiKrrkmjjADAFxC3FWKYjLaJgIA7MBBj4ODDz6YPvzwQ8pk9JubINV5vVZLOaeSnc5TT41udP/9zaF9etVs3QVih/Onn0ppm22QhN4ckW3W/BQPc8N+rYU9HUd+vhQ90umMX6B756CrMEKJk/jyavG2bp3z3+Q2eS7UzZZ3Dnrs3+UcqAgaFn4q2kZfaNFbcckicX7g8SrByIstbqkCcrxO82W6wVSfieqzks+56Vz7c9DNv+uFMt0cdPmZzY9vt10rS5wzjz6aF5dAlzn5MnIjnpDx6GtD4v0Ttp0Lfg9F81bNr+eogI8/zmnQInG8YLD55q1o8eIQ3XxzvvUdd9NNDv1CAyAX/xIV6Icc0pLuuCO/vuijH268Md86H3pPewCSIdAR4g5A6oCDHpCysjKaOnUqtW/fnjIZeYMcabPmLX7Uh7DXaqkMm/zii1KaOzfLKk5lQt4wO4WsIry9+SKFsJ/Kzm5IAeOnNRo/X4oiKWbktuIJcQ/q+HmFuDshi3p5va9UPQiv97fpZkyOT4lxXoRQjrUeSs2Fzv78M0RXXlllff5Id90PPP9qHE7zrzvobosyLMg4vUYKUy4GyPtRecN8jKaK/fIaefXVHKun+/Dh1bb5lWJQF2pOwk3PQZf7+fHH7JhIi3gEoBS28rx6VerX4X2ruVXb5POi3if8HcBstVWdVeiOcYrU2G8/757vyQhx1+eLo2fGj89zTMeKB7kP08JbPMyf738xC91PQEMUifNa1AUABAcC3YWtttqKQgZ1mJ+fT7fddhs1rTZr3q9RIt7bQY/e4PTpU2f9ONG3bx0deGCNdVMUjwMEmg/cOisR5FvZj0Dn58ubdaeChl4iWbLppvHZaE49rtUNUjwOui5WlYPu3Qc99u9yPlVhPxaQ6j2tO+gvvBB5QefOYdpvv+AVuqRAd5p/tTgRFfLO21PP0dN3xo7Np333jTzI6Q6mbajPUnZLzzuvRf21wyLdj0B3+uzVq7jL302Llm5pE37OZWTRNhyXg87HoM6DOh4ZgaKq7ffvX0u//x4b2RAPyRboii5d6owLD4l+z/rJq/dDkO2ksvgdaH6o94x6X8NBByB1QKC78Mwzz9j+zWI9NzeXttxyS2rllDiYIcgbGr7xc2uzxs5TpBVb5N9eOaqmInFO8I3mCy94bBCAJAh0p5xpyWab2e/aOVDmzTfLrMJW8kbdlHPtBy6c5RfufKBEZvwh7s5zpm9TLUDw+9utb7N+M8bF5uS2lEBnB10VBHMqRrZwYRb165cVl4v40UeRcAR2tf/znxorTNnsoIc8+9VHxGLY6AR5hbjza5cuDVGnTmHbAoQU6FIMsoP87LO5dNllVbTppvzZah4Tj0X+zdSKze+5dkJu3+6mhxIW6DIHXcEC/cMPc5KStyoFut/8eC+Bztf8JpuEbbURunWLX1lLgZysInFBBDq6n4Bkot5zaLMGQOpBDroLr732Gm2zzTY0cOBA62fXXXelAQMGUG1tLV188cXUtBx05w9YdcPtNwc9w9cuQJriJVCC4CSqu3QJ0zvvlNLnn0d7Ce62W21M9XgpPNyEn85OO9U6uuESvvGRgs9JoHuF18sq7jq6M6jENIf6ujkiurDS57JdO6oX6ErwOvWnZwEUtIK73j6OheFjj5VT+/b2uVCfV+r/bg66OiZTAUwp0E0RC489lkc77dSKpk3LcRRRUkwOHlxIzz2XR6edFlkRcRLofA5kNMPGjc6V4J2iJbyuNacQ+ngc9OjvofpFLHndcroDL3gFval3CtNOtE2aabt83L//Hr22/vwzsVskt8iJeIGDDtInxD3yfzjoACQfOOgas2fPpj/++MP6fdq0abTtttvGuOWLFy+mzz//nJpWDrp7oa7i4qir4uV8BHHQAfCLEn7JwK0K8i67eN9Jx1skjotksUPnVbWcxbIsHhZvDrqsSu8l0NXNlnLR5b8luruqj00t6G3YEI22cXLQFy3Kisv5lfD880f0oYdWW8JXFzLBQtyDO+iKe+7Jd5xb6WSqXGTOI3cT6OwKywUDmadv+gxeuzZWTPI15Fa7QTrPPI45c7KsgnO77x4seTkiyu1t6XjhRgp09b2grlmvSKzoGO3pJWYHPdBwY16veP55+wleuTJ5YfgQ6CCT4etOfZ/oReI4omn48AKrw8AOO6CgLwDJAAJdo0WLFvTwww9TOMztl8JWS7UscbfFYe6FhYV05ZVXBtruypUr6Y477qCZM2daOeyHHHIIXX755dbvM2bMoHvvvZd+//132nzzzemKK66gf/3rX47b2mWXXWijdtf13XffUUunhro+QhvdbnC6d6+jxYuzrOJHfgS66WYKgHh54YUyq3jTnXcmr5dLkLB0P90HguBUtVt/jnK03dusUdzoIewRAcqF0iLOt+5IK3S3RBetSqDzzdzq1Vmu7c34c8Upd3q33Wos13jePPfiFCqCwWkRQ4lQt2iDaAtJk0BXVcnDrtESUpSzMONq5FxzgBcP3Ip1OYko/lyW45EC3W9RJr6GpPOuIz/3WWSzu8+8/npuQhFZUYEejhHoUdctlJBAl4vMelcAP/gRzH4XEZyQ40pWwbZgIe7J2ScA8v2i3tcqGubttyOfF9Om5dKqVQlWcwUAWECgGwrDTZ8+3fr9lFNOoUceeYTaOsVn+oSFPofEt2nThiZPnkzr16+n6667zhL+xx9/PI0YMYIuu+wyOvDAA+mjjz6iCy+8kN577z3q0aOHUeizOOfnFYi7c140iPeGigv4LFjg/NwttqijGTO4FVLI180hqq6DZHLggbV04IHJrVMg+5snSpAQd70avJuwkqLEOQc9vuPgvHHT+5T3yYLISZiwONDzffW5ZFeFC87x54QS304OOm/L5FJOn15qpRWcdlqBD4GuxhE7VpOD/sADFXT99fk28etUJC6Igy4F+s8/Z1vVyPmz86uvSl2FknuIe/TfHJEQNN3D62vBLtApaTVNlECX50QFogXtnazqAyTbQfdTVT3R3NpEw/BNwEEHjYG8ltVnndPCKwAgcZCD7sKzzz5rFOdVVVX0/fff+94Oh8TPmTOH7rrrLurTp4/lgLNgf+utt2jFihU0bNgwOv3006lnz550xhlnWGJ77ty5xm0tWrSINtlkE+u5/H/1Y6o274bXzZh073r1iiydLl+eZbyxOvXUKpo4sdxYrRmAdCRIWLoJLgqmCLg25lOg2x1fp1ziIBXkJU6Vqb0quZtyDU1zqVx0RevWzmNRvbwlW29d5zsaR+3f2UG3z9VJJ1XTlCnlRiGWSIg7L3ro/PZblqdQcg9xDxmLJLq54k6f4yZHTE91ihf5WnWsels7dTOv1pX9il+ncUlHL5lV3CWJ5tba8/obduWag+wWLkRrFJAc5PtFva85/REAkBrgoHvko9988820cOFCqtO+zbOzs+nHH3/0tR0W0BwqX1RUZHu8pKSEdtttN+uHqa6utvLeeQGgf//+xm3xWLbYYgtKFK/qrnxjp24OlUB3ctD5xvfww2to1qySpPaQBSBVJBriLkVlULHvJxOFHXMpvp3Ep1ebteACPfJ/JwfdJFhMc8nh8StW+KtLoVdfl8fr5/NERRHolfmV02gKcdcXSfw66H5D3HXcBKSbg75mjTnE3S08/Omny+n001t4Lh7p+03EbZU56NG+8/bIDyXQ1Rz6d9DNj8vxJqtIXLIddFPof0M56CecgFwzvna++CKb9tijFql3KXDQnSKjAACJA4HuAvc67969u5Vvfskll9A999xjhZhz2PsNN9zgezsc2r7PPvvU/5vF/nPPPUe77757/WNcmG7w4MFWhXjOQTeFtysHvby83Aq//+2332jrrbe2wuWDinavGxr5ZbbllpEPYQ5Fve22PCotjS0SxQb+Flv4+7BWZj9C4eMHc5gYPXvWJTR/agHr4IOrA2/D5KAff3w1HXBADQ0fHnnjceG0fv3CMe+xZEUCsHAybU85rixMTH83CUMOcdefy62pfv45drt+UdsrKvJT8T7yfH2hQLWKkw662q5JoPPfTIIsmoPuHrHg1AmDt+v+N/P22CWXFe79hrX361frOO/yPMUK9Pg/TPj7RG1bLeDyHMuFJY6i4Oeo7xYW6H7eOzyuUCj2OpBr5pHnJF/o+h2jE7rLn6zPaz/bmTUrx9drmvJ3yahR+TRpUh4NHVpNjz+evBomzWX+vL4/9EipeOehOc5hskl0DjH36QcEugsLFiywirf17t3bqubOPdBPOukk6tixIz3xxBNWobd44G3OmzePXn755frHOnToYP2bXfvRo0fTZpttRoMGDTKGy3MOOxeY4+ryPA4Oj3/77bcD9WYPhdxPfV5e1A7aYYeW1s0v32Q+/HDsHWrr1nlUVBRcKXTs6BL3CnyBOQzGq68SffYZ0bnntkho/t57j2jSJKL77suldu2C2fEdOsQ+9swzudbny/DhkX+vX59FbdtG31OdO7c2ikNuWxUPWVkhKiqKPXYVip6bW0hawI+jSMzJyY7Z1tZbcx559N+dOnnnAfBigxLTanubbeb5MurYsYCKigpiWrlxkTrejpq3Vq1y6reri9Pc3BbW8f7yS+z2W7SIxGS3bJlD3bs7Xy8bNpgtdL7GTM68+puTQF+0KNsmIquq/OUzdO4c/R5o1y6HLr2UaOzYyEKG6ZzLAqnx0qpVy/rrRTne3bq1tF2znTrlUlFRLnXuHPl3TU30fLiJ5sLC6Lbtj8t/ZbkeW9CIB0UolE9FRZGD+OorotWrI9fokCHunSAUq1ZFf8/NjVyniZKfH9/3bfv2rR1rWTTV7xL+jGZefTWXXnklwbApa9Ejco3+E/TY5OdPIhdA1ffRppvGPi/o+7A5zWFDgDlsOkCgu8A3LBzKzvTq1Yvmz59vVVfn8HN2r+MV55MmTaIHHniA+vbtW/9469atrZ7r/MMuOTvsJoE+ceJEKxReVWy/7777rDF98skndPjhh/seR1lZjcfp56X/yB1MaelG6tq1pWNP2C5dKqi4uDrQSh1/iKxZszFQwRsQBXMYHxzIwj9//53Y/LEAHT064hxyC8IgZGXxDb/9Bvvvvzf+s4Id+XJduzZMdXXV9c/jv5turuvq+O/BE9HZkSwujlXbLFT5c2HlynIqLo4Ns4nUoWhpS4GprKyj4uJo33imSxe+m4uKkTJLobqL9Nat62jNmshnTHFxpBJwfj5/RrkLx6qqyFgrK+1zUVsbOcY1ayJjCYWqqbi4QojI6I0MP/7rr9U0YQKLW7uVsG4dv6aAamur//ndfAPE50x/LfPXXxupttb8Gr7+qqvNf5NF4ZhVq/h68BYZnDpFFBHpFRU1dPrpFTR2bKv6+VBE3PmomF+7lvMa4hPpq1eXUXFxxLkvLY3MYUVFCdXVFdR/z2RnV1JxcRVVVfGFXEglJbVUXGxfuYiEvdvnY9WqUioujk0YX7cueo1VVcVeg15UVESudTfWrq2i4uJKa2Fq992j47rttgo67zzv77xIF4PId/X69ZHjj5/I/svLI2Py+3zFsmUbjSkPTfu7RL7HE6suzh9hu+0W2d4ff0TnsmnPX5R16+T300ZLsNfVRa/vROa5ucxhKkl0DtXrQfqAInEucAj6/fffb4W177jjjvTOO+/Q33//TR9//LEVth5PyPxTTz1liXQlvtml/+abb2zPY8d+XeTTMIa8vDxbOzVu08bh8DzGIHiFM+qVmbt2jb1B4hDGPfaoscJzIz0y/f8wQV+DH8xhU5g/p/x3NabI7yFbvjN/eQbZlhcs9k3bUyYq34ya/q5y02X1XnYU9edtvrn986JzZ++KXDIASG2nY8fofg48sMbReefn6p9ZXGeDQ4xlFXe1Xb09HYfuc1qBqW+8SgdScxa05/yAAc5FB3h7fnOT/RaGk9cEb185xRwBdeyxLaw54cf13O5EcqTXriX6739zaerUnPpoAZ5jvYo771fVAuB0Av26MeWl87kxXYt6hfSg70M/ReJ4PPxcmf/PvPtujq992IvExf+Z8d570dW5yZO5T31LK+XM6/NN4rb/xvosTPWPLNyY6LZUm1mGr4fmMH/yR9Yt4s8UfsyUgx7v9pvDHKb6J9E5BOkFBLoL119/vRVO/sEHH9Chhx5qhZCzaOdq7NwKLQictz5lyhQaM2aMtS0FO9+jRo2yWrEpfvrpJ8ux1+Hn/Pvf/6ZXOU5XOFOcv256fiI56Hr4Xvfuse/en34qoVdfLfcV6gcA8A6tHTeu3KrYzv+X+eVO+WGmFmWJjEEVneM8YtMXtgpBlwLXJOw22yz6Yl5o6NUrTKNHV9COOzpX5jIVkpMC/frrK2nnnWtdisTFbpNFnMqbl/OpRyOwEHMqCBatSk5xUVzsfMKfeirXd69tXkDwgyyGx+dQnutPP82hxYtDxvOWSJXxJ57Io+uvL6ALL2xRv/jLHQFMReKiVdxjt2M6B04t1OR3WDz9vr0Kpcrx6O8/nteTTmpBQ4e2cL2xTbQVHLNwYYhOOcVufS9alEVjxgQLc2/oKvJNoRioxKlgY3NBXsvq/eBW/BMAkBgQ6C4sWbLEyvHmgmycH8pt1958803LQT/22GN9b4dD1seNG0fnnHMO7bzzzrR69er6nyFDhlj/51D133//3eqT/sYbb9C5555rvZYruvPfuXgct1Lbb7/96OGHH6avvvrKct+vvvpq6tKlixXmHgQvt0S/IenaNfaDmEO83HLaAACxOLVMY445poYWLy6x/u+nABxHr3hVclet07xagkWeG/n/yJEFtO++hTG506rYmbzxNS32yerragHvzDOrrWJNTph66srtcFj9dddVBmqzxrn9M2dmxwhXHXaTnauFqyJxyb8Zvfpq/znJxcV+BXr0dxaP+md0NDXBvj2/CwUm5s3LMl5LcnFA3cxH+6DHHo/pHDgJW71InNPfnPDroJu+D3kB68MPc+jzz3NsLRfdq7gHF3Xr1xNdd11BXC3g9AJe+jzyuDnqwW/xwUwkmeaBfP/p6SfNAbUQxd8d6v3A7/FkfS76eT8C0JyAQHeBXXKZa84CmfuYd1ZVbnwyffp0S2CPHz+e9t57b9sPi2vOK//666/piCOOsAT6gw8+aBWlY7hoHD9v+fLl1r+vuuoqKzyeK73zIkFNTQ3997//rc+V90vQtjTduuHTE4Bk4FUtVYlkt5Zeil12qaPffisxinDZ8ixoH3Rm/vxsK5TXtLAnW5qZnDkZ+ig/a5xumDliQA8718fOmT2m16tCZKa/XXttgSWk5PNMsFh1al0m26w1JtLBCxLiri8IKYGuL9L+/XfIOP+jRnnnO6vaAbLGAc+3nDOVmeXmoKtzwNePipZwcn6lQJXX2Ntv59CWW7aiDz7IToJADxmfK91Edwc9lJCDftllBVbUg4m6OvfrQW9RqO9/0KBCGjWqgG65JXgNi0wh3i4XXgLdb7pJU0Jd8/K7w6mSe1AWLOAij0QPPpjEEwZAhoPgZBdYjM+dO5e22mqrhLYzfPhw68eJAQMG0NSpU41/4x7pXJxO5pxfe+211k8iKMeBXaVtt62jK6+stHKsLr00og5MbZMAAInjp3p0kJtLp5Zp8kb9r7/8jUEv5L1smf2JStRJ4WWKxpFiWApfJ5F79NE11L9/HR1xRBZddFGV7dimTCmjkpIQde4cpt9/J0f0PuhB5pPdY69+26kW6D/8UELbb+/ciYPnwAueA3luWViawvkZfUHCFLZ70UWVtPvufGceTMTxdcTXpNy3WvxR1wbvn6+d+fOzrEWU886rqh8bP1c93yRsly0L0a23FhgF8xlnRC7ik08upFWrYgtW8XnmayGIg66H0MsxKYFuuk4S7dX+zjvOF53X+PXImshCR1grYBdJe0hUuD75ZC4dfngNbb11ei3kRz4TkiOm1Xw1V4Gurjf984Q7f6xZE3x7P/+cRe+/n0PnnltF112XbxWhu/32fLr44kQKKQLQdIBAd6Ft27Z000030UMPPWQVYuMCbZJnnnmGMhV1s/D662W00051//QAJqslD7PrrrX0ww/RT2K9H/H55+NDFIBUCnQ3x1dHCvRbbqmgm24qSNhBZ2Qfbqd87CDFxZxELo+/b986mjevNGax4YADal3TA/wKaD0i4ZNPSunMM1vQb79lWeHHjS3Q9d7sycq51eeztNS/g85Cm89LUNR1JFMp1OKPvMZ2260lLV2aVb9I8p//1NRf++rr1rRwMHas/bvYr/iNVGNvSdtsU+crb1056LECPTom9bfDDy+0Frk/+6y0PlrAXiQuuKhzc8m9BLr+dycH3y31ww/PPZdL992Xb/38+GMJdeqUPov58paNz1MiKXn2EPfmJ9BNDnoieej/+lfkTcJpVAhvByAWhLi7sPXWW1th7scff7wVZj5w4EDbTyYTDVWN3sDJG9Cjj66mhx4qp//9ryQmZJUrNN9yi582LwAAHV78UvTtW0uXXFKZsGCTIuz886vrhY4p1JVxulHV2zD99Zf9RlTl0crPCq9QW4lXvqJX+L9JJKvXeBWE0v/OkUOnnVZV/3noFOKuhFWqBXqQBRkvQcL5+sx++9XEnOuNG82CzSQ6eDtxNCypF+NyzpSjK1MZlDhnuFaAOgf8XCUIrrqqIGas+mICn6OHHsrzrET8xRfZtGpVluUaq+2PHOn8Xaby8nWBrueW836//TbbakX65ps59dfUHXfkey5k8Wu54Nv06cHUo5eo0fPynfafaBj4ihXR/fz0U5a1SHHzzflWcbvGRr7nTzghvhaCiuaeg66uN/0zOtGFxW++yY4rugSApg4cdBdGjBhBTRWTKyRv5HiV9Pjjo5+aMs/ILd8VAODOgQfW0oQJ5bTNNrW05ZbO76VDDqmx8nB32cXb6tNvmqQQNrXC8eugs+DwykEPQqIiVxebnTrV0W671fratkmIqBt4/jw05UQz6nF9cYHdfD+VwP3AOdt+52bTTetizovuhn7xRSl9+WU2HXlkTYyQU6HysaI3dnt6XYCePessQXvBBe5iR11H8nzJWgE8l7qA5H+rKAZ+Lh+ngkWf7CSyfn3svHN4bJ8+db5b+a1dG9kGv7+c0gvUgoF+nuXc8XtCCvgZM3Ks704uUPj999EJ0Of7rbdyLEHLnQ1Gj45Mjikk3wmvxQhd9Dg5+IkKdLlYwuePw5Vffz2XJk7MpSVLGrcCnfycSjSUXx4nQtzN76l4iLRwS2wbADRF4KB7wBXVhw4dSrvssotV1f2OO+6wirJlOuqGQ94Uypt8/UvbdJMPAAgOv8+GDKlxFedKpLz7bhnddpt3tIouuE3FufQx+MlB5/BvvoF67bUcuuOOPGMOekO2PdKP8513yurHEjTEXb7GzUHnit2mG9NkOuoyksmLLbZwFqHqc5vFLHcC4DHGOuiRHbGTLNH/LYX21KllVrTHo4/aVzH22SeqAvv0qY25juS+ZU60KVqABYAKKeeFgZEjq2IK23mFGF9yiXtVfLlYsXJlVv01xfUNXn21jM44o8pXDrp0o/l3KYZVRXt+77gJZk6vuP/+fHr55fjeFF4OulvevCTexTazQA9Ziw7q98Ymme9Rec6bp0APGT+DE3XQ+TpO1kInAE0JCHQXnn/+ebrnnnssgV79z6fzdtttZ1Vd577mmUz0Rtv+4XrWWVU0eHA1bbed/dtf3uQjHAmA9CLWQXfPEfTroLMw4l7r557bgh58MJ+mT89JyHVLtC2jfsMtBX88ReKiDrpzDroKc1bP7d27rj4NqCGEhP4Z7Uegu51rFZ67ZIn9otEFpXTQ99uvlj7/vMwqGCedWzn/XbrERlnZBTq5RmHx94o6Byzmue5J1651xhZwyv3WMeXRS0xREmqMe+9dSzvtVGt8vpsbzb/Lvzs5jfI18vlOkRvJEuiqDoBzDjolhIxm4GPZZJNwk6ziLue7OeagR6/rcAoEekKbAKBJAoHuAvc9v/322+nkk0+mrH/ucrgVGov2l156iTIZU7En5q67KmnSpIqYG37573iK3QAAUof+fpXiwCTQnXqx6w46s3hx9GuCxToTb+9b+brDDosIXNVOyw/6uKWwjc9BD9cvWP74o/nrULm6avvvvFNqVZbnvu7JciHdIgvk4iiHwsvQbz8Fv/RrQ7l/S5Zk2fLV/V4PUqBL0SeLgykxLp8rHXRTSz0p0JXDrvYvHXQ+V1zFPR5UNITELXLMqc2am4PudK3K18iWefHk+JvGpKPGpObQ6Xs70aiWdevsDno6CfREj00iRWRzzEF3KhJnitAKAkLcATADge7CX3/9Rb179455vGfPnvS3KWEvQ4vExftaAEB6IKtlxzropuebt2MSa4sWRZ+sbqT4c4OjbRhVaM2PWJSfN+ecU22FFXP4tF/0cUth7PVZ5uagf/JJDk2ebLbblHurBFf79pHK8nJ7hx2WWFiRm8CXDhWfS7ecTz+f50qgqzx2N0fe5HRLYSgFr7x21OukcJWiXG8Bpp6rBLFaTFHb5ErP/L3z/fdZ1vWoihX6fU+8+GIOjRhRYAxNlkJanz8+9yYBIRcm+HeZT68WJWId9Ojvq1ZFn+83tSFoDroas1u7OqeFqyCsXx/9nRdYZMeXeKMDkkW8C4km5DXgp+VhU0O975Mf4h6CQAfAAAS6CzvssANNmzbN9lg4HKYnn3yS+vfvT00hnyieHC2nL3oAQOPgViQuSIi7LAapePfd6IeEEiIsZDg3fsYMojvvNMeG9+sXK/zsRcPCVlixaQHBCf3zSv7by8U25T2bBK2+sKBEqP5cub9EBbpb6H+rVnbh6+Z4+wnpVeJChbj36mU/T+3axbZGc4KFs0LOj+oGIL8r5PybzgWPy8lB53Nw1115dNBBLenii93zzE3viYsuakFTp+bS00/nur4X9HMfDocskakLCH5cLizIv6vFA/2cykUFLnqnkK8NIlS8nqvyek3nQvLuu7k0ZQrFLdqkg87HpSIz9IWIxiCZwk8uwjTHeyAngY4icQCkBgh0F0aNGkWvvPIKHX300VRVVUW33HILHXTQQfTpp5/SddddR02BeFbP/bgXAIDGQ4oDKfCCCPSiojorpPqjj3JibtJYGLMg23tvZ1HIleoHDaqht94qdcgZp8Dookduw0ucmhx90wKl3mouWsXdeSzsIr32WplVv8MJt+4XfkPc2YV2Cyn109Oag7/4pliJp5497a/ZbLM6V6dbOrcyF1ceQ9RBDxmvOVOIO+ePyzZrcju8EPDIIxHVPmeOv0IGpmv8jz9iH5Tn0XQN8cKBXnFewqHjesi7vt3I88goXKU4caqDYEIuEphQ0QtqQUeGuOtRcCecQHHBfeVlm8WxY/Ppww9zYlJiuMjk8ce3MHYKSCXJLD4mI0fSoQBeQ+NUW0H/jHjggWCJ//x5grpGAMQCge5C37596f3336cTTjiBTj31VOrVqxedddZZ1mPcIz3TGTq0OpB7pUCIOwDphS5G5L+DCHTpnvbtW2cr/GUPcfcWgltsEaZnny2ngQOjd7by5i7ZAj2+EPfY49Ad6h9/zPYsUMdO71571Vr1Ozp3jo0cOPfcqhin2mlbqXbQ16zJshYdlMDToybat3d30KUgkyHjci7V65y+K0yLFZxnrsKllYOujpUddLfcexOma9yUO2x30J1EqPN+9Bx0UwtTPdxbVsy3u+8UI24TLRKnHE5ZaC+e0PPvvsuiI45oQbNnZ/kuyqeOk4tMfvxxTn07uYYimfcq8jw1duh+OuWgx9YxCnaOUcUdADPog+5Bfn4+DRgwgFq3bm0ViuvXrx+1TLQqRhrAN5Hjx8f3LdMcw7sAyKQQd3ljagpBdHbQo7+z46YLNCfx4RcZeu/H7XUT6JxjLI/DKxrIFFZtdtDDgcPrpYtkEtssXp3m3G2feo4nnw+3nE8/Ap0roEuxprfQlAsCXg76xo3mfavXOQkkk4Me2Z7KQbdHM/B4ecHIqf+7CdN8y8UF0/Pk9cnXFz+/tNQ9R5a/D+Xf1fejvpgkC93JEHc5RxFnNjKGPfdsmZQ+6GoBRuZN623r/DBsWKEVMXHYYdm0bFmkv7l0y03I8HenTgGpRHdmWQy6vQ/dsEc6ND9B6RTiHs9Cq1xc4uvYa7EJgOYIHHQXiouLLff88MMPpxtvvNEKax80aBCdffbZtFHemWQgnB8atDjN5ZdH4u9Gjw4QhwcASDn6e1mG5JocdKecZ/k4h9vqwjGR4pL66+IR+bKgl5ubHk/ROqcQd9O+9fFLcWqaW96Pu0D3G+Iedn2un6JYLJr23rtl/ZzoYlnuz6uK+913R74LrryyMiaiwE2gOy2mKOEYG+Jub2XGjBxZSSee6Lxa7Pf7zb7oExtJEAlxd0/5ku839bu+fymKZRV3WWhPLn579dr+668Qvf9+tqNQV4JSCfTS0sQcYJXOIFPcXnwxctI7dDArLL0dXkO3J9MXVhLJdbaHuFPawO+xd97JsV1TqUC53G6FOk08/3wODRnSwtZ5Qc4fzytC3AGIBQLdheuvv55yc3Ppww8/pK+++oq+/vpreu+996iiooJuvvlmam6559dcU0Xff19Cp56KGHcAMsVBNznHflwkk0B3KpjmF6983yCv14/Ba3smsWlaJHA6NrcicV792HncboXg/DroLKbdnutXlBYXZ9VvT4p6/l0uZJjGLIXK6adXW98JV11V5ZmD7sdBVyLS5KDrYn/PPWvpwQedlZJfp1Q+T86fiibh/PcgIe5qnLoYlAX1pLMsxXKQ6LR587LplFMK6ZVXYi9iHq9KYVAREhwJ4NZuzgtTa0YlwAcOrPUl0HVfg8P433gjJ2UCTb/+EtlPMnrXp4LHH8+l009vQYcd5rJylwTUQlDQz91LL21BM2fm0NFHFzoKdBSJAyAWCHQXZs2aRTfccAP16NGj/rHNNtvMKh73ySefUCYTzw0237x07Zo+PU4BAOabJnkzaRKhfoQch3Hqbq0KjY6377cUfPE56M7H4HWjaAoNNx2Hk+urv95+LFLkmj9v3eZcCdrJk8usSKXjj682pijw85KZYcXbk98FLJy9vhsGD66x9a/n7wQ+tnhz0LfaqtYqRihFpFpAVs976qm8GEe5Qwf3a9BtQcT+vOh25DmSDrqbgHDKQdePnVNG1N+kcJViOZ7QaVnEUR+Dk0A3CUyvxQHTdade49TL3ctB32+/Qjr77BY0cWISG5a7CPJEhKDMk3bqKZ8IvHgxZUpO4EJ6XIVfb4eZ2iJxzpFE+nMlixdn1Yt8eZ3rXRAAABEg0F3gfufz58839kfv1q0bZTLxOmAAgMxy0E1hzyY3zHTzrRfzUmG68eagy3DcxHPQ7X/z2p4pNNz0OegkVPTFSflaKVBMc8OPuc25GttBB9XStddW2cSnzAOPVHFP3EGXQtou0MOe57ZTpzAtXryR3nqrzHGBRLn8fnLQeXtqDMplVn9X87J+fYjmzs12LGZnQl0fXrnacs7k76pgIheJc6/ibheCLD5eeCGH5s+Pvb1SC1z2EPfEipqZrle7QKeYEHeTgy4dfhOm604JLb2OgVMOui7QuWAh88EHqSmHpAu/RHKd462275dLLimgiy9uQcOHe/Q21DC10WzIInH77VdTv8Bmuv5kVwj1uJw/vhYh0AGIBUXiXOD2atxa7aeffqIdd9yRcnJy6Oeff6ZnnnmGhg4dauuRfuSRR1ImAYEOQPPIQTc5if5D3O2PRR30+MYpxVKyHXSvMZkEhmkMTi6mXtGeBeljj5VbAqmoyMtBdy8Spy+ESIEuhS8/z6s3eRB4e3K8HFrux3k2FR4MloNOtuPjMfA8Rh306PickB0HTHCRN7cxKOTxyvOohA+PyU0E6TnozCWXmE8SL3DxtqRwtTvo7mN12r+OFKKmInFyUUCOTa/o7y3QyVWg63nR8RSnSwT93CcvBz1kfZYFXRBz4623Im+gTz/NSUuB7lQkjjsBLVpUQr16tTbOs4ys4euFPyfkohJHc6CKOwCxQKC7MGnSJKt6O7dV4x8FV3GXj4VCoYwT6H6KCQEAMt9B59DUHXespSVLQvW5x25ikR0P7he93361MfnOKq81GQI9nhx0KSaDhribhK3pOLbbrtZYbXqTTWI/M4cOjU1qdXbQncemL4RIgS5FEx+D23aCCgber3ToWRj37x+fipERDNEq7k456Pa8d3U96iHubteZ1wKPmguv0G05n9wT/qGHyi3x//77OfXCtq4u7LuKuxvsYvPzZbi+FMvxhE6r4+MxqGORDqZayJAOukkoR+beTaA779tJJHKIuz43TsL2vfeyLaF26KE1KSwSFzlGbrc3aVIeHX10NXXrFo4rXJ7FplMthYaksQW66dqQ8y7fXxUVIatoqVwE5cfgoAMQCwS6Cx9//DE1VeCgA9CUHXT73955p4yKi0O0/fatXB0vZtq0MnrttRw6+eRquv/+/KQu8HXs6F6AzAt5c+jW+93rtU7Hse++NXTCCdX05pu5cRcdM80Ni0m31+vtzI48sprGjs2jXXaptYVym9qeJQKH3csbfBbGRx1VQ+vWVVj7DoLJQXcqyiUXS5SDLkWkEj5cqTzR94RXYTD9vBx/fOQFX3yhBLr7NvhvfouPsVu+bl3sY7ojHSQUmxfj5szJoqOOKqSrr66k88+vtjn6MhJAwceUSIg7j++pp3Lr98MuqpNA1/PdeUFCX5Di4z711MiDI0ZU0hVXVCWl1oIe2aCE4Pnnt7BaxH36aTa98oohnMCALiLTR6Anp42c/xz0YN8/ptQAGSnC10eqxgxAJgOB7sEvv/xCixcvpirDMnymueYSCHQAmg5uN0jqpkqGGm66qbPQ6949TCNGRCx4p4rh8X5+cJj4U0+VWy5KouGhybip04/joosClNF2wE+RuE6d6iwXU4Ud65X2OYR81qxS6xg//jh6R2wSBD171tGSJZHJCDqn3OfbXoQuMq9nnx08GdpUxf2gg2ro6afzbHmopr7xkUWNSM9x6aBvvXVdwteHk4vvtVCkBKl3H3T3Nmy6CNYLp9kddPv//cDPvfHGfGucN91UYAn0aL5wuL7Nol2gmx10FvtO720pqj/8MJtGjoxejE6h8X//HTKGueufK3JsjzySb52z226rTFmRONW/fcYM/7fA+qIJO79uKQENhVxg40JzqvtAQ+WgOy+MxHZyUIs1MlKEf1fpKACAKBDoLtx33300YcIE6tixI+Vrd1CZGNYuibcKMwAg/dBvmkyiRApHFnV+cOq5HW+ROCZZIawmFzAouhjhj3kpxoYOraZXX82lzTf3LxRNc8NOtRSCvAjyyiul9XmbpteocyrD3fUwfQ4rf/vtMurfv5Wvgmgm0aE76PFictBvuqmSttuujgYNsp9zudAge8Sr0Gv1dctu/r331tHvv0cv8HPPraJTTvFeQDCFe5twWtRQDm4kxN1/FXc3+PjkgotaJIluKxRYoLMA0gvmqWuYryt1HDLE3dRj/eGH8+iTT7LpxRfLad99a10jQ/SCfW5h1nqxPB5HUZH9OXrI/cyZcYTX+OyDLs/VFlv4f1/redLp0gtdfnbwgkiqFg3UdepHoMt5l7/zogYLd33u5HsAABABgSUuvPjii3THHXfQF198YYW7y5/p06dTJpPIDTYAIL04/PCIYOnVK3LDqQRR5851xvd8jx7+buKS7aAng733rqnvg53shUp2dqWQvvTSKisn+Y03POJ/fTjo8saW51Wu+bqF+8tiaHrRtEceqYgpXhcEvnlWDiuTSFSDzEFX1w2Lw1NPrabOncOOgo7PgT5nSsDz4+ecY1ervL2+fb2FlZpvXeyed15VIAedXW+3IlaRKu7+Jo7d8kmTIm8erguho4RLkFx0XiDQC+YpEcrHJiMBnPqRq3ZtfJzjxpmLOchFP1mNnSt4u4Wj//KLfYJN+e960bpkhTybHPQ//wwFXqg0bSvIIkoqkYtH3O0gVQRx0J0EuinEHQBgBjLNBS4Qt/3221NTBCHuADQdrryyygoH3mefyN3Q+edX0aab1tEee0TvjqQI4r/5walieGNG4LDD9/bbOTRgQDIEuv3fLJqrquxCU+Uk+8WUg877kUKQIxPk+XCbT+mgKwH9zTcl9P332THRCEEFdkSgR//tFQ7uht5P3Q27QI9d1JBOvr4tt7nacstaWrgw2zUHffjwKnrssagIdWp/p4oORqq0Ox8L/91vkSt2OFWhRg7/nz3bLl7jCXFngS6vEQ4jlgJdnV8WxqqQnMlBV2y1lfmzQc6BHB8LNrdq+z//nOWZ6663fXMTgSzmuec3j9PNaOBoEv16ZjErFz+CCEX9HCs3OJ0EOl9fqUJF5/hp0SmvFb0Fofw/AMAZOOguXHPNNXTrrbfSrFmzaOnSpVb/c/mTyUCgA9B0YGHJFcVVpXF+fx95ZI3NuWTBcdxx1Zbbvu22dRnroKtj23zzxG+OTcJQCul4Ctk5VXGXeZY8r1JMu+1HFoFSTiPXEDj88JqEnUa+uZf79huqbUKOxU2wMXJRQI8uYGR0gb4tt2r9Rx9dEyModJEmIwb0cZsWAlgAuwnwICHuf/6ZVb+Io0cVSOGiBLDXPEaeG7I9b9WqaEh+JMQ9HCOO3QS6jITw44qy667XUGA6dqxzCHE35b+T74Wmww4rpAMOaEkXXOC+CmRKS+CxyrEHafumtqd6fqeLCyyPJ10cdKcicdEc9GSPLvN5660cuv76fFS0B/XAQXehoqLC6oF+6qmnWjnninCYb65CVk/0TAVt1gBofjz8sFZSOQMFejIxOehSsMaTCmSaG/68laJD7yntth/5uohr5++5ftBFjFfPcL835V692qWDzoJQ/z6SReRiHXR/x6/Gox+TLiadBXr09V456H7njdsXMryQZsr3V9tRLi8fu6lnuf4a6UiuWBGiNm0iv/O8yuPl64fn3lQkTuG02GB30O2vN0Xk8DGuWRNZMJDMm5cVk+Oupwg4Xce86PLDD5E36P/9n/vqmRwvzzXPET8mBZDX3ErU6zj6hRcU0sUFlnUnUrlo4NZmzem5+rlFiLszZ54Z+dDkNpfHHZe8VoMgc4FAd+Hee++lYcOGWT8F6dBPI4k0lRtsAEDqSEWRuHRCd651gR6Pg276qtD7oOvz6vfzWBf2iZJMgS6FT+Ih7s6LRE4Orx+B/u23JYEFeiTHnOLug37UUdXW8b30Um59sbuIQI99bjQEWB6ruxDUFwhWrsyiwsK6+mPjH44G4EgC5VyactCj24vsb/HiEHXqxFXgY4WWXqCRF2TUPhQqL10Pu77xxgLafvs62msv50lTLrWOdF7dIiki47U/l+dULxKnh9b7E+hhKwpAbx/XWDhFNjSmQLdXcY8+jhB3b/j9CwCDK8EFbq128sknU+/eval79+4xP5lMU7nBBgCkDlMYblPqAqE7dXqfcT/5ln6iDkxF4iR6kS+dBx6osHKWuUCaiT59InfmnObghu5UczV5SSI56PJG3MvJ16t+u4W4x+ugK0GhjokrdvfsGY7Zl9MijLrGWWy4h7izM+t8wAccUFOfI75oUeR5LHxNAlMJUCW4vUSoeq4Urr/9lmULcZfbYZH6+efZ9OWXzjcAfKw//JBFu+/eivbcM1r9Tc6ByYH/v/+zx6mra9wkxiZPdl+RmjUrh959N8caL/d4V8cj89dNCxz6cUSfGxkLbyceB51dalVpXC2upYvIlItsbpEejRXiLsekFjXgoAPgDQS6C2eeeSY9/vjjVNkEP038fPEDAJo3ev/qTF3g09tQOaHf9MdznCaB7uSg33VXBZ14IufVugvrk06qpsmTyx2rZb//fhl98EEpDR7svh25EMAV/++/vyJpDvoOO/hXBzKvnsWlPs9t2jhXrnf77pLiQYlmJRacFpWcBIfaT8QhdxZjfHvg5rDzgoK6/taudQ9xjxaJC/n+nubnSrG4cGFW/XjUvKp98XNPPdU9/4AL1ykBvWJFdHLkMZpy2Hv3DtOJJ1b5ivbgBRovMXnaaS3o4osL6D//aUkTJ+bG5K97LQLpDroSmfJc+nXQpahX7+90yaOWx+N2nSavSJyfMUV/NznoQboUZBLcHvDkk1tY0SfxkkgnDdC0yLDbrIaF26vNmTOHpk2bRkVFRZStfTJlcqu1eJwhAEDzwilUOZNSZA45pJquvtrf3TQLGpnTGU8RNpOI1nPQ1U3+2WdXU1FRARUXB+9hLuEw5AEDvAVy27Zk7YuZOrUspt1eIgKd27199VVJff6zG1KQc160/PeoUZU2YSqvQQ59dhMIphB3JaScFluctqeer+ct63DLMbe/83tF703dqVOdUXzrReLcwvkVPD553hYsiAp0df1GK9Kb3W/Jt99mWz+m/TgVdVO4pXHoCzB+rrXXXot80NxzTz6dc061TaDznLMD/s032bT77rUxn0lqgYavGXUuTSHuvFDg9T6X51e9v7//PouOOIKakYMeXx90Od9N3UG/5pp8+vnnbJo+vSUtX67lgfikuDhE33yTRbvsksKTCTICCHQXhg4dav00ReCgAwDiJZMc9KefrojbvUiWg87Cxa94SSUs+G68scKq9syV4HX89Bd3Y4stgq8y8M26vOnXozakg84izM1hGjy4mm67Ld8mEpRAkN95Ml/a20F3F+Dr1oVcxSZfQ3oExwEH1BoXyfUq1/4cdLvg4RZkSkyplAYZ4t67d531nKB4hbjrc+nmoPN4giwGqerkcmGAz+tllxXQq6/m0oUXVtFNN9lVn4wiiC62xJ5LnnOv96N8zbbb1lqLAs89l0fXXFPlWW/BD4kszsnXNkQOupO5M3FiOZ11Vgvb3PNrwuFQTJFLN4HOx5OpLrKaf37/rVkToo4dg5/Y8ePzrJ833yyj3XZL7gm98cZ8q2jj+PEVGTvHzYkMus1qeI466qj639evX2/1Refq7bKie6aSSTfYAIDGg2+09dZIfpy9TEXe8MbzOWly0HWXzqk6fqrhr64RI2KV0UcfldITT+TRyJENb22xiylz43UnVFaE9zofW24ZpvfeK6WDD24pisQpsUq2fXgJRDUmpzZr7AKze8434m456Lyddu2i/+7Xr9ZyfE1hsFGBHvIdqcJiQIYMc1G2DRvUvmND3P20bjMhj9GpTZvfRSh2vuOJ1tAddBbnzKOP5rkKdCUqP/00mwYOrI25/rzej/L8czTOpEl51jzzgkEyBHoi4fJybA2Rg+50+8ttH7kWxoIF2fULRHrqR7SKe8h368dMgmt6/Ppr5Pd4BbpixozspAp0/l577LHISt2IEVW03XZw6NMd5KC7wO3Uxo8fT7vtthvtsccetGzZMrrqqqvoxhtvtArIZTJNpcgTACC1cH6zXlU5U5pabLWV/xscvXBZvCHuppt9vmG1C3RqFJyOp3//OqsFX7duDf+9wKLULp7tYwgqKLkQnJpzvilVQlBu14/wlWHhJuHz0ktl9aJRFi/zctA5SoFFjqkAo8qJVrcXpjx1E/rtCIsDRgkd6aArkXvTTcHKkEuxpVdxV0hh5eagc//xoHnIzzyTa5tnL7fYLtAjv48Zk0+ffWZf5fFTKE7uS6YrJCvnWzrKWVnBrnd5bTaMg+78HPW3Y49tQddeG9vTWx2n2+1zKhcZUo28loK08DORbB/Q/v7NfJOxOQCB7sKjjz5Kb7zxBo0ePZry/vmGY1edc9PvueceymQyKYcUANB4sKB48EH7zbyqSp3OnHVWlVVYzS9du9bF3IDHc5NkEt8sFGVoaGM56PEsOKSaPn3qbONyc9D93LxLN54FQlSgR5/Ts6f3htSiAb/eVASOUwTUOV29OuQ7B10tIHDdAF3Eqpt6JWD8fk/rxc6Ki7NsgkkVP+TtqjBxP7UCnNt5eYe46+8D2SGBx+vHQZdi9corC+j556MT4ha1IMfI51GO68sv7QrTT6E4ebw8p2pcak6WLyfaZ59CeuKJ+G6sgrR7ix2b+fdk46fNmrreePHlySfzDALdO8Q9swV68AKEDfVZLRdFMtxfbDak4dd1+vDaa6/RrbfeSvvvv399WPtee+1Fd999N7377ruUySDEHQDgF10oZIJAv+uuynox5LfIGbP55mG6444KGj8+PgvE5Byyg6q235gCfcCAFN7BB4RD0UeMqKSLL66yfR/pedfy2lM5rG7IbcmiYHI7fnLtVRoHh8jrgpSr33P4qnLGOa/Tr4PepUt037qLzs4yo9xlFtZc5NALFdKuO+jRNmvREHfloMtK+X5wq1Tvx0F//PGK+nGwE24SCfy+23rrWsfPnXfflQLd33h5EUWOSxeAQR10Fk6y6Bxz/fVEv/ySTddf7x1aNH16Nu28c0v64ovooGRPdW7nFkRop5ODrt9X6ucoWiTO+f2SymNINfJacouqaQwHXS6INdUifU0NCHQX1qxZQ506dYp5vE2bNlSW6LuvkUGROACAX+SNMoeCN8UInK5do4KCK0YffbQPRWJAiu+rrqq0Wqn161dn5Wg2VorAp5+W0uWXV9LNN6fPndlOO9XRjTdWWTn7biHuQZECIlLhXOVz28PMgzjoumg45ZRq20LV6tXOt1K8X+lWS2HcubN9HMp1UzfQ/NqnnuKCTmFfRdRkJWhTiDsLJHXrYkrpcMOPcJJRIrpA79+/lu6+u7J+IcLkgLPr/uGHZdSxY52vXGU3TEXiTK8bNy6PVq4M+S6QxsJJVvhn1q4l35xwQiEtWZJFRx0VDTHQjzOIgLJXcQ81Wg66SaCr955Tl4Km7KCrxbZ0cdDlNZaouw8aBgh0F3bffXeaOHGi7bGSkhIaM2aMlZeeycgwQAAAcEPeeKWze/7II+XWTfSkSeWBQuFZrFx9dXLEqwztZVF+1lkRMbf11nX0n//U0Oab19GWWzbsXeg229TRtddWWWHV6YgUdqbFH7d8Zi8H3dRmbe+9awLloDuJU/VeMLUlk+ORiwZbbeXsoCsHTrldPAYWRIce6j5eLlbHtGoVtgl09T2vQtz5eaqqtl8HXQkmr5DyWAfd/jeOIFGLV04OOr8P+Zi5T7wXXg66rIQvxY4uALnQ3JFHmotCRKqQSzc+8n+1PXVdSAc8nmrtuiAPUkBPivJkus88Vs77nz07y3eIu/43/bj8FIlLpKJ9puagN8Qxy2vKqYYESC8g0DW+/vprqvnn0/jmm2+mefPmWWHtlZWVdMEFF9C//vUvq1jcqFGjKJNBiDsAwC/SfUykMm2qGTashv78s4QGD64JFAr/yy8lgcLh3ZBiUg8HffbZcpo1q7TRisSlK3KeTAJdb70mef75iDB98cWymO82/io3tVkbOLCOxo4tr3+Nu4PuHHLsp6ie2g4XlRszpsKKHFB06qQLdHuIuxozv477wzuhXqe2pxeJU+/ftWujwqh1a/JF//4t6cor8x0F8U47RSfHqVMBh7bzWFTBP6ccdOXq+1k88BLoKh2Cc9/lApBJDJnazvE5P+igQjriiBb151/NZzTEPeQoxkzjO+88c+iM/twgBfRS1Qd91qxsK+9/0KCW1pyphQD3EPewq0D30wc9s0Pc43PQG+KY5YIYisRlBhDoGqeeeqrVUo3p0qULvfzyy3TffffR9ddfT8cccww98MAD9Prrr1OPHj0CbXflypV08cUX08CBA2mfffahu+66yxL9zIwZM2jIkCHUv39/6/+fffaZr21yHny/fv3iOEoUiQMA+EeKHr2nc7oRz2dbMj8PpfjWKzI3gQ6dKcEtB51xizg44QQWWCW0//61MSKRXV8lBPVF6RNPrKl/jQnZSlAJig4d6mjmzKj9dO21lb6vrX/9q5ZOPrnatUK9LmDUGLhNG+fqn3CCu7XaqVOdUaArB517tivxLBfdpk4leuIJs+W3alUWPfNMnlFwHnRQjS1aRc69FHJKcKv3BjvoJoGunte2LXnCkQDyHDnlO3M6iRyLX7fyjz9C9MMP2TRzZk593r7ajhL8ap+6g75sWYi22qoVjRz5z8T/w2uv5foSaEGKeKWqSJx0WX/9NcuXg66/x/SaEX76oGdqiDtfV/E66KbzFrSavxcy3cCpTSJILyDQDa3VdLjF2kknnUSnnXYa7bvvvpQVMDmEt8nivLy8nCZPnmyJ/E8++YTGjh1Lf/zxB40YMYKGDh1Kb7/9tlUl/sILL6SlS5e6bnPDhg10xx13ULxAoAMA4vm8SOcQ93RAOuhuoZwgihRQpvSrW26ppG7dOEzffGevfyWrbUSKxMXmoPtBig0lLM47r5p69YpuhwsKygUrdvo32aSOpk2LOvNu4c/6YoS6qVch6vpiGBdRGz3aeYMqZN4pB10KdL1yvlddGpNAv+GGSluYvjyP8neVWhENceeFk9j3hnL1/RZRlMeg5+ErB5Md9HhcZjk+JVajAt0urHQx9vTTuVY6wcSJ/or96EUIgwj0VDno8jP/k0+ybXn4Tujuun7tR9usuRWJy8zPTD5nMt0giINuem8lezEXDnrmAYFuQFVsTxaLFy+mOXPmWK55nz59aJdddrEE+1tvvUUrVqygYcOG0emnn049e/akM844gwoLC2nu3Lmu2+Q2b/z8eEEOOgDAL/ImPN0d9MZGtgXL5HDNhkTe2JuEYvfuYZozhwvd+VMussp20JZlpnEooWFam5cu+EknVdNPP5XSnnvW+koJUc62HiLLRcRUKzcJC90zz6x2XGxQIe5qYUgds3KalUDXC/NFCqm5v6/1HPSttqq15dO7CXTljKv3hlMOunqe33MlHdp/Ah/F36IOuhy7XxEr6wArQaPEqS7QdSEq2+r5QR9TvCHups+bKVNyrAWDoMhtzZyZ7atInC7QY4vf2R102Xov0x10fZEmiINuOuZUtlnbuDG52wapAZnIBo4++mhfLvn06dN9bW+TTTahCRMmUFFRUUzBOS42pwrOVVdX07Rp06iqqsoKd3di1qxZ1g+H3Q8fPpziAQ46ACBIr2p2y559NpcOOSS+6ubNBb6BPfHEKktkbbttht5tplkOerzbkznoQbdrau9mcg/lgow8jg8+KLVyvnlxwQkZoq0EOo/3hx+yXPu1O92e6IsBarx6iDtHedijFoLXpTF1OZDjkr+r3HLpoJtcQ/U8fV4khx9eTW++GXsyI2G74ZhzxudHChK/Dq10GdXv6pj0Nmu6QC8qCtvcd6/ijLEC3f35q1eHrH3wZ42bQGchfPHFkQv0sMNqbOPyQgaTcj46F7kM2mZNnxc9hYOvBz0MPlOLxOnHEaRSekM46PaIEDjomQAEugF2sVv7raDiA27Lxnnnirq6OnruueesKvEKDnUfPHgw1dbW0hVXXOGY487i/YYbbqAbb7yRchO4k4FABwAE4aKLqqwf4M3YsenTziwTkG3EEm2zpgso5doFbS0aaacVttxXJSxMIlaGY8uxDxjgvTijO+jMKae0oJUrlYNu3obTzbvu3EYddD3E3S6g4xHoJhEtFzBkDm1UoEfdRV3Q8GvV393GIhdEJHpebdRBD9tEuZ9+7vr21O96iLvalu6WyvO6YkWIttzSHmafSA7666/n0DnntKDzzquiW2+t1HLQzXMQtDK8Pqbi4iz67bfIBePmXekLWE7t41SEAEdy6C3qMjXqSO+8HKQTs2nRCCHuAALdEN5+6KGHUseOHVO2j3vvvdeqDs8F6BQdOnSw/j179mwaPXo0bbbZZjRo0KCY1z766KO07bbb0t57701fffVV3GPgL9fGKlik9ouCSfGDOUwMzF/iYA4TB3MYQeZuqtZiicxfJFw7RC+9lEvjx+fVh6IHnWceC4uwqIMeuy8Z4m76uxv5+bEid/r06G1Zjx7mMTvtQ08/YYHOz1X7KS2Nila5SM/jDirQWYTGzrv5d+6QwM9lB5cXMdjN++MPu9KTiwZuiyl6YT0FH5scT7SKu130OdUE0I9FzZXMQedj4udFQ9xD1r+lQOd/y/1xkb0+fWqtonNO+9TFOwtbp3M8alRE/T/2WB7ddlulzXHm7cjXyVB5NXY/8DYXL7afH/Vvt2tcv4Zi26xFjks9rtoC6vvOxM9Dk4Pu9zjMReKCzYPXd4lcoOGIEv15mTjnTR0IdB9F4pItzidNmmQViuvbt2/94+zYb7PNNtbPokWLLIddF+i//vorTZ06ld58882Ex9G5c+tG74nbsWPyohSaK5jDxMD8JQ7mMHGa+xxKQdatW+vAbrc+f0oojBkTtTI7dsynoiKDZe2CErE1NRFF1rZtARUV2VtlcYV1RdeusX93Q8t6i6F7d/N14XQzvdlmdnu5VatcKirKpfbtI/8uLY2IrBYtcqhTJ/sNQFFRsN5/HTvGHmubNtHfO3RoSRMmcC9totGj86hDh8hJ3XJLop9/ZsFnPxd5eRy23dqzinu7dnnW8eu3aqFQoW0+ldhv3z7X9tyKCrMFrPatkK+prY0cZ25ulvU85ZC3bl1I7OVI0c9/ly5/WVkhLV9O9E8mo3Gf+r1YTo79WCQyAoBfL0PO8/PzqKgoz1iJvX37Vp7Xm+KKK/i9Y39s6dLIjlq2tO9DorePzM21X49VVZH5U25umzax8fJt2/ofZzqhR8PU1ETee34wLRq1bh3ss8Tru4QXqhR1dTkx1ztIPyDQNbiKer4p7iwJ3HbbbfTCCy9YIl2J7wULFlht3bhwnKJ3795WjrnOBx98YD33oIMOsv7N4fDMjjvuSLfccovVos0vlZUbXavLphL+cuUPkTVrNmZsvlFjgzlMDMxf4mAOEwdzGKG8nO8eIzez69dvDOSgm+YvK6tlTA3cmpoKKi4OFuebmxvZTkkJW5xZVF4eu42cnOjYs7LKqbjYf42Gykq+BTPHbE+ZUkbFxU7xvqzoTI4s27485gi1tVVUXFxJNTUsqPLrw27D4Rpav55t39b181haan+tF1VVscdaXs7zEFECGzaU0hFH1NERR0Sc3eLiyHO22KKAfv45l2bP5mOLCrQ1a/g5kWTx6urIeGW4vIqy4GPKycmNqQJ/8slEvXqVWvUymLVr1Taq/pnnyPVQURGJrtBR+1asWBEdw6pVrCj533VUXMzzxEo0m9asKaM1a2qptra1bTvr1kXnYcGCCvruO95fvuM+163jeYiq27/+cr6OKiuj555fX1HRov5WvqQkcr6j28mqP6fFxSWe6SPz52dR9+51NGZMrHhT54/TLOU+JJGFjKgoXb2abzKjyrC8PGyNQx1Dfn5NjAzhv6tigZnE8uX2c7h+fQ0VF/urFLdqFZ9P+ypNWVmwzyuv75Li4uhnTUVFLRUXlxlfD9IHCHQNrrSeCh555BGaMmUKjRkzhg4++OD6x7nd2quvvmr1NFfV43/66Sfq1atXzDZOPvlkOvzww+v//f3339NVV11lFZYLGpLPb+DGviFMhzFkOpjDxMD8JQ7mMHGa+xzqIZ5B50KfP93JUw5S0O0qJ14tZrNbqW9DOlOcAx5kH27F0Lhlm9O2TAsYPXrUWTm9EjVefT+cAqBvI2jVaPYx9PHJbZhcbqZ374iAnjcvdofq+XqNHC4JpKq089j5vJhyqs86q4A++6zMVqQrkoMefY6pvZvct0IWllO/q/mUVdz11/G/5dg4NFx2wTDtU6+QzznCTudebpufoxeJs0cL2J13t2vz22+zaPDgltS1q3vtBKfz6tZmjes0cGFADm3n16oQd9mSUsHHk4mfhaYcdL/H4VQXIZ55cPoukTnoXtcCSA/QZq0B4JD1cePG0TnnnEM777wzrV69uv6HXW/+/3333Ue///671Sf9jTfeoHPPPbd+tZL/zm55u3btrNx09dO5c2frOfx7q8aOVwcAAADiINk3i6bcVlO+txcq1D4q0GO3IUVG0PZabqH8boVcTQJ9++1rY/qH60XipJCSYoq3F7wNnalInPl3ieojHw7bK+Nz54Potp3PJ4/Tadsyr12dMw43j6d1lywSp7dZUws3TsJKLggsXJjlWvlcf35kf87P1QvIydfqxylz472Kr73zTuSgli93lwWy+J+O3qpPFYlT7xH+Ny8wqKJo+oJSZJyZmQyt9z3Xc9LdMJ2bZH8myoWdTC3E19yAQG8AuB0bC+zx48dbxd3kT5cuXWjixIn09ddf0xFHHGEJ9AcffNAqBMdw0Th+3nJOYgIAAACaGMnufayqhvup/u3PQbe32XLabrt2we6qpfseRLybxrHDDnUxkQNq/PriBItcWdArUrHe56BdxifH5SRKO3Wyn+zjjqumjz8updGjo2HTciwsiuU88X6dti0XS6SD7rdyu0RWutaruKvjZOf7889jByP350eg69d/aamzuFMLG6bXxrZZ89//3WmMeli827Ho16VaIJD+0YYN0TE5OeiZiDpnar6CHIdpUSLZ8yALBsbzfgAND0LcGwDuVe7Wr3zAgAFW8TcT3CN9/vz5gf8GAAAAZALJdnRMDjoLtaAol1i5Y6buq9LNDirQpQvNreak+ArqoO+0k8lBV33FKUZk6eHouvvphalUj73Nmvl1nTqFY7az3XZ1jvPCY5cLDHxM8vhPPbWKnnkmL+b8RNusxSdInELcGTVXL72UQ2+/HXui5P64ZZ5Xy61YB92/+2oX6M5t1rwEn9P54sWutWtDvlIhYqu42x10Rm2Lr3dT4Gemubu//MK1KaJRD5w/v2ZNKJDANl2fyZ4He4h7ZkYpNDcg0AEAAADQaCTbLTLd+MdT+1UXHCYBLltJmUJ2/VevD9OyZbLdXDiQQN9rr9p/WmlFhb4avy7Q9ZZb8TnoYQ8H3Tz+TTYJezrxcnGCf5fnjp8vxQu3ojMtzKioB27LFo/YkSI5GuJOtv+bxLlJKEuBK2Fhd/zxLaxWbPZ9+x+nm4Muw6wjRfacrykn4a0vFAUR6GqBgM8fXw88L3/9FarvfmBKO8kkB53D0PfdN/KmHz68qn6RiAseBjkO03OT76Bn7iJIcwUh7gAAAABo0jnobuHkTuji0ZRjLnM7g/YSlsKTBbokiIN+0UWV9T3PZci9Ekx6mLLulnON2Xj6oOvoee0muBe6V2SDnHdeCLA76HaBId1Zdnu5GP2gQYX1/eQjfdBjB6PvV3cxVYi8KcTdK2Tdr2P/wgu59OWXObRoUZbvEHcdtxx06aB7iTKnY9LPs5tA17ehFq9YnKvtLF8eObYOHcK256vtZlLxMvneX7AgcgCqAn2wEHfTY8l1uWVxRFOBRZB+wEEHAAAAQKOhWmilMgc9nhB3XciaHfT4xy5d6G7d+I4+25dAjxTqiux34cKNttBuVTFbbsPkoDPjxpXT6tUh2nrrApo3L+jYKa4icfy69u3DtG5dyFHoy3mPddDtjrj8/YsvcmjcuDyaPTu6c72Ku4IXMqSAZTEpFynk35SjHQ1xJ0f22qswRmA7iTWeexPBHHTnPHO7gx5vDrq/55neL2r/PF98Hvi6VEXoWKBLV7dDh0grt1S4u7/+mkU//5xFQ4bUBF5Ec0NGz1hdCsVnTxCBbVrQSfZChV7FHaQ/EOgAAAAAaEJF4igpDroesm7qz5zIza4Unl27RrfNjqObEJIio00b+99koTglmHRBqf59zDFKsBQEzkGPt4q7KhQX6f1tFvryMV2g6w66LH7F3HuvXfFHHPTYfXDou1okMLmKUqBHHfSw57EtWOBhr/vINQ/ioLuHuDv/TcfJGdfPc3wOOhkddFn5nNNSWKCnIsR9770jb+TWrcvogAOStwIgF0DUOVMCPdEiccleqLBXcUcOeiaAEHcAAAAANPEQ9+A7GTVKWGQOOeZXXVVludYjRtif6wcZut2xo70wWrzIQnFeDrrXY26YnG8p3tyEnMxDN52X2Bx0+9xI8cJV4N1wKhKnL9jokRBSfKnwYL1IXKLXt3JdFWoBwK9AZxHoPwfdfVtONQMSCXGXDnpUoEcddNkGTr02lTno33/vf/HED3IBRNUZUAtmiYa433VXPt1wQ37SPhvl9Q0HPTOAQAcAAABAo5Fst8gkHuNx0Lff3n6XbQqP7dOnjn79tYRuvFFrUO0Du1McK6ydcBNJ0kFXoic2Bz32dclos+aniru+gGI6V3K87ODKc8fjlNXuO3cO0+TJzmXSe/euMwoSdtDd+otL8aUfk9uxmXCqmr1+vf1xJe78hrj36dPKFs7vloPuJhg5BHz8+DyfDrpbH3Tz/vk6VAsxTg66mtNUurtBz1uQEHeu3B6/g25+/PHH8+i775IzaPRBzzwg0AEAAADQaCTbNTPdgMbjoDv1ataJ1/HWq5NHf3ffp1serT8HPZwEB92riru/Kvum7egh7pyzHv1b2FdKA/PQQ+WWW2+qcSCL6ZlC3KV4VPjJQfcScpI338w1plA4hb7rbqoKvffTZs1JlLFg5hBwvZK8wtSiz79AVw56tEjc3LmRDfA5le3n1HZTWSQu2QJdRiioVIt4isS5OdpO5yUo8vqGg54ZQKADAAAAoNFI9k25WaDHty1T3nmykILGyzX3izxO5UT7KfTlR3RK19m0KCEXDtycVrnoYXbQ7b/L8H/TPJkWX4YMqabjj69xFPW6gy5DgPl6NDnofqu4+xXoOqoIoS68FaYxuV338picBOOsWe4HE6TNmh4mL3PQ9XMkz6ncbirdXacw/ngxnddokTj/23FLaZCLGIkgazWgintmAIEOAAAAgEZjv/1qfLvVfthuu7qk9EHX+2wnGyloZVi3U0i06XVuwtOpzZpJ5PpxF+1Otvtz/TvosX+X42Nx7ZWfb9qGDPWfOlUkOzs46DLEnQWMyXVXbn9wgR4KJNA5xN0kqE2uvkQXhTLH23Q83BpsxAj3lSs9wiFIH3QlYPnxXXaxH9Aee9TQTTdVUs+edXT33RUNkoMe9LzFc15VNIff41i3jujMM7WL0aHdXyLI65tTRDKp33xzBQIdAAAAAI3GuedW0yOPlNPnn2tVs+Jkt91qaeLEcjrjjOhdabztlR54oII237yOHnwwVuQlEzk+rxBUN5Gk52ubBLmXW37kkdW00061rgLdNAa7g+4vB91cJC5s6z1vd9Bjn28Kk5eh/nvuWUtPPWU/f7qrLt1QJ6daFQlMVoi70/yygNq4MSK4WcD5dVN10SUFpMnRHTashefiQRAHXX+uWlDg+briikrac88aOvjgalqxYiP16hWm3r3D9O23pXTmmdX12022cJTvJaex8z7Xrg2+bdN1EjTE/f333S+mpUuTI9BXrrRvB2Hu6Q8EOgAAAAAaDb6xHzashrp3T55bffjhNbT11onf7fftW0ezZpXSCSek9o5WuuZe4bFSKOtIwauEZGwesfs8H310dUwIuFMfeCfchJyMlPBqs8aF07wcdN0NNz2mC3vdTVWV2t1cSyX6g4ZK6wXo3BZX1GLDhg0hS0D369eaFi4Mueamx1skbtkybwmgz3cQB10VTuPrhqMmpk0rp2eeqTBuI1UCXS6OOI39jDMKaKutWtMPP2TFnYOuCFokziv1ZsyYfLr//gTaOvzDb7/Zjw0CPf2BQAcAAABAk8PUbi1dGTCg1vfN82OPVdD229fSpEnuodtOOehe+e79+tUZw4GD3NQnUiROji/WQY/dnmkb+gKDLh6denb7cdBTFeLOwl85sCzQZ8yIDHrq1MhBs6vuhr6wIwV9vLnd+twGKRKnHHQ/CzupCnH3I9DffTcyv08+GawQxKJFWTHnr0sXJdD9nXM/qTd33x1ffg5fL1dckU8ffZRd395OgUru6Q8EOgAAAACaHEOG1Fj57SNHBu9R3lB8800Jvf56ma2lm5cQZgE9fXoZDR5c4+qgR6u4e7dZY2bOLKG33y6lzTcPG5+z117ud/V+Q9ylg25yEKXbzYK1Y0d31WbaRqyD7v5v6XKbnFG7g04pCXHnOVOt1lig62P1ctBnzsyhL7+MDk61NEtE+AYJcXfqD+9HoKeqSJwsjuY1B0GqvPM833abXTj36lVXf434PY54uktwuDqnPqxaFaILLyygr74yX5D33ZdPzz6bRyeeWBiT9gEHPf0JmEkDAAAAAJD+cHiuqUBYOrHppmHadFP73bzs8x0UUw66l3us4Lxg/tFfc889FbTddrW0ww519NNP2bT77jUJOujuIeu6g96uXfTfJuFjLhLnXhhPD1OXQs7JQVfbDJqDLrftNWdRBz32+LwEOnPEEYW0alXEal+xIstVnBYV1VFxsbsq1efWLbzfaV6CCHS/zrNf5LlMpLaDzjPPxLrtW21VFzhUP2jxSi4guP32kRCUww+vtlr1vfRSLq1eHRte8dtv9rns3buOfvghW6R0ZE6EUXMEAh0AAAAAoAngJwfdT0s3KcS4SJ6qwv3ss/4WPNwddP990Fmg87auuqqS/vwzi7bdts7XYkBsiHvYtXe6dNCdctDjD3GnwAJ9/XrpoLu3XzPBFdzXrXN3j/1dB5GWeUo4uxVbdNpeY4a4B2kvFuS8qlxzPbIlVbn0iiVLom+s+fPdVxT0c8WpIvw+4HoXCHFPfxDiDgAAAADQBJCh3UqgK5Gl8FPkLJ4e7VIQuAk5exV3932rfPWrrqqihx+u8F2NXw9xl0XgVM7/ySdXOYS4mwvLpTrEXQr0v/8OxSxYsHvqFxneztTWxk6ccuQPOMDZWmbBKY83SA66QkZAuO0n1TnopjmQ+wtyXk31LTbdNLhADyqU5YKWV9s9/b3C1686R3o0QdACeSD14IwAAAAAADQBpOCVAlO60n5CtO0CPZyyMer58fpjeqi6X3QHXS+wxuJmzJhKOvTQ6phCbkqgK7Ec22YtnLQicbvtVqPloEe2vWJFbA56EAddhrebhGA4HBX8Awc6q0RezJHXQjw56G5dB6L7Sb1ANznosnVdkBB3PQKD4QJxQY8jkeMtLQ0q0KPzLAX6L79k0RFHiLAWkBZAoAMAAAAANAFMReL03/0IdOkmmvLEE8Fp4SD6d7uo8MPYseWuDvqAAXYlpMSp2r8Ub6pInKw2n4iD7tZmTR4fb1cJPymw1f785KAzb7yRQ0ceWRgjyCWlpdFaB24h6LzvRB10TlNorCJxcnHElIPuJXKDFHfr3DmSjhHkOPw8T0a/yHaMcnHBr4Ou3ltyv8nqtQ6SCwQ6AAAAAEATQLrTUkxJUdzYAr1bt8hYQqGwsYe53J+pH7uCX6848cQamxutv65TpzD98ENJjDBT+wrioPsV6ErEuYW4y5BldqtVS7klS2KFpVebNcXZZ7fwFILq+HkO3QS6HuLu5jInkoPeECHuJgedFypMz/VCT5lgOneWIe7+RK++cOL1npaLDF7t+0wOuopykELfbxFD0LBAoAMAAAAANAGkMHV20L1VwYIFWbbqz8mEK1cvXLiRFi4sMYpdfqxDh8g++/Z13rf+WlkRu21bMjqcqgL90KHVtnB66XIr8aoL9KBV3JWwcqrKv/POtbYx8/F06xY53oULs2JEmV8H3YQufFUEAS86uNUY4DHJ68WtBoBpXnh+/VQqT12IuywSF3J10J2KA5owif327e0LGH6OxY+DLt/TQSIMTA66mufi4hC9/nqOtRjlVTwPNA6o4g4AAAAA0ASwt1mLPwed81KDtoLaddeIethsM29lovp9OzF7dqklRtxC3PXjkEKje3fzGF57rZzWr+cFAPuxSYH+118RZdOzp+6gBwtxj7jjZtE3f/5GK5z90ksLbIKqe/fIPtasSa5Al8KOQ+CVy87i3FQHIL4Qd/eK/I3hoMvz6hXi7tRej5k5M3Lgu+8emUiTqOXzJwsw8rF45bX7OV75/gvSv9zsoEd+Hzo08sY699wq6t8fJd3TETjoAAAAAACNzCOPRPKo773XRSk0UA767bdX2sbkBxacv/22kf73PxE3HCcc+q7ngCtuuSUyP488Yp+nNWuiisTptRF3PnZeOMyXBdrkybn07bfZxsiBaIi7vyJxbgsb7LbyebCHuJsXFpQok73RgyKF4DvvRC8AbsXm7aCb86F1TNtxE//6fvRxJgMpur1C3FXtAR3O9R4ypND6UXnfTq6zm4NuCmf3EwovRbmTQJ88OYeWLHEX6LzApC+wvPpqDhz0NAUCHQAAAACgkRk2rIYWL95Ip51WnaQq7mah5Eegn3xytTUWHlMQvEKmk8H550fGNmRIjaNA94sSyOy0TpuWQ5ddVkD/+19kgnr1qkuoSJypkFjs/qO/83a7dg3bcutVvjALyR9+CFidjsxiUYo8bg0mz9dee9XUV7ZXgtyvg276m99rIWjutl9kfrWXg+5UdE1GLqgweLlddqHfe680RqDLqIVLLimgffYptPrTS9xC1jmnXd+XqVUcc+mlLWiHHcgV2WZNinjkoKcnEOgAAAAAAGmAk/PrFykKpWCSN+Z+c6gTHUsqMY1NhoX7JVokjmjRIvvrN99cF+jB5k930FWIvNNz+HzxeLignYSF5fTpOVZrOH1MfpHCTgnVPn1q6ckny20i+oQTqmnEiKqkFYnzG+Ku5jTZbq69SJwpB93bQZfOt1o8UeO8/PJKuu22StpppzpHB53//8ILufTrr9n05ZfZvovEXXJJVcwxuIW4r1sX/X3ChFyaNi035vrVWyayQIeDnp5AoAMAAAAANAGc+pfbc9CT29c8k1Hzwi6iLrx79rSLYSVU/fbLltEMTgJWhrir7W6yif38sIBavDjLlgOdiIOuxPoFF1RT//51MdEVumMurxd3gR6O20E3tbtLBl7iVrrjTjnoUkQrh1+NUz8+k0BfuTK6D73woJuDriI2/Ap0yXXXaRefViROjtetDSBoPCDQAQAAAACaAE6CKGibtUxk0qRyat8+TM8/79EgWiCruEsH9T//qTFWgg9Wxd0uxs48s8rKMR8+vMrBQY88v3XrWBGnRJqfsHkTMrRaiTy1P70+gS7Q/TrophB3vznopmJ9DdEH/e+/Zfi6eRvydUpQKzdef7/JOVAC/c8/sxzz0t1y7lXNA14UUGNIpE+8LBJnd9AR4p6ONNGPaQAAAACA5kWXLmHaZ58aSyjISunSQfebQ51pDB5cQwcfXOLaCszZQY86qJddVkkjRzorRb8RCPo8c4/z774rtY1PLxKniu3pIlI5r34r6uvccEOB5ZbvsUdtvdhTYk2KTJMg95uDblocCu6ghxq0D/rq1dJBD/kW6GohQY8aMOWgy572+vGp53ArNb3Nm3LQ1XHw+QpSxd1/Dnr82wSpAw46AAAAAEATgG+4X3mlnKZOLbcJQXvoOzVZgohzKXhXrYpUcVcV5N2cYL9h3vrz+N/6+PQcdJODPmlSHj38cH6MoA/KyJH5NlGorgl5bDz+2BB3+zE4YYosCCrQky0WOW9f8cknOXTnnXk2kcv9wL1C3E0CXT2m59jbQ9wj216yJPqgfnzKQTfNk2wxqF7HBQPjhbenL7AgBz19gUAHAAAAAGjCIAfdXVDPmpVDkyfnOYaR2/vLO29PPk8Xsyb3WQp09XxdoCf7PEZD3MkhxN3u6stxuy2AmAV6uFEFugxbZ4d87Nh8mjo1xyjQpZiXSNdbzV3UQbc/l+dHFZJT4nvFCumgm/PbTfPEizFqW6rSemIh7uygxzr+Mg0ApA8Q6AAAAAAATRhZQbyphrjHgylkXC/uFnle2PXvCim09Hk2CVhTkTg3gS7Ha3L63VDiWrmwfkLcWazr/3bCJDL9VnGXxfqSiUl0y5xwKdBZzJvcZOmgK9EdzUEPu7SMiw2z14/PqW1aZNvR8622kUiIO6dJmK5BOOjpCQQ6AAAAAEATZuut65p8kbh4MAlIk4MuxXCrVs4iVbrmeji6SdxKse+Ug24fb3QbXbrE23It8n/lpnrloPut4p5IH/SgVdyXLo2mJLhhKvwmj6G4OPqPcDhkq7iukGNSgtrJQZfzoAS6FOX68annrF8fu1/Vdk/uLxGBzkUPkYOeOUCgAwAAAAA0Yfr3r20WOehBMeV0m5xp+TwvgX7JJZU0ZEg1DRxoj0c2iVspuJ2quNufT/TQQ+W01141dN11VXE66Gp/sWPgkOtYgU4+owcSr+LuJtAnTsylG27Ipx9+yKKddmpF++//T5nzgA66Oh4WpqqKu5rzpUtjT5IUxep3pxx0eZ71gnL67/I5W21VZxynuu5UGHoiAl1tU4Iq7ukLBDoAAAAAQBOGK3gr/Pbxbg6YRKXJQZeh5a1aOW+PBc/111fRhAkVMWLIbw662wIAC+Tjj6+h114rp06dvB10rg6uo1dxl+NkR1cvEievF7exJadInLNYHDmygB5/PI9uuikyaYsWZcXloKvjW7s2sq+srDBtu21EKf/1V+z+ZWG2qOi2pwlI1Hx9+202nXZaAc2fHx3nE0/k0SWXFNRvRznovXrV0UcfldJdd0XDAjhyQW8/F2+ROLX4o0dxoA96+oJAJwAAAACAJgy3+Lr00krLMezUCUXi3EPc3R/zG+Lu1iM7GSHufvK7eftKpCoHPbaKO7k66LIwnOrNbcK08JOKKu4bNvgXqXrrMokS49yasEePyLwuW5blEeJuf8wUIaDmYfjw2FCMuXOzrZ+DDqqhww6rqRfo/BpeRFu+PGQMcU/UQd9zz1oXBz2+bYLUAoEOAAAAANDECRoS3VxD3E0CXTrRfgW6XjHb5LbaQ9zNr7OPN5j4jUQD2EWqcmHV/qQgjwj0sKOAk8UG/RC8SJz576ZCbX4oK4t9TC1YKDHerRsL9MhGly0zOejOAt10DvxEqKj+61Kg6+dChrireYmnivtWW9XSo49WOAj0MAR6moJAJwAAAAAA0OwwCUgpxg88MKLOzj23yleIe9++dY6OuUm4mfqgu+UES0G/2WbRfV12WaUVIeG22KDnoJsWAnQHXbUnM23PD0HbrDkduywIp1qTxeugq7x0Jca7d6+jzp0jG121yl2gq8UNN4Hup0uCLrjVtaFHYKh6CBs3hui88wroxhsNbQfI/Rp+4YVyK0rAqW97sivng+QABx0AAAAAADQ7TI6kFKHPPFNuVQzfYouwZxX8YcOq6f/buxMoKaqrgeN3ZkCGVWUNAi7IEiAsAgIKGvG4QkQhhhhNCAFxCXyaEyMGg0aDUREQNcQtgEtQNhWCoAY1xpgYxchiBEMAg6gEYRBwZph96jv3daqnuqaqumZ6mK4Z/r9zGrq7uqur7vRSt959702fXpEkV+6D7tVaX3mE9MGD/ZtJnQmWlptv3pxnEu3jj4+1xuo8337rt7lL3J2OPTZxWjVNhp39uIPmQfcSdrwDd19rN+f9Nd2C3qGDZfbbr3zeedLAPTK79zRrlasW3OySdXcLujNe+nc4/vjY+l9+uYG88EL40R01nl7973WqNSdK3KOLFvRa8sUXX8gNN9wggwYNkrPOOkvuueceKfrfxIZvvfWWjBo1Svr06WP+f/PNN33XU1ZWJrNnz5ahQ4fKaaedJjfeeKPk5OTU4p4AAADUfd79za2EVkxncu6nW7cymTevMN5SqcIMEudMuO3lrVtb8uGHeTJnTmHS7W3TJpac+yXDQS3ozu3RkeG1Fb5///JK22knk0dSshL3oKnKaqIF3U5c9+/PkNWrG5j/g0rcw4ziHsSuCCgvT+xu4BQ78RLbrk2bqpauOd/D+h6xuWcIYJq16CJBrwWWZZnkvKCgQJ555hmZO3euvPHGG/LAAw/IJ598IlOmTJExY8bImjVrZPTo0TJ58mT57LPPPNf1+OOPy0svvWSeu3z5cjl06JBMnTq11vcJAACgLuvatVxuvTWxNLyqZdx+ZddVH8W9YiU6kJ+7tbMq05ZVtQVdR4afNq3YJGzuFvQw8437CVuOnmwUd+c2OEvug2jrtFeCbrcs79kTS4Hat9dYx+7bvDlLJkxoLJdc0tjzhICdmAfNgx6myuB/7XOOFnSrUnWA/n1atozdv3VriLp5B3s9q1YdTjiJ4JWgM81aNJGg14KPP/5YNm7caFrNu3btKgMHDjQJ++rVq2XPnj0yduxYGT9+vHTq1El+9KMfSZMmTeSDDz7wbUGfNm2anH766dKlSxf5wQ9+IO+//36t7xMAAEBd95OfFMvXvlYeODVZdbj7eHuP4l7xmLKyjCol9GF4t6DbU4R572flFnQ54ir6oHsvdybuQScMXnyxgWzZEkttvEq8nS3o9nqaNKl8MmT79qzAAerspNYrQQ9Tgm+fZHCXuDs5S9yryj4Jc9xxic+3T0Q43xO18fdF1dEHvRa0adNG5s+fL61bt064Py8vTwYPHmwuqqSkRFauXCnFxcWm3N2Ltrbb9u/fb1rRtWweAAAAVedMtKrTgu6lqi3o7im0vPo3JxsVXVti7bJp9wmAjRuz5Le/bRh/Hb9SbOf9sRb09JS465Rjl1zSRMaNK5HhwyuC47c9b72VJRMnxlq+9+7N9Z1izU7c7Tjo396rWsHmnHvcfk7FIHFWtRJ0HfTNa5A4Z8WBvn+qn6B7n4ShD3rdQQt6LWjRooXpd24rLy+XRYsWyZAhQ+L3aal73759Zfr06fLjH/9YOnbsGLjOhx56SM4880xZv369/PznPz+i2w8AAFBf2QmgTiMWdu7uZHTwsar0QXcnSsmmZfPi3nZ7FHDbnXdmBw4S51WinUoLa9gSd/tEhTMGs2YdI7t2ZcpddzVK2Aa/FvS3387yTMT1JMVTT1U0p9uJu7MVPChBd540sBPfinnQKz/eXQnh5dChxGTefm/4lbhXld9JGO8+6JS4RxEt6Gkwa9Ys2bJlizz33HPx+1q2bGlub9iwQe6991456aST5MILL/Rdx6WXXirDhw83LfMTJkww/debBc394VLVkThrkv3a6dyGuo4Ypob4pY4Ypo4Ypob4pY4YxsycWSR9+pSbvt9hYjFjRqHMnNlI8vIqHux+Xvfu5dK9e1m8/7AmYe7HOG9r4uy87XWiQFv3g7ZPkzpnMuuVQDpbjpPtqy53tiBX9X2ijw/zGs4+6PbjnYmj87rf9nz5ZeL9diKuJewjRpTKsmWHZezYJmZk99h+SbyVuXnz2JzglpW4js2bM2XatGyPedArknv3/oWZq1xb0PV5zhJ3ve08oaHvl1atqpagP/ZYQznvvNL4Nri3z30iQl+XFvRoIkFPQ3L+1FNPmYHiunXrFr+/efPm0rNnT3PZsWOHaWEPStA1gVf33XefnH322bJ27Voz0FxYrVo1l3SLwjbUdcQwNcQvdcQwdcQwNcQvdcRQ5Kabwj92+nSRadMqWqGzsrKkdevKMRwxQgf4il1v1aqJuHo6JsjObpywvFWryo854YRmgetwJ/WNGjX0beFt2zZ4Xap588QmeK99DJKdfYy0bp2kLl9Edu2K/V9amhl/Dee+NG7cxPN5zu3Jz0+8315ndnZsnf87bJaiotjfyk6O27RpKm3bxvpn2y3b9jp+8YvE12vatHFCP+727ZvFR9GvStVAfn4Ds367O0WzZrE4OdvZdHnnzlIl06dny/r1FScf3H9jOwa2zMws2bu35rp1oOaQoNeiGTNmyOLFi02Sbiff27ZtMyOx68BxtlNPPVXWrVvnuQ4d/V2T+Hbt2pnbjRo1MoPLHThwoErbsn9/bujSo5qmZ/P0YCCd21DXEcPUEL/UEcPUEcPUEL/UEcNUxRLEBg3KJCen8qTbbdtqlhnLfvLy8iUnp9x3HQcOFEpOTkVzZl6etrwnJqZ5ebmBW5OV1TSh9+rhw7q+xCTdTkwPHYrNoR60X199paXhFUl6Tk7w6//sZ8fI4sUN43OMFxQUS05OUYgW9NjrFRWVS05OLNMuKMiOb/vevRrbykm6c3v27GkcT2v0/n37dBuaSoMGsXUWFcVu5+XZt2Oxsv8uzZs3lUOHKmL3+ee5kp+vr1lROn/wYIHs3q3Zb2x7c3NzK7WYl5Vplh1cNnDgQGwb8vL05IWW8MfidOhQg3i8dR8yTPN3+OpYtXKl/TfNMH/jygMRVqxv48bY/yTo0UOCXkvmzZsnS5Yskfvvv18uuuiihIT7hRdekJdffvl/H0QtqdksnX1Om82cOdNMxXbttdfGB5rbuXOnSeqrQn+I0/1jHIVtqOuIYWqIX+qIYeqIYWqIX+qIYfXMm1cgs2Y1NnOge8WvU6fyhHLioBi7S5y9BhvTVuWgdTj7uWu/+qAS6awsK3BdSpcvWXJYbropW+bO9d5Hp6lTi+Xmm4ulXbuKlu0w7ytnibv9eOf++83F7ly3c+5yvd8ui9cqB71t99/XdentihL32HJ3+fehQxmVBu7TcnDntuh2u/fP+ZxGjSzPbdf16PPsagb7b+/cZ73tHoU9DO1a8dFHWZ7vuWbN+JDXFQwSVwu0ZP3hhx+WSZMmyYABA2Tfvn3xy6hRo8z/s2fPNom2zpO+atWqeAKuI7rrcp1eTV111VWyYMECefPNN03r+8033ywnnniiKXMHAABA7fjud0tl506RXr28h+4+8cSKhMhv1PQbbyyS3r3L5PLLS5L2ZU42gJ1z+dKlBaGTeT/6/HPPLZMNG/LlnHNCdK529Quv6jzo2jd7+vRGokWhiQl68PN37swwc5g7X7diIDcrITYVI7EnjnTuHkAtN7fy30C3yR40Tk9weMXQud3uQfpsum1akm8PeKfrcm6LrYl3ZX+oEeK91tdUiwY8PPCAz5x0SBta0GvB66+/bhLsRx55xFyctm7dahLuu+++2/Q779Chgzz44IPSq1cvs1wHjRs3bpxZh47srgl6QUGB3HHHHfLll1/K0KFDzToz/b75AQAAUOs6dqzI1nRwMi+/+EWxubi5W29VsgHX3Alj0IBlfqO4O/mdeKhpzunmHn/8GDlwICNUC7rt979vWCkBthN0ez/tBN1OsN2j2btPfmgLujt+OkCdfbLAb0565zR3OivAwYOVt33v3kzp3btZfJBB+xBeT4aceWap9O1b/bjrdvv9jf1SheqOFo8jhwS9FlxzzTXm4qdfv36ybNkyz2U6R7om8TZNxJOtDwAAAOnlHPSrffuqJUFh5tN2cydk1U3Q33knT3bvzpQePaqXKGpimp+fYRLOMNyjzb/3Xpb07FmWtAVdW8qdI7bbNDl3jlbv/F8TaI1txVzm3ic3vvpKE/SMSvG0S+eTzUlvx8GPcwYA+7V1W1auTK0129mCHrbtrrrzrePIIUEHAAAAjgBNdnNyMqRjx6olQd26JSbHYfoPu0uagxL0oBL3zp0t6dw5XHLt5d1382XLlkz55jerl6Br8uw8QeGci9xJH6P74T6Zoc+3E+mGDe0Sd8vVwl7RRz22PHEdmzZlVZpzXZN++2RBsjnpVdjZj4/UNIdeJ2E0GdcKBaeqTueGI48EHQAAADgCYslu1RMgTehfey1fzjsv1nG4Xbvk63An3X6t8Nrn+UglhUrnk2/bNnyC707QNSF3zknuV+JuJ+juExGanLtb0J3JqjPxthN398mNu+6qXMM+e/Yx0rNneWCJe9gW9LAnS3T77JMJNZGgt25dLgcOJL4gLejRQ8dlAAAAIGL69KnIsL/2teTl5u5WYHeJdlX6n9cmTdCdFQKakIYZJM5OzN0nIjQ5t1vd7Zg4TwI4S+Ir5rJPvp3792fKW281qJESd6egUvRkAwP6yciwPNfbunXiNungeGFONqB2kaADAAAAERamBT1sH/QwyWhtcyaOmlyHKXH3S9D18e4WdOc+X311dqWYVfWkRZgS97CjsAcl6NU9meL3N27TJnG7KW+PJhJ0AAAAIIIGDYplmhMm+GSp1RjFPWot6Co720poMXdue1CJu1elgCbn7mnUtKTfLmdft64iAF4l8GHUZIl7UIL+i18kmWPOh9/+TJyYOJ0fI7hHEwk6AAAAEEHLlxeYgeYGDUpe4j5lSiyJv/jiksA+6O7+1lHgnDNcE27nQGZ+Je72/rn3U8vQP/44s1Ipule5uH1S40i0oPvNO+6Wmem/rvHjS+Svf82XadOKaqQF/YwzyuQPf6iY8+/YY6P3XgAJOgAAABBJmriGHWTu4otL5R//yJOFCwvrXIl748aJ+5ifX3G9sNC7Bd3eP/d+3nJLtjzyyDGVEm+vBN0eLM/rpMWaNY6NcAnTB/2qq2InSgYPLpWf/cw/wQ76e+j26Yj+XbpUbcq7oHU619WiBQl6FJGgAwAAAPXAiSda8eSsbpW4J952JuW7d2d4JpN2abvOh+7HmZQ7p1oLE5NevcpTStC7dy+XDz/MkxdeKJCbby6WDRvyEkr5qzJf+ciRpXL22aWmtT3MqOtBVRLOZTpIHKKHBB0AAACoZ+pSgn7rrYktzAUFFdd37YqlK+5W5Io+6P7rdSblQfvtXNatW5nMmVMYOMhbmBJ3e8o5PUmgLeEdOlie2xCmokGT+GXLCuSjj/Kkd+/kU9gFrdO5DWHL8FG7SNABAACAeuZnPyuuMyXuffuWy/btuXLCCeWVpkL7/PPY9c6dq5Oge18PSlqvv75EfvCDWHm6zkXvpbpTkwWV2YdJ0o8/Pty85UEnI5x//7AD2aF2kaADAAAA9XAe9S1b8urEIHGqRYuKUvfDhyuy1tLSDNMS3qlTeahp1lJN0LOyrIQYTplSVK0S97CqesLkuOOsGmtBDzsVHGoXCToAAABQD3kNAhbFEndbo0beyaeWh7v7qYdL0K2QfdAt3+TWK15+25mMV2t/mD7oRypBpwU9mkjQAQAAgHooaGqxKHIn4c75ut0JdsU0axmh9j9s2bf7cV4JdHVb0GsiQddKAy9hp0xzvh4JejSRoAMAAAD1kPZvXrr0sFxySaxPddRb0P0GX9MWbndSHKYPunNfg5JqZyIfpgW9ugm6V2u/s6Q+DL+p0dq3r1j5V1+F69jOIHHRFOGPKAAAAIBUDB9eZgY1e/HFhpFP0P0GX9ME2l0NEJtmzQoscXcm0mFHcXcn6F4VB8lK3HU6NC9eJxPCDhKXLEF37sOBA+FWyjRr0RThjygAAACAVH3taxVZbJMmVp0rcdckuXot6OH6oDtbsd2D6Hkl6Mla0P26EXhta1W7HPiVsldlPd/7Xols354pQ4cmn7INtY8SdwAAAKAea9++IqkbMaJUosqvZVpbh90JdlVHcQ9qQQ8qcfcqQU82zZpfv/JYq3+4x4Zp9V6x4nC1EvQHHyyUNWsOB45sj/ShBR0AAACoxxo3Fpk4sVh2786Iz/Fd10rc/VrQ7f81gS8pSUyAnQloUKt3UIm79yBxwVUIVUmWq9qC3rlzxWufeWZZwnr0ZILXSQDULSToAAAAQD13zz2V5/OOmuxsv/JtHcU9uMRdk/uSkqAW9KASd+/rKj8/o8ol7lVpFa9qC3qrVpasXZtvtsHZf137vesUbPv3k6DXdZS4AwAAAIhsC7q2cLvL3ytK3DN8k/vEPujhWtDdpfBeI6K3beud7F94Yaz7wDXXFEtYVR0kTvXrVy49eybW9uuJhWOPrfq6ED20oAMAAABIO7+W6VgfdAnsg+6V3DvXF5ygW74t6Lm5lR9/8sneHd8ff7xANmzIkkGDyo5YC7of3W5tQUfdRws6AAAAgMiWuGuC7k7en3++oYwd21g2b870TdCdSXnYFnT3oHBeLeh+Cbr29dd+4emYyq5DB0uuvTbWcj9sWHQHAkRytKADAAAAiHCJu/ZBT0ycFy5MzNi9po9zPidomrWgEvc2bSo/r1kzqTFBo9CHsXjxYXn++SZyxx1FcvzxlnTpki9duqS4UqQVCToAAACASE+zlmxgNk1OqzvNWtAo7lOnFsnBgxnyySeZ8v77VRxyPYTSFBu7zzuvTK64QiQnxxLLEundm+S8riNBBwAAAJB22dnh+6C7tWzpNUhc2GnW/Pugt2wp8uijhXLokMjtt2fLmDE1O02d3ZcesJGgAwAAAIj0KO7J5h73StCdSbm7Bd25vqASd5uOkP7gg4UStRZ01D8MEgcAAAAg0iXuyVrQvUrcGzf274P+6quHE9bvN0hcTeraNdZc3rNnWY31QUf9Q4IOAAAAIO38Bl/TEvRkfdBbtbIC73Mm4TfcUCQ9epSH6oNekxYvLpDrriuWZ54piN9XVlaNidBRr5GgAwAAAEi7s84qlRNPLK+xFnRn2XtQuXttJegnnmjJr35VZKZEs1HiDjcSdAAAAACRaEH/5S+LKt2vSXN1+qA3bepct7Pc3X+QuNqew5wSd7iRoAMAAACIhBEjSmXYsMRmZU2ok5W4H3dccALvTNDT1YLupXNnMnQkYhR3AAAAAJGgCfLzzxdIr15NJScnM35fshL3ZMud/dudLeYqM7P2E/RXXsmXzZuz5JxzmGcNiUjQAQAAAERGRkZi0qwJtfO233OCBJW4O5/rTt6PlP79y80FcKPEHQAAAECkOBPyZK3jdsv3n/6U77u8eXMrVCt5bZe4A24k6AAAAAAixZkoh0maNaH/xjfK5YorSszt888v9S1xD0r4SdCRbpS4AwAAAIiUxBL32P9vvpkvF1zQRIqKKtezZ2XFWsjvvrtQhg8vlfPOK/VtQW/Y0Aooca+pPQCqhxZ0AAAAABEucY8l1D16lPsOqmY/XlvKR48ulebNxTdBLyvL8E3QaUFHupGg15IvvvhCbrjhBhk0aJCcddZZcs8990hRUWyex7feektGjRolffr0Mf+/+eabvuuxLEsef/xxOffcc6V///7ywx/+ULZv316LewIAAAAcWX4jq2dmeg/ilmwQOeec6IWFics6dCgPvR7gSOMtWAs0qdbkvKCgQJ555hmZO3euvPHGG/LAAw/IJ598IlOmTJExY8bImjVrZPTo0TJ58mT57LPPPNe1ZMkSWbhwodx2223y/PPPS8eOHWXSpElm3QAAAEB9YJesh52nPFnLt3N5QUFiC/pxx8XK5995J6+aWwvUHBL0WvDxxx/Lxo0bTat5165dZeDAgSZhX716tezZs0fGjh0r48ePl06dOsmPfvQjadKkiXzwwQee61qxYoVMmDBBhg8fLqeccorccccdcvDgQVm/fn2t7xcAAABwJDgTameC7tfCXZWWb3cLul0+37lz7UyxBgRhGIRa0KZNG5k/f760bt064f68vDwZPHiwuaiSkhJZuXKlFBcXm3J3L1OnTjWt5raMjAzTQp+bm3uE9wIAAABI3yBxqbSgJ0vQgaggQa8FLVq0MP3ObeXl5bJo0SIZMmRI/D4tdb/44oulrKxMbrrppoQk3Elb352WL18upaWlMmDAgCptk3MwjNpmv3Y6t6GuI4apIX6pI4apI4apIX6pI4apIX5HNoaJCboVf4xfIq6PT/a36N69TLZuzZJLLy2tN3+3VN+H9SUO9QkJehrMmjVLtmzZIs8991z8vpYtW5rbGzZskHvvvVdOOukkufDCCwPXs2nTJpk5c6ZMnDjRtNJXRatWrqEt0yAK21DXEcPUEL/UEcPUEcPUEL/UEcPUEL8jE8NjjnEubyJ2IWrjxt7raNu2WfwxfjZsENmzR+SUUxwjxtUTvA/rDxL0NCTnTz31lBkorlu3bvH7mzdvLj179jSXHTt2mBb2oARdE3kdHO7ss8+WG2+8scrbsX9/rlhp6majZ+r0SySd21DXEcPUEL/UEcPUEcPUEL/UEcPUEL8jG0PLaqLt5eb64cOHJScnNr1aSUm2TrxWaV0HD+aGag3W6ddycqTeSPV9aD8f0UGCXotmzJghixcvNkm6nXxv27ZNDh06lFC6fuqpp8q6det81/Puu+/KddddJ0OHDpU5c+ZIZjXmg9APcLp/TKKwDXUdMUwN8UsdMUwdMUwN8UsdMUwN8TsyMXRPs2Yvd47u7k40j+a/A+/D+oNR3GvJvHnzzBRp999/v4wcOTJ+v063Nn36dDPQm23z5s3SuXNnz/X8+9//luuvv970addp2ho2rHwGEQAAAKjLEhP0iuNkv3apqgwSB0QZCXot0JL1hx9+2JSk62Bu+/bti19GjRpl/p89e7bs3LnTzJO+atUqufbaa81zdUR3Xa6Dx6nbb79d2rdvL9OmTZMDBw7E11PIcJQAAACoJ5xJubM9qkUL78cz2BnqC0rca8Hrr79uEuxHHnnEXJy2bt0qCxYskLvvvtv0O+/QoYM8+OCD0qtXr3hf83Hjxpl1NGrUyNxW55xzTsJ6dI71MWPG1OJeAQAAALU7zVqXLuWej6cFHfUFCXotuOaaa8zFT79+/WTZsmWey3SOdE3ibc7rAAAAQH3kTLid10891TtBr8aQTEAk8VYGAAAAECnOknVniTst6KjvSNABAAAARLgFvaI/eqtW3kOV04KO+oK3MgAAAIDIJujOPujasv7KK/ly661FjvssBolDvUGCDgAAACBSiosrrrdokdhq3r9/uYweXRK/TXk76hMSdAAAAACRkpNT0SR+7LGVlztb1SlvR33C2xkAAABApOzbV5Gge5WvOxN0WtBRn5CgAwAAAIiUnJzgNMWZlNP/HPUJCToAAACAOqVBg4p+6Zb3wO5AnUSCDgAAAKBOcbagk6CjPiFBBwAAABBJp51W5nk/CTrqKxJ0AAAAAJHy4ouHZeTIEpk/v8BzuXOQOBJ01CeOtzYAAAAApN/gwWXm4seZoJeX1842AbWBFnQAAAAAdYpz7nNa0FGfkKADAAAAqLNI0FGfkKADAAAAqLNI0FGfkKADAAAAqLMsKyPdmwDUGBJ0AAAAAHVWq1aMEof6gwQdAAAAQJ01dKj/aO9AXUOCDgAAAKDOGju2JN2bANQY5kEHAAAAUOesWnVYdu7MkAsuoAUd9QcJOgAAAIA6Z8iQMhkyJN1bAdQsStwBAAAAAIgAEnQAAAAAACKABB0AAAAAgAggQQcAAAAAIAJI0AEAAAAAiAASdAAAAAAAIoAEHQAAAACACCBBBwAAAAAgAkjQAQAAAACIABJ0AAAAAAAigAQdAAAAAIAIIEEHAAAAACACSNABAAAAAIgAEnQAAAAAACKgQbo3AOmRkZH+107nNtR1xDA1xC91xDB1xDA1xC91xDA1xC91xDD9MST20ZNhWZaV7o0AAAAAAOBoR4k7AAAAAAARQIIOAAAAAEAEkKADAAAAABABJOgAAAAAAEQACToAAAAAABFAgg4AAAAAQASQoAMAAAAAEAEk6AAAAAAARAAJOgAAAAAAEUCCDl/FxcXyrW99S959991Ky3Jzc+Wss86SF154IXAdTz75pHncaaedJrfeeqsUFBTElxUVFZn7Bg4cKMOGDZOFCxcGrmvLli3yne98R/r27Svf/va35cMPP0xYvnr1ajnvvPPM8smTJ8uXX34pUYvf7t27ZdKkSWYbzz//fHnppZcC13E0x88vhv/4xz9kzJgx0q9fP7n00kvl7bffDlzH0RjDL774Qm644QYZNGiQ2fd77rnH7Kv69NNPZfz48SZ+I0aMkL/+9a+B6wraJ8uyZPbs2TJkyBDzWvfdd5+Ul5f7rivZa+vfUv/e+lrjxo0zj0+XoBhu3LhRrrjiCvOeuvDCC2X58uWB6zpaYxj0+eJ9mFr8eA+GE+Y7nuOZYEH7xjFNckH7xfEMfFmAh8LCQmvy5MlWt27drHfeeafS8ttuu80se/75533X8corr1gDBgyw/vSnP1mbNm2yRowYYd15553x5b/61a+sSy65xPrwww+ttWvXWqeddpr18ssve64rPz/fGjp0qHXvvfda27dvt2bMmGGdeeaZ5n6l6+/Tp4+1YsUK66OPPrK+//3vW9dcc40VpfiVlJRY3/rWt6zrrrvO2rFjh7V48WKrV69e1tatWz3XcTTHzy+GOTk5Jia/+93vrF27dlmPPPKI1bdvX+u///2v5zqOxhiWl5dbY8eOta6++mrr3//+t/Xee+9Z559/vtluXab7e9NNN5l9ePTRR038Pv/8c891JdunBQsWWN/85jfNa/z973+3hg0bZs2fP993u4JeW//v16+fWadu94033mg+L/q8KMVw79691sCBA605c+ZY//nPf6zVq1dbvXv3tt544w3PdR2tMQz6fPE+TC1+vAfDC/Mdz/FMML9945gmHL/94ngGQUjQUcm2bdusUaNGmQ+6V4JuH6zqhzvoB+3KK6+0HnrooYTn6Qf+8OHD5ktADyic6/7tb39rvgS8LF++3Dr33HPjP/L6v26D/fo333yzdcstt8Qfv3v3bqt79+7mSy8q8XvttdfMl2tubm78sddff721ZMkSz/UcrfELiqH+6AwaNCjhsXrb70foaIyh/thqzPbt2xe/78UXXzQH3W+//bY5eLZ/hNUPf/jDhBg5JdsnPah3fgesXLnSGj58uOe6kr32Aw88kBB7/RvpAYbXCcJ0xvDZZ5+1LrrookoH+D/96U8913W0xjDo88X7MLX48R4MJ8x3PMczwYL2jWOa5IL2i+MZBKHEHZWsW7dOBg8eLEuXLvUsOb7tttvk9ttvl2OOOSZhmZaHde/e3VwvKyuTf/7zn6bUxqYlPCUlJfKvf/3LXEpLS02Zjm3AgAGyadOmeGmdrssuOdP7dXlGRoa5rf/379/flPnZy52v1b59eznhhBPM/VGJn95/xhlnSLNmzeL3Pfzww/Ld737XXCd+yWN43HHHycGDB2Xt2rWmLPO1116T/Px86datm1lODEXatGkj8+fPl9atWyfcn5eXZ7alZ8+e0qRJk/j9uk/2PmhXAt3nzz77LOk+aQn4f//7Xzn99NMT1vX555/L3r17ze1zzz1XfvOb38TXFfTa7tdq3Lix9OrVK748KjG0y93ddJkihjFBny/eh6nFT8tXeQ8ml+w7nuOZ5IL2jWOa5IL2i+MZBGkQuBRHpSuvvNJ32aOPPmp+nPUAwU37ounBq/rqq69Mf5i2bdvGlzdo0MB8Ie3Zs0cyMzPl+OOPT/hR1INhfY5+YbVs2dL0a2vevLlZtm/fPunSpUvC67Vq1Uq2bdtmruuBhPO17OX6WlGJn/bD69Chg+nr94c//MHsv/Zx1T4+ivglj6H+YFx11VUmbhoD/dHSA9XOnTub5cRQpEWLFvEYKP1xXrRokelfqvsQtI364677rPuebJ90Xcq53E5odbne/9xzz0mjRo3MfcleO9nyqMSwY8eO5mLbv3+/rFmzRv7v//7P3CaGEt8Wv8+XJoS8D6sfv6ZNm0qnTp3i9/MerHoM9TteP9Mcz1Q/hv/5z3/kpJNO4pimmvE79dRTOZ6BLxJ0hLZ9+3ZZsmSJrFq1ynN5dna2uajCwkLzv/ustN7Ws9Z6ttBrmdLldiuWTQfC8FuX/XpBy6Pg8OHDsmLFCvOlqyc6tJVDv5i1lbh3797ELwQ9u6wnOqZMmSLDhw83Z57vuusuM4iJ/tgRw8pmzZplBoPRg2wdYCZoG/W6c5+D9skrvu742QlCmPglWx6VGDppDDQp0gMhu9WIGErgtiht9eF9WP34ObeF92D1Yrhjxw6OZ2rgfcgxTfXjp8kzxzPwQ4KOUPTDP336dPPl6y779GKfbXd/mPW2lrzpmUKvZcr+QnKvz+vx9mP9lutrRUVWVpY523nHHXeYs51a9qcjeC5btsz8mDkRP29adqzvRf1BUxrDDz74QJ5++mm58847Ex5LDGOJ5VNPPSVz5841ZXO6jXo23b2NXvubbJ+cP/7uWHvtc7LX9nstbc1OJ3cMnSeLfvzjH8vOnTvl2Wef9f07H60x9NsW1bBhw4TRh+1lvA8TtzPZ9xPvwerHUMvaOZ5JLYZ6HMMxTfXjx/EMgtAHHaHoVBobNmyQmTNnmvI5veh9v/zlL+Xqq6+u9Hj90tYPeE5OTvw+7R+jP+x6Fq9du3Zy4MABc59NS270y8Hrh1wf71yX0tt2CY7fcucZw3TTbT355JPND5ntlFNOMeWebsTP2+bNm+XrX/96wn09evQw70W3oz2GM2bMkCeeeMIkmDoNU9A2ukvZbEH7pMuUXSLrvO61z3Utfn4xtPv6Tpw40ZQDavKun2s/R2sMgz5f2p+R92GwZN9PvAerH0P18ccfczwTQtC+6TKOaYIF7deuXbs4noEvEnSEoh9WLb9ZuXJl/KIfZD0D/etf/7rS4/ULW8+gvv/++/H7dPAJ7TOjX0j6JaTXnQPH6GP1Oc4ve5uW/OgJAj3bqPT/9evXm/vt5c7X0h8IvdjLo0C3RQ+m9EynTcvstF+6G/Hzpu857WrhpAdazj7BtqM5hvPmzTPlm/fff7+MHDkyYR/0JIddLqd0m/22MWif9DtBB41xLtfrep9XopXstd2vpS2sWlaervegXwy1P7q2eOgAXL///e+la9euges5WmMY9PnifZha/BTvwerHUBNyjmdq5nPMMU2woP3ieAaBAsd4x1HPbx50pdOwOKclKSgoMPOz2nRu1v79+1uvvvqqmVNx5MiRZq5F57Qwep8u08foY//4xz/Gl+u6dJ1Kp/EYMmSIeb5OwaX/67Qo9lQv69evN/NvLlu2LD5n47XXXmtFKX66DzpNk+73zp07rUWLFlk9e/Y0c1Yq4pc8hhs2bLB69OhhPfHEE2a6D/1ft1vn21XEMDZFmMZo7ty5Zvudl9LSUjN36k9+8hMTs8cee8xMmWTPYVxUVBR/XJh90ufre1r/PnrR6wsXLowv379/v5WXl2euJ3vtTz/91EwTo/fb8yfrNHvpmD85KIZLly61vv71r5s5p533HzhwwDyXGFpJP1+8D1OLH+/B8JJ9x9s4nvHnt28c04Tjt18czyAICTpqLEHX6/p4J/2RPuOMM8xcmdOmTbMKCwvjy3TuxqlTp5ofd/2S1y8n92s7169fOpdddpn58b/88sutzZs3JzxeH6vzuer6Jk+ebH355ZdW1OKnX4RXXXWV9Y1vfMO64IILEr48iV+4GOrcqzpHum7n6NGjrb/97W/xZcQwtr+63V4XpQdS9ntQf8yd8dM46+P0IDvMPunB+t13320NHDjQGjx4sDVr1qyEA3H9jnDO2xr02urPf/6z+Vzo3K46t3K65lwNiuGECRM877fnmyWGVqjPF+/D6seP92B4yb7jbRzP+AvaN45pkgvaL45n4CdD/wluYwcAAAAAAEcafdABAAAAAIgAEnQAAAAAACKABB0AAAAAgAggQQcAAAAAIAJI0AEAAAAAiAASdAAAAAAAIoAEHQAAAACACGiQ7g0AAADV9/Of/1xWrFgR+JjXX39dOnbsWGvbBAAAqifDsiwr3RsBAACqJzc3VwoLC831l156SRYuXCjPPfecuV1eXi5lZWXSrl07ycrKSvOWAgCAZGhBBwCgDmvevLm52Nc1EW/Tpk26NwsAAFQDfdABAKinPvvsM+nevbv5X+n1l19+WS6++GLp27ev/PSnP5VPP/1Uxo0bZ25feeWV8sUXX8Sf/+qrr8qIESPMsssvv1zWrVuXxr0BAKD+I0EHAOAo8tBDD8m9994rjz32mKxdu1a+973vmcuSJUtk37598rvf/c487l//+pfccsstcv3118uqVatk1KhRMmnSJPnkk0/SvQsAANRblLgDAHAUGT9+vGkRVz169JBTTjnFtKirCy64wCTmasGCBTJ27Fi55JJLzG1tZX/vvfdk8eLFZmA6AABQ80jQAQA4inTq1Cl+PTs7Wzp06JBwu7i42FzfsWOHKYdfunRpfHlJSYkMGzaslrcYAICjBwk6AABHEfdo7pmZ3r3ddPR3LWm/7LLLEu7XJB4AABwZ9EEHAACVaOm7Di530kknxS/amv6Xv/wl3ZsGAEC9RYIOAAA8+6rrvOpPP/207Nq1S5588klzOfnkk9O9aQAA1Fsk6AAAoJJ+/frJfffdJ88++6yZam3ZsmUyZ84cOf3009O9aQAA1FsZlmVZ6d4IAAAAAACOdrSgAwAAAAAQASToAAAAAABEAAk6AAAAAAARQIIOAAAAAEAEkKADAAAAABABJOgAAAAAAEQACToAAAAAABFAgg4AAAAAQASQoAMAAAAAEAEk6AAAAAAARAAJOgAAAAAAEUCCDgAAAABABJCgAwAAAAAQASToAAAAAABI+v0/lJIfh1bXfPkAAAAASUVORK5CYII=",
+ "text/html": [
+ "\n",
+ "
Wie besprochen habe ich das verhalten der Achse untersucht, nach dem "Betriebstemperatur" erreicht wurde.
+
Ebenfalls habe ich begonnen mit der Optimierung des Regelkreises.
+
Nach Recherche habe ich eine grobe Temperatur kompensation modelliert aufgrund eine Papers der EFEL über einen Aufbau mit vergleichbahren genauigkeitsanforderungen
Es wurde über Nacht gemessen, mit einer Zykluszeit von 20s. Dammit wurde die Aufheizzeit verkürzt und mehr messungen durchgeführt wie mit einer Zykluszeit von 50s. In der Zeit, in der die Raumtemperatur konstant/glatt gestiegen und die Baugruppe aufgeheizt ist konnten akzeptable resultate erreicht werden. Die Temperaturschwankungen am Morgen hatten einen erheblichen einfluss auf die x Achse. Es ist noch ein leichter Anstieg erkennbar welcher eine korrelation zu der Raumtemparatur aufweist.
Die Raumtemperatur ist über den "stabilen" Zeitraum konstant gesunken, was Statistisch eine starke negative korrelation mit der Position der X Achse hat.
Von der EPFL gibt es ein Paper, welches sich mit der Thematik von thermischen Einflüssen bei "high precision positioning" befasst. (THERMAL BEHAVIOR OF AN ULTRA HIGH-PRECISION LINEAR AXIS OPERATING IN INDUSTRIAL ENVIRONMENT Emanuele Lubrano, Prof. Reymond Clavel) In diesem Paper wurde eine 10x verbesserung erreicht. Ich habe die verwendeten Methoden getestet (etwa 40' investiert). Ich habe ein modell annhanden von einer Statischen Messung berechnet und dann an den neuen Daten(oben) getested. Ich konnte eine erhebliche verbesserung erzielen.
+
Kleine unterschiede konnte ich schon nach einem kleinen Datensatz korrigieren, bei grösseren Unterscheiden überreagiert das Modell noch etwas... das könnte aber mit bessere Datenaufberreitung und mehr Daten erheblich verbessert werden.
Es kann mit dem aktuellen Aufbau in einer Kontrollierteren umgebung die geforderte Präzission erreicht werden. Es könnte mit relativ wenig Aufwand durch einbindung von 3-12 Temperatursensoren noch eine spürbare Verbesserung erreicht werden.
Der Geschwindigkeits regler war sehr vorsichtig eingestellt. Von Beckhof ist ein PI-Regler vorgegeben jedoch wäre ein Lead regler mit DC-Verstärkung besser gewesen. Ich konnte trotzdem die Bandbreite verdoppeln. Die Dämpfung ist knapp unter dem Idealwert und kann bei Bedarf noch reduziert werden.
+
+
+
+
Regler
+
Gain Margin
+
Gain Margin
+
Bandbreite (rad/s)
+
+
+
+
+
Alt
+
11.5
+
97
+
497
+
+
+
Neu
+
5.31
+
53deg
+
1080
+
+
+
Ideal
+
6dB
+
60deg
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/notebooks/Messbericht26725.ipynb b/notebooks/Messbericht26725.ipynb
new file mode 100644
index 0000000..bcc98b8
--- /dev/null
+++ b/notebooks/Messbericht26725.ipynb
@@ -0,0 +1,128 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "ee798c5daafd13a4",
+ "metadata": {},
+ "source": [
+ "# 📊 Resultate Messung\n",
+ "\n",
+ "**Autor:** Roman Berti\n",
+ "**Datum:** 26.07.25\n",
+ "**Versuchsbezeichnung:**\n",
+ "\n",
+ "---\n",
+ "\n",
+ "## 1. Bearbeitete Punkte\n",
+ "\n",
+ "- Wie besprochen habe ich das verhalten der Achse untersucht, nach dem \"Betriebstemperatur\" erreicht wurde.\n",
+ "- Ebenfalls habe ich begonnen mit der Optimierung des Regelkreises.\n",
+ "- Nach Recherche habe ich eine grobe Temperatur kompensation modelliert aufgrund eine Papers der EFEL über einen Aufbau mit vergleichbahren genauigkeitsanforderungen\n",
+ "---\n",
+ "## Messung\n",
+ "Es wurde über Nacht gemessen, mit einer Zykluszeit von 20s. Dammit wurde die Aufheizzeit verkürzt und mehr messungen durchgeführt wie mit einer Zykluszeit von 50s. In der Zeit, in der die Raumtemperatur konstant/glatt gestiegen und die Baugruppe aufgeheizt ist konnten akzeptable resultate erreicht werden. Die Temperaturschwankungen am Morgen hatten einen erheblichen einfluss auf die x Achse. Es ist noch ein leichter Anstieg erkennbar welcher eine korrelation zu der Raumtemparatur aufweist.\n",
+ "| | |\n",
+ "|--------|--------------|\n",
+ "|Messdauer |15.5h |\n",
+ "| Zyklusszeit| 20s |\n",
+ "\n",
+ "### Stabiler Zeitrahmen\n",
+ "\n",
+ "\n",
+ "\n",
+ "### Gesammmte Messung\n",
+ "\n",
+ "\n",
+ "## Raum Temperatur\n",
+ "Die Raumtemperatur ist über den \"stabilen\" Zeitraum konstant gesunken, was Statistisch eine starke negative korrelation mit der Position der X Achse hat.\n",
+ "\n",
+ "\n",
+ "\n",
+ "## Temperataurkorrektur\n",
+ "\n",
+ "Von der EPFL gibt es ein Paper, welches sich mit der Thematik von thermischen Einflüssen bei \"high precision positioning\" befasst. (THERMAL BEHAVIOR OF AN ULTRA HIGH-PRECISION LINEAR AXIS OPERATING IN INDUSTRIAL ENVIRONMENT Emanuele Lubrano, Prof. Reymond Clavel) In diesem Paper wurde eine 10x verbesserung erreicht. Ich habe die verwendeten Methoden getestet (etwa 40' investiert). Ich habe ein modell annhanden von einer Statischen Messung berechnet und dann an den neuen Daten(oben) getested. Ich konnte eine erhebliche verbesserung erzielen.\n",
+ "\n",
+ "Kleine unterschiede konnte ich schon nach einem kleinen Datensatz korrigieren, bei grösseren Unterscheiden überreagiert das Modell noch etwas... das könnte aber mit bessere Datenaufberreitung und mehr Daten erheblich verbessert werden.\n",
+ "\n",
+ "| Farbe | Typ | STD [um] |\n",
+ "|-------|------------|-----------|\n",
+ "| orang | Korrigiert | 0.0797 |\n",
+ "| blau | Messung | 0.2358 |\n",
+ "\n",
+ "\n",
+ "\n",
+ "## Aktuelle einschätzung\n",
+ "Es kann mit dem aktuellen Aufbau in einer Kontrollierteren umgebung die geforderte Präzission erreicht werden. Es könnte mit relativ wenig Aufwand durch einbindung von 3-12 Temperatursensoren noch eine spürbare Verbesserung erreicht werden.\n",
+ "## Controller tuning\n",
+ "Der Geschwindigkeits regler war sehr vorsichtig eingestellt. Von Beckhof ist ein PI-Regler vorgegeben jedoch wäre ein Lead regler mit DC-Verstärkung besser gewesen. Ich konnte trotzdem die Bandbreite verdoppeln. Die Dämpfung ist knapp unter dem Idealwert und kann bei Bedarf noch reduziert werden.\n",
+ "\n",
+ "| Geschwindigkeits Regler | Kp | Tn |\n",
+ "|-------------------------|-------|-------|\n",
+ "| Alt | 0.145 | 0.015 |\n",
+ "| Neu | 0.21 | 0.05 |\n",
+ "\n",
+ "Kp wurde so gewählt um die Crossoverfrequenz der integrierenden Strecke nach rechts zu verschieben.\n",
+ "Tn wurde so gewählt, dass eine kleine anhebung der Phase bei der Crossowerfrequency zu erhalten, ohne dabei die Gainmargin signifikant zu verschlechtern.\n",
+ "\n",
+ "\n",
+ "| Regler | Gain Margin | Gain Margin | Bandbreite (rad/s) |\n",
+ "|--------|-------------|-------------|--------------------|\n",
+ "| Alt | 11.5 | 97 | 497 |\n",
+ "| Neu | 5.31 | 53deg | 1080 |\n",
+ "| Ideal | 6dB | 60deg | - |\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "### Zeitliche Auswertung\n",
+ "Die Zeitliche auswertung ist weniger aussagekräftig, da kein Unit stepp gefahren werden sollte um die Mechanik nicht zu strapazieren jedoch kann auch an einem abgeflachten step gut gezeigt werden, dass der neue regler schneller ist. Somit kann ein kleineres Kp für den Positionsregler gewählt werden.\n",
+ "\n",
+ "| Regler | Erreichen des sollwertes |\n",
+ "|--------|--------------------------|\n",
+ "| Alt | ca 5s |\n",
+ "| Neu | ca 0.5s |\n",
+ "\n",
+ "### Optimierung\n",
+ "Die Messung wurde mit einem Kp= 10 für den Positionsregler gemessen. Mann könte diesen gut noch bis 50 erhöhen um einen noch dynamischeren Regler zu erhalten.\n",
+ "\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "70b189cd3543994",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-07-26T19:11:29.972122Z",
+ "start_time": "2025-07-26T19:11:29.966473Z"
+ }
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.13.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/notebooks/controller_improvements_log.csv b/notebooks/controller_improvements_log.csv
index a58e5f9..46ea677 100644
--- a/notebooks/controller_improvements_log.csv
+++ b/notebooks/controller_improvements_log.csv
@@ -30,3 +30,9 @@ timestamp,description,measurement_id,notes
2025-07-23 10:28:59.189434,Tuned PID gains for better damping,meas_20250710_120000,Observed 30% overshoot reduction
2025-07-23 10:37:17.152356,Tuned PID gains for better damping,meas_20250710_120000,Observed 30% overshoot reduction
2025-07-23 16:06:57.448192,Tuned PID gains for better damping,meas_20250710_120000,Observed 30% overshoot reduction
+2025-07-24 09:25:29.802605,Tuned PID gains for better damping,meas_20250710_120000,Observed 30% overshoot reduction
+2025-08-04 08:16:40.209891,Tuned PID gains for better damping,meas_20250710_120000,Observed 30% overshoot reduction
+2025-08-04 10:08:57.458225,Tuned PID gains for better damping,meas_20250710_120000,Observed 30% overshoot reduction
+2025-08-07 10:14:54.174727,Tuned PID gains for better damping,meas_20250710_120000,Observed 30% overshoot reduction
+2025-08-07 10:16:11.738536,Tuned PID gains for better damping,meas_20250710_120000,Observed 30% overshoot reduction
+2025-08-07 16:12:03.814783,Tuned PID gains for better damping,meas_20250710_120000,Observed 30% overshoot reduction
diff --git a/notebooks/sandbox.ipynb b/notebooks/sandbox.ipynb
index 086357e..61676c7 100644
--- a/notebooks/sandbox.ipynb
+++ b/notebooks/sandbox.ipynb
@@ -6,8 +6,8 @@
"metadata": {
"collapsed": true,
"ExecuteTime": {
- "end_time": "2025-07-22T15:05:19.237001Z",
- "start_time": "2025-07-22T15:05:19.171109Z"
+ "end_time": "2025-07-26T07:09:44.745838Z",
+ "start_time": "2025-07-26T07:09:44.662792Z"
}
},
"source": [
@@ -75,7 +75,7 @@
]
}
],
- "execution_count": 1
+ "execution_count": 2
},
{
"metadata": {
@@ -172,8 +172,8 @@
{
"metadata": {
"ExecuteTime": {
- "end_time": "2025-07-22T15:09:12.330740Z",
- "start_time": "2025-07-22T15:09:12.188939Z"
+ "end_time": "2025-07-26T07:09:49.740401Z",
+ "start_time": "2025-07-26T07:09:49.473670Z"
}
},
"cell_type": "code",
@@ -259,13 +259,13 @@
"output_type": "display_data"
}
],
- "execution_count": 8
+ "execution_count": 3
},
{
"metadata": {
"ExecuteTime": {
- "end_time": "2025-07-22T15:09:24.145183Z",
- "start_time": "2025-07-22T15:09:24.140602Z"
+ "end_time": "2025-07-26T07:09:53.673941Z",
+ "start_time": "2025-07-26T07:09:53.667050Z"
}
},
"cell_type": "code",
@@ -326,13 +326,13 @@
]
}
],
- "execution_count": 10
+ "execution_count": 4
},
{
"metadata": {
"ExecuteTime": {
- "end_time": "2025-07-22T15:20:48.534564Z",
- "start_time": "2025-07-22T15:20:46.975646Z"
+ "end_time": "2025-07-26T07:09:58.051877Z",
+ "start_time": "2025-07-26T07:09:56.053437Z"
}
},
"cell_type": "code",
@@ -441,13 +441,13 @@
"output_type": "display_data"
}
],
- "execution_count": 24
+ "execution_count": 5
},
{
"metadata": {
"ExecuteTime": {
- "end_time": "2025-07-22T15:09:17.267472Z",
- "start_time": "2025-07-22T15:09:16.942192Z"
+ "end_time": "2025-07-26T07:10:05.391660Z",
+ "start_time": "2025-07-26T07:10:04.843230Z"
}
},
"cell_type": "code",
@@ -589,13 +589,13 @@
"output_type": "display_data"
}
],
- "execution_count": 9
+ "execution_count": 6
},
{
"metadata": {
"ExecuteTime": {
- "end_time": "2025-07-22T12:28:27.478317Z",
- "start_time": "2025-07-22T12:28:27.312550Z"
+ "end_time": "2025-07-26T07:10:12.816470Z",
+ "start_time": "2025-07-26T07:10:12.322313Z"
}
},
"cell_type": "code",
@@ -725,16 +725,16 @@
"traceback": [
"\u001B[31m---------------------------------------------------------------------------\u001B[39m",
"\u001B[31mValueError\u001B[39m Traceback (most recent call last)",
- "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[17]\u001B[39m\u001B[32m, line 82\u001B[39m\n\u001B[32m 79\u001B[39m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;28mlen\u001B[39m(T_sink))\n\u001B[32m 80\u001B[39m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;28mlen\u001B[39m(T_sink_measured))\n\u001B[32m---> \u001B[39m\u001B[32m82\u001B[39m R_est, T3_fit = \u001B[43midentify_parameters\u001B[49m\u001B[43m(\u001B[49m\u001B[43mtime\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_source\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_sink\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_sink_measured\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 84\u001B[39m \u001B[38;5;28mprint\u001B[39m(\u001B[33m\"\u001B[39m\u001B[33mGeschätzte Parameter:\u001B[39m\u001B[33m\"\u001B[39m)\n\u001B[32m 85\u001B[39m \u001B[38;5;28mprint\u001B[39m(\u001B[33mf\u001B[39m\u001B[33m\"\u001B[39m\u001B[33mR1 = \u001B[39m\u001B[38;5;132;01m{\u001B[39;00mR_est[\u001B[32m0\u001B[39m]\u001B[38;5;132;01m:\u001B[39;00m\u001B[33m.4f\u001B[39m\u001B[38;5;132;01m}\u001B[39;00m\u001B[33m K/W\u001B[39m\u001B[33m\"\u001B[39m)\n",
- "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[17]\u001B[39m\u001B[32m, line 52\u001B[39m, in \u001B[36midentify_parameters\u001B[39m\u001B[34m(time, T_source, T_sink, T_sink_measured)\u001B[39m\n\u001B[32m 49\u001B[39m R0 = [\u001B[32m842\u001B[39m, \u001B[32m1.0\u001B[39m, \u001B[32m1.0\u001B[39m, \u001B[32m1.0\u001B[39m] \u001B[38;5;66;03m# Startschätzung für R1, R2, R3, R_sink)\u001B[39;00m\n\u001B[32m 50\u001B[39m T0 = [T_source[\u001B[32m0\u001B[39m], T_source[\u001B[32m0\u001B[39m], T_sink[\u001B[32m0\u001B[39m]] \u001B[38;5;66;03m# Initiale Temperaturen für T1, T2, T3\u001B[39;00m\n\u001B[32m---> \u001B[39m\u001B[32m52\u001B[39m result = \u001B[43mleast_squares\u001B[49m\u001B[43m(\u001B[49m\n\u001B[32m 53\u001B[39m \u001B[43m \u001B[49m\u001B[43mresiduals\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 54\u001B[39m \u001B[43m \u001B[49m\u001B[43mR0\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 55\u001B[39m \u001B[43m \u001B[49m\u001B[43mbounds\u001B[49m\u001B[43m=\u001B[49m\u001B[43m(\u001B[49m\u001B[32;43m1e-4\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[32;43m1e3\u001B[39;49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 56\u001B[39m \u001B[43m \u001B[49m\u001B[43margs\u001B[49m\u001B[43m=\u001B[49m\u001B[43m(\u001B[49m\u001B[43mtime\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_source\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_sink\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_sink_measured\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT0\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 57\u001B[39m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 59\u001B[39m R_estimated = result.x\n\u001B[32m 60\u001B[39m T3_fit = simulate_rc_network(time, T_source, T_sink, R_estimated, T0)\n",
+ "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[7]\u001B[39m\u001B[32m, line 82\u001B[39m\n\u001B[32m 79\u001B[39m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;28mlen\u001B[39m(T_sink))\n\u001B[32m 80\u001B[39m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;28mlen\u001B[39m(T_sink_measured))\n\u001B[32m---> \u001B[39m\u001B[32m82\u001B[39m R_est, T3_fit = \u001B[43midentify_parameters\u001B[49m\u001B[43m(\u001B[49m\u001B[43mtime\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_source\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_sink\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_sink_measured\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 84\u001B[39m \u001B[38;5;28mprint\u001B[39m(\u001B[33m\"\u001B[39m\u001B[33mGeschätzte Parameter:\u001B[39m\u001B[33m\"\u001B[39m)\n\u001B[32m 85\u001B[39m \u001B[38;5;28mprint\u001B[39m(\u001B[33mf\u001B[39m\u001B[33m\"\u001B[39m\u001B[33mR1 = \u001B[39m\u001B[38;5;132;01m{\u001B[39;00mR_est[\u001B[32m0\u001B[39m]\u001B[38;5;132;01m:\u001B[39;00m\u001B[33m.4f\u001B[39m\u001B[38;5;132;01m}\u001B[39;00m\u001B[33m K/W\u001B[39m\u001B[33m\"\u001B[39m)\n",
+ "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[7]\u001B[39m\u001B[32m, line 52\u001B[39m, in \u001B[36midentify_parameters\u001B[39m\u001B[34m(time, T_source, T_sink, T_sink_measured)\u001B[39m\n\u001B[32m 49\u001B[39m R0 = [\u001B[32m842\u001B[39m, \u001B[32m1.0\u001B[39m, \u001B[32m1.0\u001B[39m, \u001B[32m1.0\u001B[39m] \u001B[38;5;66;03m# Startschätzung für R1, R2, R3, R_sink)\u001B[39;00m\n\u001B[32m 50\u001B[39m T0 = [T_source[\u001B[32m0\u001B[39m], T_source[\u001B[32m0\u001B[39m], T_sink[\u001B[32m0\u001B[39m]] \u001B[38;5;66;03m# Initiale Temperaturen für T1, T2, T3\u001B[39;00m\n\u001B[32m---> \u001B[39m\u001B[32m52\u001B[39m result = \u001B[43mleast_squares\u001B[49m\u001B[43m(\u001B[49m\n\u001B[32m 53\u001B[39m \u001B[43m \u001B[49m\u001B[43mresiduals\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 54\u001B[39m \u001B[43m \u001B[49m\u001B[43mR0\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 55\u001B[39m \u001B[43m \u001B[49m\u001B[43mbounds\u001B[49m\u001B[43m=\u001B[49m\u001B[43m(\u001B[49m\u001B[32;43m1e-4\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[32;43m1e3\u001B[39;49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 56\u001B[39m \u001B[43m \u001B[49m\u001B[43margs\u001B[49m\u001B[43m=\u001B[49m\u001B[43m(\u001B[49m\u001B[43mtime\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_source\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_sink\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_sink_measured\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT0\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 57\u001B[39m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 59\u001B[39m R_estimated = result.x\n\u001B[32m 60\u001B[39m T3_fit = simulate_rc_network(time, T_source, T_sink, R_estimated, T0)\n",
"\u001B[36mFile \u001B[39m\u001B[32m~\\Python_Projects\\StagePerformaceDocu\\.venv\\Lib\\site-packages\\scipy\\_lib\\_util.py:689\u001B[39m, in \u001B[36m_workers_wrapper..inner\u001B[39m\u001B[34m(*args, **kwds)\u001B[39m\n\u001B[32m 687\u001B[39m \u001B[38;5;28;01mwith\u001B[39;00m MapWrapper(_workers) \u001B[38;5;28;01mas\u001B[39;00m mf:\n\u001B[32m 688\u001B[39m kwargs[\u001B[33m'\u001B[39m\u001B[33mworkers\u001B[39m\u001B[33m'\u001B[39m] = mf\n\u001B[32m--> \u001B[39m\u001B[32m689\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfunc\u001B[49m\u001B[43m(\u001B[49m\u001B[43m*\u001B[49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43m*\u001B[49m\u001B[43m*\u001B[49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n",
"\u001B[36mFile \u001B[39m\u001B[32m~\\Python_Projects\\StagePerformaceDocu\\.venv\\Lib\\site-packages\\scipy\\optimize\\_lsq\\least_squares.py:926\u001B[39m, in \u001B[36mleast_squares\u001B[39m\u001B[34m(fun, x0, jac, bounds, method, ftol, xtol, gtol, x_scale, loss, f_scale, diff_step, tr_solver, tr_options, jac_sparsity, max_nfev, verbose, args, kwargs, callback, workers)\u001B[39m\n\u001B[32m 922\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34m_dummy_hess\u001B[39m(x, *args):\n\u001B[32m 923\u001B[39m \u001B[38;5;66;03m# we don't care about Hessian evaluations\u001B[39;00m\n\u001B[32m 924\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m x\n\u001B[32m--> \u001B[39m\u001B[32m926\u001B[39m vector_fun = \u001B[43mVectorFunction\u001B[49m\u001B[43m(\u001B[49m\n\u001B[32m 927\u001B[39m \u001B[43m \u001B[49m\u001B[43mfun_wrapped\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 928\u001B[39m \u001B[43m \u001B[49m\u001B[43mx0\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 929\u001B[39m \u001B[43m \u001B[49m\u001B[43mjac_wrapped\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 930\u001B[39m \u001B[43m \u001B[49m\u001B[43m_dummy_hess\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 931\u001B[39m \u001B[43m \u001B[49m\u001B[43mfinite_diff_rel_step\u001B[49m\u001B[43m=\u001B[49m\u001B[43mdiff_step\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 932\u001B[39m \u001B[43m \u001B[49m\u001B[43mfinite_diff_jac_sparsity\u001B[49m\u001B[43m=\u001B[49m\u001B[43mjac_sparsity\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 933\u001B[39m \u001B[43m \u001B[49m\u001B[43mfinite_diff_bounds\u001B[49m\u001B[43m=\u001B[49m\u001B[43mbounds\u001B[49m\u001B[43m,\u001B[49m\n\u001B[32m 934\u001B[39m \u001B[43m \u001B[49m\u001B[43mworkers\u001B[49m\u001B[43m=\u001B[49m\u001B[43mworkers\u001B[49m\n\u001B[32m 935\u001B[39m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 936\u001B[39m \u001B[38;5;66;03m###########################################################################\u001B[39;00m\n\u001B[32m 938\u001B[39m f0 = vector_fun.fun(x0)\n",
"\u001B[36mFile \u001B[39m\u001B[32m~\\Python_Projects\\StagePerformaceDocu\\.venv\\Lib\\site-packages\\scipy\\optimize\\_differentiable_functions.py:605\u001B[39m, in \u001B[36mVectorFunction.__init__\u001B[39m\u001B[34m(self, fun, x0, jac, hess, finite_diff_rel_step, finite_diff_jac_sparsity, finite_diff_bounds, sparse_jacobian, workers)\u001B[39m\n\u001B[32m 599\u001B[39m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\u001B[33m\"\u001B[39m\u001B[33mWhenever the Jacobian is estimated via \u001B[39m\u001B[33m\"\u001B[39m\n\u001B[32m 600\u001B[39m \u001B[33m\"\u001B[39m\u001B[33mfinite-differences, we require the Hessian to \u001B[39m\u001B[33m\"\u001B[39m\n\u001B[32m 601\u001B[39m \u001B[33m\"\u001B[39m\u001B[33mbe estimated using one of the quasi-Newton \u001B[39m\u001B[33m\"\u001B[39m\n\u001B[32m 602\u001B[39m \u001B[33m\"\u001B[39m\u001B[33mstrategies.\u001B[39m\u001B[33m\"\u001B[39m)\n\u001B[32m 604\u001B[39m \u001B[38;5;28mself\u001B[39m.fun_wrapped = _VectorFunWrapper(fun)\n\u001B[32m--> \u001B[39m\u001B[32m605\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43m_update_fun\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 607\u001B[39m \u001B[38;5;28mself\u001B[39m.v = np.zeros_like(\u001B[38;5;28mself\u001B[39m.f)\n\u001B[32m 608\u001B[39m \u001B[38;5;28mself\u001B[39m.m = \u001B[38;5;28mself\u001B[39m.v.size\n",
"\u001B[36mFile \u001B[39m\u001B[32m~\\Python_Projects\\StagePerformaceDocu\\.venv\\Lib\\site-packages\\scipy\\optimize\\_differentiable_functions.py:698\u001B[39m, in \u001B[36mVectorFunction._update_fun\u001B[39m\u001B[34m(self)\u001B[39m\n\u001B[32m 696\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34m_update_fun\u001B[39m(\u001B[38;5;28mself\u001B[39m):\n\u001B[32m 697\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28mself\u001B[39m.f_updated:\n\u001B[32m--> \u001B[39m\u001B[32m698\u001B[39m \u001B[38;5;28mself\u001B[39m.f = \u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43mfun_wrapped\u001B[49m\u001B[43m(\u001B[49m\u001B[43mxp_copy\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43mx\u001B[49m\u001B[43m)\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 699\u001B[39m \u001B[38;5;28mself\u001B[39m._nfev += \u001B[32m1\u001B[39m\n\u001B[32m 700\u001B[39m \u001B[38;5;28mself\u001B[39m.f_updated = \u001B[38;5;28;01mTrue\u001B[39;00m\n",
"\u001B[36mFile \u001B[39m\u001B[32m~\\Python_Projects\\StagePerformaceDocu\\.venv\\Lib\\site-packages\\scipy\\optimize\\_differentiable_functions.py:415\u001B[39m, in \u001B[36m_VectorFunWrapper.__call__\u001B[39m\u001B[34m(self, x)\u001B[39m\n\u001B[32m 413\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34m__call__\u001B[39m(\u001B[38;5;28mself\u001B[39m, x):\n\u001B[32m 414\u001B[39m \u001B[38;5;28mself\u001B[39m.nfev += \u001B[32m1\u001B[39m\n\u001B[32m--> \u001B[39m\u001B[32m415\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m np.atleast_1d(\u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43mfun\u001B[49m\u001B[43m(\u001B[49m\u001B[43mx\u001B[49m\u001B[43m)\u001B[49m)\n",
"\u001B[36mFile \u001B[39m\u001B[32m~\\Python_Projects\\StagePerformaceDocu\\.venv\\Lib\\site-packages\\scipy\\optimize\\_lsq\\least_squares.py:263\u001B[39m, in \u001B[36m_WrapArgsKwargs.__call__\u001B[39m\u001B[34m(self, x)\u001B[39m\n\u001B[32m 262\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34m__call__\u001B[39m(\u001B[38;5;28mself\u001B[39m, x):\n\u001B[32m--> \u001B[39m\u001B[32m263\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43mf\u001B[49m\u001B[43m(\u001B[49m\u001B[43mx\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43m*\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43m*\u001B[49m\u001B[43m*\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n",
- "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[17]\u001B[39m\u001B[32m, line 44\u001B[39m, in \u001B[36mresiduals\u001B[39m\u001B[34m(R_guess, time, T_source, T_sink, T_sink_measured, T0)\u001B[39m\n\u001B[32m 43\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34mresiduals\u001B[39m(R_guess, time, T_source, T_sink, T_sink_measured, T0):\n\u001B[32m---> \u001B[39m\u001B[32m44\u001B[39m T3_simulated = \u001B[43msimulate_rc_network\u001B[49m\u001B[43m(\u001B[49m\u001B[43mtime\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_source\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_sink\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mR_guess\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT0\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 45\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m T3_simulated - T_sink_measured\n",
- "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[17]\u001B[39m\u001B[32m, line 29\u001B[39m, in \u001B[36msimulate_rc_network\u001B[39m\u001B[34m(time, T_source, T_sink, R, T0, output)\u001B[39m\n\u001B[32m 27\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34msimulate_rc_network\u001B[39m(time, T_source, T_sink, R, T0, output=\u001B[32m2\u001B[39m):\n\u001B[32m 28\u001B[39m \u001B[38;5;66;03m# Interpolationsfunktionen für Quelle und Senke\u001B[39;00m\n\u001B[32m---> \u001B[39m\u001B[32m29\u001B[39m T_source_func = \u001B[43minterp1d\u001B[49m\u001B[43m(\u001B[49m\u001B[43mtime\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_source\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mkind\u001B[49m\u001B[43m=\u001B[49m\u001B[33;43m'\u001B[39;49m\u001B[33;43mlinear\u001B[39;49m\u001B[33;43m'\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbounds_error\u001B[49m\u001B[43m=\u001B[49m\u001B[38;5;28;43;01mFalse\u001B[39;49;00m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mfill_value\u001B[49m\u001B[43m=\u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mextrapolate\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m)\u001B[49m\n\u001B[32m 30\u001B[39m T_sink_func = interp1d(time, T_sink, kind=\u001B[33m'\u001B[39m\u001B[33mlinear\u001B[39m\u001B[33m'\u001B[39m, bounds_error=\u001B[38;5;28;01mFalse\u001B[39;00m, fill_value=\u001B[33m\"\u001B[39m\u001B[33mextrapolate\u001B[39m\u001B[33m\"\u001B[39m)\n\u001B[32m 32\u001B[39m sol = solve_ivp(\n\u001B[32m 33\u001B[39m fun=\u001B[38;5;28;01mlambda\u001B[39;00m t, T: rc_model(t, T, R, T_source_func, T_sink_func),\n\u001B[32m 34\u001B[39m t_span=(time[\u001B[32m0\u001B[39m], time[-\u001B[32m1\u001B[39m]),\n\u001B[32m (...)\u001B[39m\u001B[32m 37\u001B[39m method=\u001B[33m'\u001B[39m\u001B[33mRK45\u001B[39m\u001B[33m'\u001B[39m\n\u001B[32m 38\u001B[39m )\n",
+ "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[7]\u001B[39m\u001B[32m, line 44\u001B[39m, in \u001B[36mresiduals\u001B[39m\u001B[34m(R_guess, time, T_source, T_sink, T_sink_measured, T0)\u001B[39m\n\u001B[32m 43\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34mresiduals\u001B[39m(R_guess, time, T_source, T_sink, T_sink_measured, T0):\n\u001B[32m---> \u001B[39m\u001B[32m44\u001B[39m T3_simulated = \u001B[43msimulate_rc_network\u001B[49m\u001B[43m(\u001B[49m\u001B[43mtime\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_source\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_sink\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mR_guess\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT0\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 45\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m T3_simulated - T_sink_measured\n",
+ "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[7]\u001B[39m\u001B[32m, line 29\u001B[39m, in \u001B[36msimulate_rc_network\u001B[39m\u001B[34m(time, T_source, T_sink, R, T0, output)\u001B[39m\n\u001B[32m 27\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34msimulate_rc_network\u001B[39m(time, T_source, T_sink, R, T0, output=\u001B[32m2\u001B[39m):\n\u001B[32m 28\u001B[39m \u001B[38;5;66;03m# Interpolationsfunktionen für Quelle und Senke\u001B[39;00m\n\u001B[32m---> \u001B[39m\u001B[32m29\u001B[39m T_source_func = \u001B[43minterp1d\u001B[49m\u001B[43m(\u001B[49m\u001B[43mtime\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mT_source\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mkind\u001B[49m\u001B[43m=\u001B[49m\u001B[33;43m'\u001B[39;49m\u001B[33;43mlinear\u001B[39;49m\u001B[33;43m'\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbounds_error\u001B[49m\u001B[43m=\u001B[49m\u001B[38;5;28;43;01mFalse\u001B[39;49;00m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mfill_value\u001B[49m\u001B[43m=\u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mextrapolate\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m)\u001B[49m\n\u001B[32m 30\u001B[39m T_sink_func = interp1d(time, T_sink, kind=\u001B[33m'\u001B[39m\u001B[33mlinear\u001B[39m\u001B[33m'\u001B[39m, bounds_error=\u001B[38;5;28;01mFalse\u001B[39;00m, fill_value=\u001B[33m\"\u001B[39m\u001B[33mextrapolate\u001B[39m\u001B[33m\"\u001B[39m)\n\u001B[32m 32\u001B[39m sol = solve_ivp(\n\u001B[32m 33\u001B[39m fun=\u001B[38;5;28;01mlambda\u001B[39;00m t, T: rc_model(t, T, R, T_source_func, T_sink_func),\n\u001B[32m 34\u001B[39m t_span=(time[\u001B[32m0\u001B[39m], time[-\u001B[32m1\u001B[39m]),\n\u001B[32m (...)\u001B[39m\u001B[32m 37\u001B[39m method=\u001B[33m'\u001B[39m\u001B[33mRK45\u001B[39m\u001B[33m'\u001B[39m\n\u001B[32m 38\u001B[39m )\n",
"\u001B[36mFile \u001B[39m\u001B[32m~\\Python_Projects\\StagePerformaceDocu\\.venv\\Lib\\site-packages\\scipy\\interpolate\\_interpolate.py:286\u001B[39m, in \u001B[36minterp1d.__init__\u001B[39m\u001B[34m(self, x, y, kind, axis, copy, bounds_error, fill_value, assume_sorted)\u001B[39m\n\u001B[32m 282\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34m__init__\u001B[39m(\u001B[38;5;28mself\u001B[39m, x, y, kind=\u001B[33m'\u001B[39m\u001B[33mlinear\u001B[39m\u001B[33m'\u001B[39m, axis=-\u001B[32m1\u001B[39m,\n\u001B[32m 283\u001B[39m copy=\u001B[38;5;28;01mTrue\u001B[39;00m, bounds_error=\u001B[38;5;28;01mNone\u001B[39;00m, fill_value=np.nan,\n\u001B[32m 284\u001B[39m assume_sorted=\u001B[38;5;28;01mFalse\u001B[39;00m):\n\u001B[32m 285\u001B[39m \u001B[38;5;250m \u001B[39m\u001B[33;03m\"\"\" Initialize a 1-D linear interpolation class.\"\"\"\u001B[39;00m\n\u001B[32m--> \u001B[39m\u001B[32m286\u001B[39m \u001B[43m_Interpolator1D\u001B[49m\u001B[43m.\u001B[49m\u001B[34;43m__init__\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mx\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43my\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43maxis\u001B[49m\u001B[43m=\u001B[49m\u001B[43maxis\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 288\u001B[39m \u001B[38;5;28mself\u001B[39m.bounds_error = bounds_error \u001B[38;5;66;03m# used by fill_value setter\u001B[39;00m\n\u001B[32m 290\u001B[39m \u001B[38;5;66;03m# `copy` keyword semantics changed in NumPy 2.0, once that is\u001B[39;00m\n\u001B[32m 291\u001B[39m \u001B[38;5;66;03m# the minimum version this can use `copy=None`.\u001B[39;00m\n",
"\u001B[36mFile \u001B[39m\u001B[32m~\\Python_Projects\\StagePerformaceDocu\\.venv\\Lib\\site-packages\\scipy\\interpolate\\_polyint.py:58\u001B[39m, in \u001B[36m_Interpolator1D.__init__\u001B[39m\u001B[34m(self, xi, yi, axis)\u001B[39m\n\u001B[32m 56\u001B[39m \u001B[38;5;28mself\u001B[39m.dtype = \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[32m 57\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m yi \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n\u001B[32m---> \u001B[39m\u001B[32m58\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43m_set_yi\u001B[49m\u001B[43m(\u001B[49m\u001B[43myi\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mxi\u001B[49m\u001B[43m=\u001B[49m\u001B[43mxi\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43maxis\u001B[49m\u001B[43m=\u001B[49m\u001B[43maxis\u001B[49m\u001B[43m)\u001B[49m\n",
"\u001B[36mFile \u001B[39m\u001B[32m~\\Python_Projects\\StagePerformaceDocu\\.venv\\Lib\\site-packages\\scipy\\interpolate\\_polyint.py:128\u001B[39m, in \u001B[36m_Interpolator1D._set_yi\u001B[39m\u001B[34m(self, yi, xi, axis)\u001B[39m\n\u001B[32m 126\u001B[39m shape = (\u001B[32m1\u001B[39m,)\n\u001B[32m 127\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m xi \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m \u001B[38;5;129;01mand\u001B[39;00m shape[axis] != \u001B[38;5;28mlen\u001B[39m(xi):\n\u001B[32m--> \u001B[39m\u001B[32m128\u001B[39m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\u001B[33m\"\u001B[39m\u001B[33mx and y arrays must be equal in length along \u001B[39m\u001B[33m\"\u001B[39m\n\u001B[32m 129\u001B[39m \u001B[33m\"\u001B[39m\u001B[33minterpolation axis.\u001B[39m\u001B[33m\"\u001B[39m)\n\u001B[32m 131\u001B[39m \u001B[38;5;28mself\u001B[39m._y_axis = (axis % yi.ndim)\n\u001B[32m 132\u001B[39m \u001B[38;5;28mself\u001B[39m._y_extra_shape = yi.shape[:\u001B[38;5;28mself\u001B[39m._y_axis] + yi.shape[\u001B[38;5;28mself\u001B[39m._y_axis+\u001B[32m1\u001B[39m:]\n",
@@ -742,13 +742,13 @@
]
}
],
- "execution_count": 17
+ "execution_count": 7
},
{
"metadata": {
"ExecuteTime": {
- "end_time": "2025-07-23T07:16:42.160862Z",
- "start_time": "2025-07-23T07:16:41.989570Z"
+ "end_time": "2025-07-26T07:10:43.678051Z",
+ "start_time": "2025-07-26T07:10:43.296728Z"
}
},
"cell_type": "code",
@@ -781,8 +781,8 @@
"\n",
"\n",
"\n",
- "times, temps = myu.load_temp_data(rf\"C:\\Users\\berti_r\\Python_Projects\\StagePerformaceDocu\\data\\Temp\\20250722_081812.dat\")\n",
- "x_vals1, y_vals1, times1 = myu.load_xy_data(rf\"C:\\Users\\berti_r\\Python_Projects\\StagePerformaceDocu\\data\\data20250722_alignment_tests\\20250722_165648_logn_term_0\\_logn_term_0.dat\")\n",
+ "times, temps = myu.load_temp_data(rf\"C:\\Users\\berti_r\\Python_Projects\\StagePerformaceDocu\\data\\Temp\\20250723_131041.dat\")\n",
+ "x_vals1, y_vals1, times1 = myu.load_xy_data(rf\"C:\\Users\\berti_r\\Python_Projects\\StagePerformaceDocu\\data\\data20250723_alignment_tests\\20250723_171434_repeatibility_0\\repeatibility_0.dat\")\n",
"\n",
"frame1 =pd.DataFrame({'timestamp':times, 'temp1':temps[0], 'temp2':temps[1], 'temp3':temps[2], 'temp4':temps[3],'temp5':temps[4]})\n",
"frame2 = pd.DataFrame({'timestamp':times1,'x':x_vals1,'y':y_vals1})\n",
@@ -906,7 +906,7 @@
"text/plain": [
""
],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGdCAYAAAAWp6lMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkx1JREFUeJztnQeYXGXZ9+/tfZNsNiGVNJIQAiFASOhFpCsIvkR8RQURLCAIqK8C+qmgICAILy8RBRXpCIgIUiQgUiQESEgIJIT0nmzK9r7zXffZfWbu88xz2uzMzpmZ/++6Ntmdcs55Tnv+5655kUgkQgAAAAAAWUx+ujcAAAAAACDVQPAAAAAAIOuB4AEAAABA1gPBAwAAAICsB4IHAAAAAFkPBA8AAAAAsh4IHgAAAABkPRA8AAAAAMh6IHgAAAAAkPVA8AAAAAAg6ymkDGfnzkYayOYYeXlEQ4dWDfh6UwHGEk4wlnCCsYSPbBlHro0lr+/9UAuebdu20S9+8Qt66623qKSkhE477TS68sorrd9fe+01uvnmm2nt2rU0fvx4uuqqq+jYY481Lofbd9155530l7/8hVpbW+nII4+kn/zkJ1RTUxN4ALwz03FypGu9qQBjCScYSzjBWMJHtoyDwVhC4NJikXLZZZdZAuXBBx+k2267jV555RX6zW9+Q+vWraNLL72Uzj77bHr22WfprLPOoksuuYQ2btxoXNajjz5Kjz/+ON1yyy3WsrZv307XXHNNMscFAAAAABBc8KxevZoWL15MN9xwA02ePJlmzZplCaBnnnmGtm7dSnPnzqXzzz+fxo4dSxdccAGVl5fTkiVLjMt69dVXLevQ7NmzacqUKfT1r3/dshoBAAAAAKRV8AwbNozuueceqq2ttb3e1NREc+bMiVpoOjs7LVdVR0cHzZgxw7iswYMH07/+9S/LRdbW1mZZhaZNm9bfsQAAAAAA9C+Gp7q6mo4++ujo3z09PfTAAw/QYYcdFn2NXVunnnoqdXd3WzE8Y8aMMS6L3V3f+ta36JhjjqGCggJLTLGbKxE4+GkgUesb6PWmAowlnGAs4QRjCR/ZMo5cG0temsaYF+HgnAT41a9+ZcXfcCwOu6WYxsZG2rBhAy1atIhuvPFGK0bn5JNPjvvuggULrPe+/e1vW0LqpptuooqKCvrDH/7Q/xEBAAAAACRD8HA21h//+EcrcNkkaJif//zntHLlSrr//vttr/Pqjj/+ePrBD35gxfEwW7ZssV5jK8+BBx4YaFuQlp44GEs4wVjCCcYSPrJlHLk2lrxMSEtnrrvuOnr44Yct0aPEDgub+vp6K5BZMWnSJHr77bfjvr9r1y5L4EydOjX62siRI2nIkCG0adOmwIIHaen9B2MJJxhLOMFYwke2jIPBWEJSaZlr5zzyyCN066230umnnx59ndPTr732Wst6o1i2bBlNnDgxbhmDBg2i4uJiWrVqlU0E7dmzxzHmBwAAAABgQCw8LFDuuusuuvjii+mQQw6hHTt2RN8744wz6O6777bics455xx644036Omnn44GInPGFluAuLBgYWGhVa+HY4DYqsMCiH9ny84BBxzQr8EAAAAAAPTLwjN//nwr+2revHl01FFH2X5GjBhB9957Ly1cuJDOPPNMK5j59ttvp+nTp1vf5SBm/hy7spirr76aTjrpJCuT68tf/rIVuMxiKi8bwtMBAAAAEDoSztIKC3V1Ax+0XFtbNeDrTQUYSzjBWMIJxhI+smUcuTaWvL73Bxp0SwcAAABA1gPBAwAAOcLTS7fSf//5XfrXyrp0bwoAAw4EDwAA5AjXvfgxrdzRTN/724fp3hQABhwIHgAAAABkPRA8AACQA2R4fgoA/QaCBwAAcoD2rp50bwIAaQWCBwAAcoCObggekNtA8AAAQA7QAQsPyHEgeAAAIAdoh4UH5DgQPAAAkAN0dNmDlnt6EMQMcgsIHgAAyEGXVmcPLD4gt4DgAQCAHHRpdXbDwgNyCwgeAADIAdq7um1/dyKIGeQYEDwAAJCDMTydCGIGOQYEDwAA5KBLC3V5QK4BwQMAADkYtNyFGB6QY0DwAABALmZpwcIDcgwIHgAAyAHg0gK5DgQPAADkYPNQpKWDXAOCBwAAcgC4tECuA8EDAAC5WHgQdXhAjgHBAwAAOWjhQQwPyDUgeAAAICddWojhAbkFBA8AAORkLy1YeEBuAcEDAAA5AIKWQa4DwQMAADmYlq4LIACyHQgeAADIAfQgZcTwgFwDggcAAHKy8CAsPCC3gOABAIAcADE8INeB4AEAgBx0aaEOD8g1IHgAACAXXVpdiOEBuQUEDwAA5GTQMiw8ILeA4AEAgBwAQcsg14HgAQCAHAC9tECuU5juDQAAAJA6Xly+nf66dCvVt3XZXoeFB+QaEDwAAJDFXPPscuPrCFoGuQZcWgAAkKV0uVhxYOEBuQYEDwAAZClN7d2O7yGGB+QaEDwAAJClNLTb43YksPCAXAOCBwAAspRGV8GDGB6QW0DwAABAltLY1un4Hiw8INdAlhYAAKSIpvYuenfDHopEiA4eO4iqS4sGdP2NbjE8Wl0eALIdCB4AAEgB3T0R+tL979Hm+jbr75ryIvr7RXOouHDgDOuw8AAQAy4tAABIAdsa26Nih9nV0knrd7eGxsKDGB6Qa0DwAABylh1N7fTJjuaULLurJ15QdPUMrFWlQauuLIGFB+QaEDwAgJykvrWTPv+HhfTFP79L/1pZl/Tlm8QNu7kGOobICdThAbkGBA8AICd5Z8Meau3snfS///SHSV++yWVksvqkElh4AIgBwQMAyAl6IhFatrUxmp1UWlRge7+t0zneJXkurYEVPI3tLkHL6KUFcgwIHgBATnDHq2vo/AcX0WVPLjW6l97bWJ/yPlYDL3jcgpZh4QG5BQQPACBnXFjMuxvqLbGji4831+zKCAvP35ZuoSv++gF9sKWhX2npiOEBuQYEDwAgJ5Auq/aunjgLzBsDIXj6mQp+z3/W0fUvrqTXV++i376xNpCFpzA/jyqKC2hIWW/xQ1h4QK4BwQMAyAlY5CjaurrjBMnGPW20p8XZIpIMwdPNJZcT5O11u+nuN9dF//54u3s6fSQSiVp4pg6vpOe+eRg9c/EcGlFdYr2GOjwg14DgAQDknOBp7YwXPMz6PckrDGiy5pjievzCLSokg8rshfLnf7zDcnUt7otF4gw0tQlVpYU0uKyIKksKqTC/97bPbj0O5AYgV4DgAQDkBGzVif7e2WMUPBuTKHi6DXV4+hPD06b1vuoQgordUz/8+0eWq+unz6+wXmsQ8TvVJTFxVFSQF9seWHlADgHBAwDIeti9Y3dpcQyPwcKTxNYPRpdWPwSP3H49BudjUS16U187iyYRv1PlIHg6B7jyMwDpBIIHAJAxsFvnqqeW0eurdwYWH1JrcACzqRLyhhQLnqRaeMTfSzfHZ2w1iBo87NJSFBXEbvthi+NhYQpAqoDgAQBkDN98bAn9e9VOuuKvywJ9j11Y+t8ma8uGVMfw9MfCo41BLsskeBrbzBYeztaKbWN4LDyvrdpJJ971H7rhnyvTvSkgS4HgASDLWbK5gR5btNkK1M1V2kX8jlOWlhI8ybIyJLuXlj4GWUdnqajJs1dVSVyV5Uyw8Fz51DKqb+uiJ5dsobrmjnRvDshC7GH+AICsgptHXvr4EitjZ2tDG1127ETKVPojRHR3kBW0bJjsOe5lT2snDSkvprD10oqP4YlY+2RncwdtaWh3rcHjHMMTHsEjae3oJqpI91aAbAMWHgCymFV1zdEGmfe/s5EymRbNQhUkpVoXPFZauvj+3kPKor9v2NMb9JuawoM9SRM8SvQs2dJotCJZoqGP8uJY37CivrT03u/30PbG9tBZVJAuD1IBBA8AWYw+6WbyRNKodf6WQbtBxYKepTW+pjzpgcvJLjxoEjzs1lq5vcm+jr71yjT8sqLYrb5QWHhWbG+iz/5+AX32dwtoU33y4pf6SwafpiDEQPAAkMXoImFzX8pyJtKgjSVI/ElcDI+WpTVhaHnSA5dNMTz9qXtjEjy8vK2N7UZRpSx7TGlhgTGG52fPrbCy11ic3flv71YVA4W0vgGQLCB4AMhiGtvtImGlqNeS6WMJ0vxSz9KyqhALC8zwypLYejRhFZosLU20qX0QJ3iUhUe4AEuFhadIZGnJTWzpTM64k0GYssdAjgqebdu20WWXXUazZ8+mo48+mm644QZqb++92F577TU644wzaMaMGdb/r776quNypk6davx56qmn+j8iAICL4LG7PzLbwpO4S4vFgxQfVaUxC0iystmSXXhQj0OKCp6GNgeXlpOFJyZ4JPl55tfTQZiyx0AOZmlxNgCLnerqanrwwQepvr6err76asrPz6dzzz2XLr30UrriiivohBNOoJdeeokuueQSev7552nMmDFxy3r99ddtf//pT3+i5557zvouACC5WVpZY+HRY3gCubTis7QklcWFrsIiDIUHnWJ4tjm4tKSFxxbDI4KWwyp4gljvAEi6hWf16tW0ePFiy6ozefJkmjVrliWAnnnmGdq6dSvNnTuXzj//fBo7dixdcMEFVF5eTkuWLDEua9iwYdGftrY2uv/+++n666+nqqoqyiQ4HkKfUAAIEzI1OdMFT0O/XFr2/dDbPLTHmLadSgtPMistMyx2dGtIzKUlLDxFBcagZYnwdKUd9PgCabXwsDi55557qLa21vZ6U1MTzZkzx/phOjs7LddUR0eH5d7y4o477qDDDz+cjjjiCMok3li9iy5/8gOrA/HTF82mMnFDASCsLi3us9Tc0UUVwqKRKTSKZpj9dWmxeMjLiz3vcRdx+V6q4lASdWmxUDJWhjZklPHH2CIvs7RKC/ONQcuSghApHlh4QCrwfddjVxbH7Sh6enrogQceoMMOOyz62rp16+jUU0+l7u5uuuqqq4zuLMnmzZstC9EjjzxCmcZ/1u6y/uciZcu3NdFBYwale5PAALFoYz09tmgTfW7GSJozbgiFGVMA7taGdppUW5hTWVrxhQe7bbEsFSUFjtag5Fp4epIWsOzW7JR3jbLwsJApFCKnRIifsLq0wloQEWQ2Cd/1br75Zvrwww/p8ccfj75WU1Nj/b1o0SK68cYbady4cXTyySc7LoM/u//++9OBBx6Y6GbQQF+jan3S7M03sRDdK3yjtjkTtz2dY7n40fet/1/6uI7e+d4xoR6LyeXKrw3UMU/mWHRrFVt4/C43vrVED5WJSbW4MN8SAmwJYqFgWm7QsZgsMiyCEtkXTjWHnGoG9QgLD8fvyHVWCXEnYQNPWO4Ffu+puIdl5ljy8jJI8LDYue++++i2226jKVOmRF/nGJz99tvP+lm1apVlAXITPC+88IIV8Nwfhg5NT9xPtzCHl1eWUm1tVdSM/ezSLTS8qpQOnzSUMoF07cNsGIs67mEdS4thoowUF6V0u1M1ljZtKGXiuvMiX3PhdUaI8oXVY6/aKqsaMQuejp6I63L9jqXA4OYuLCpMaN+3FbQYX98kApaVYGMGD6mIBnWXF9vXOWqYeVn5hQUDfl44UVJWEmhbcA8LJ0NDNpbAgue6666jhx9+2BI9SsysXLnSytriQGbFpEmT6O2333ZczpYtW+iTTz7pd2bWzp2NA1qVk5UpH8T65tiNZufuFqqr6y3v/relW+m6Fz62fn/8glk0XhQ0CxtqLAO9D7NpLDt2NFBekh9XkjmWPYaWAZu2N1Dd8IE5L4OOhR8Y7vj3Guuzlx07wRZvsrPRnn5dt6uZ6upKfW3Hbi11u7mtk1qKY8uu39NMJX3ram7vil7P/RlLU0v8vm9u7TAu24utO80iZZ14ffSgUlrd9/f2HY1WrBZTXJBnW2ePaCoqaWhObNtSwe762D3VDdzDMnMseX3vh1rw3HnnnVa8za233kqnnHJK9PVXXnmFnnzySSu1XN38ly1bRhMnOjcqfP/992nkyJE0atSo/my/tTPTcXLIPjVsWlfboMQO88T7W+jK4ydR2EnXPszEseiBqBxH4lTXJAxj0d1ADHekHujj7Xcsr67aRQ+9u8n6/YBR1XTi1GGOMTzs5vE7jva4woP2OjwFeXnR4nwcw+O2XL9jMffSivjeZrc0eh0+BYdXlUQFD69bfYdr8Mh1Voi+WrrbLyz3gSDHlsE9LJxEQjYW32np7KK666676KKLLqJDDjmEduzYEf3hQoP8/y233EJr16616vQ8/fTT9I1vfMP6Lmds8fsczKxgqxBbgTIVWbZdplAWikwHZBpkH81C6DrVRhkIWjq66W9Lt9Andc2uMST69irBE1a2iNYX8ndzHZ4AaelxrSXsvbQ4qFdlWvYKnkioemnJ7TcFHQ+rLIlaqKx1d/dEz01Zg0dPwbevIzz3KxQeBGkVPPPnz7cEy7x58+ioo46y/YwYMYLuvfdeWrhwIZ155pmW4Ln99ttp+vTp1nc5iJk/x24sRV1dHQ0alLmZTTJouVNkXhSLm06QtFmQmR270zVJ/GHBerr+xZX07ceWOAa0KpcGM6g0Nsk1tJpdGmFAWqTqRRo6CxC9Dk//0tJ1C08sdZvn2mRMuMbWEgkuV55nJsEytKKY8sXDlhS6JVoskUzBD4N4Z3SBiYdFkFaX1sUXX2z9ODFz5kx67LHHjO9xjZ4VK1bYXvvZz35GmYxMXZU3R8u90Zn+GwhIDbrFJFkpzEFZ1WfZ2d3aSbtaOmhEdamreBg9uIzqtzY6urnCgrTiSEuU3vsqaKVlXZjyNauuT7bKsiteFufjBxrO3Ep689CE09LtgqdOi83igGt2y5nOU1mDR32WP6nvvXTer3RjGAoPglSA5qHJcGmJq1Wam2GWzT7YlRSGSUKu18nK1NQW29ZRQhCF2aUlrTj1whLVoBUd7K+FR6bsKze0FDzJsNwls5eW3P5KQ1o5u+NkPUF5nso+WqreDosenXSJd9O+klZzAJJF5lUfCwk2l5a48cqskt0tHXTjSyutTswXzBmb9GweMPC0CDfRQLu0Nu5ppbvfXEeHjx9iO+ecXFrSkjOyuiT6VK8H/4YJWTdIbqfJKuU0bhOmybyp71iqVgsy1iUZ7SWS2VpC1hEyuaR422X8oHRn6jE8ahlhiUdj4qx3XXhYBMkHgicBesu2m4OWpRl80aYG64eZPqKK5owPd1VekIiFZ+Ceir/zxFLauKeNnv9oO40bUia2wVvwVJcWWj9s3TFZS8KCFDlOvydiQTXto+a+PmPKFSTbw+hZXYmg7gtWy4ZIxIoNSlzwuMfw8LZzsUFFk+ihJi1X0kq0rTE8Qcu6qy9R1x8AbsClRf1PEZU3MRm0LHl3456UbxdIPU1xMTw9AyayWewodjR1BBI8VX2Ch0Ju4bHH8HS6tsgwuT0Wrt9NL6+ss03+TvtIfUK1XZDu6GRaeNjyovpUJUXwiAB0KXhkawhp4dFjeJysRLyOZGSnJUJ8fBYED0g+EDxJcGtI9wIX+TKh+9FBZpKuGB4pdqztEBPyml0t9LPnV9A/Ptzm6B5iq0B1aVFUPOiCINX8Z80u+sk/ltOKbU2un5MiTQozU3q97vZYvbOZvv2XpfQ/T39I/1pZ59t6oVxB0sKjp7EngrJS8PIL83tvtSmz8HDQskOWlqovJKl0aB6bLrdWXAwP4h9BCoDgScKkJxvdOWV2mG46IPOPfTImRj8s3dLrGjVx0/xP6Jll2+j/PbfCytgyWUX4iV5ZBiIOPbZSyXee+ICe+2g7nffAe74FT29fq97922544teDlu9fuDH6+89FAdDeZTkfp2jQss3Ck7ygZUvw9D0IJRq0LGOQjDE8hfYYHunSkkJOUVVaECrBo+8XlPQAqQCzcALo5m4Zw+MUmGwyK4PMIy7Qc4BcWks2OwseyTbRW0mP4bHV4gmhW4snW33CVRllpolYd3tIl5T++fZ0WHj67gvsMlNxQolaeOx1eOLFipWW7hC0XGKwLjtZeNIVxwMLDxgIMAsn4SlfBth1Oz2ZZEGG1kPvbrSsCTJdONdIV5bWUp+CR9Zi2dXSaZvglEtroFPT/caFmDKxVIB1uyGmRrcCyPg5OYGy9cBtAlXWF2mFTYaFp9Ng4dFbkySWlh4vVkrjYng8XFohKz4YL3hg4QHJB1laSYnhiV2sTk9wid7owsKanS10279WR1Ocv3zoWMpF9ErLAzFBsMB2ayEhUXMeP+G/sXqX9Xt5UQGNqC6JBi0zjQOYqeXXjWMKTK5v7XIMYtULDzq5k72OkYqvsVl4khG03LfNLHjULkhl0LLNwtPuFbTs3E8rHcDCAwYCWHj62ThUt/A4XaiZfgHXie7wepXXnI7hGYBibRt2t8ZVovWaOF5cviMqzk6eNsyyAFSnyaXld5J3tfAYRItuBZAxLEEmcfU96fpJRvadGjdXX1dipDtFQcssap2Clk0xPE4WnoHKOvSM4UFaOkgBsPAkI2jZh4Un09Ms5RgzXbz1h3QUawty7qhj89clsb51Z80Yaf0vBU99GAWPycITIIbHqRChdDuyZ0k/fWMxPPlJztJSLi1ebk/SLDym+Bt2WxVmkUsLhQdBKoCFJwkWHrvgMd8wMr03jLwh5XJRsLheWgMwQQSxCrDVY2tDG33Ul/49dXglTduryvpdxvAMZPFB3Z3rNJ6G9vhtUvFiZsET8XUsZGD5oLLYPoiP4SlIXZZWv9PSRZaWwaXlFrRsKolRaWgt0bse+7ifWbaVzvj9Anps0WZKJfo5kcv3GJA6IHiSEMPjy6WV4RewTfBkuHhL5rEfiJiHIJMkf1Zmah08ZlD093RlacU9vTtYrBpF7y99O40uLe01PXtSTaLSWjNIiD5XC08/XZUcqK3WXzgALq2yQg5ajq8iHdTCo1u2fvb8x7SloZ1ufvkTSiW6wMllKzJIHRA8SQhctVs/HFxaGW6ilU/psu5QrhEfw9NjFfH7/X/W0f/+e3VKXAJBJkkWozI7a0h5bIJPV5aWLpCdUvkbDRYeV8Gj7Rc9/kTFBMnvDiqLn+iV9UVaQvpbaVkes14LTywtPZFqxmpsbIzi9Hu9vml84cGuhGJ4wlKHJ9NDAEA4geBJiktLWngcXFqw8KSNHU3t9JUH3rN6UfU33dUUw/Puhj30uzfX0Z8XbqSXV+6gdFp4eHyy+GCNEDzSgtHf+kEs8qQlyQ393DcVEXSy8NQHCFrWrRPKHSZdXYPL/Fp4epJ2zKTgYRK5fNT4VWC1bFKstl0KHunuC5KlxcUrv/7wYqswZaKp4uxSDVrJW19Xpme1gnACwZOUOjz2mh8mMt1EK0VOpom3X/5zpRXT8tba3fT4+7Fg3qDwk7n+5M+T7PbGmMDY1uBPBKRM8PTYLTw15cXR3+Uk2V/hd9VTy+gzv1tA9y/c4PlZ/Zpw7v1liOFRFh6xvUo86EHKegyPsg7JFG1p8XKL4elv0LJd8NjFSCJuLeU6VcUV9RR8tuI4ZamZm4c656u8v7nBqrnVpFkB1bm/aGM9vbZqp9FS9Ye31tNnf/82fe+pZdQ/C09m3y9BOIHgSYBczNKSIifRwMt0sXB9rHHrmp3+6tmY4AlVH7pVHVgc25S4tAI8LbOQ2W0TPLEJntOjo5/rh2jlMb7eV+Pnjn+v8bFNegaOed2muKJo0LKwuKjJWhdtenFCtTyOQVGMG1I+IK0l5AMCCyopRhJ5YFBiTgkeKV552fy3LDwoMVl4OMjZjdU7W2zNW9V974MtDfTNx96nK59aRv9e1XsOSOa9sdb6/7XVuwLdJ9BaAgwEEDwJ0OrSPNTpQs30CziTXVrySdRpUvCDqYEluz5k8GwqBE8Q835vDE/M4jTE0cKT+DEM6q6It/CYrSd6s1N7DE93VLSpSd8rS0tN2FsaYo1XJ9Y6Cx5uAaF+72/QshQ1stKy9V4C+75dFzxCQKkYHWlFsq87/jbvdR3UVhTHCVCOXfzB0x9GRf/zH9mb1eo4CVsTKDwIBgIIniS7tBwrLWeYVSSb0tLlvbM/DT6ka0RORB1hsvD0cAyPg4VHWhn6IcCDTthxlhiHdasJlidunnDltab2MbePKO4TD3ExPJpI+feqnfTqJztpU31M8EyoMQme/Djx0N9yAzKgmkWHbPmhjicLwReXb6fl2xoDCx7p0lKxRybB49a0+IpPT7GsP8dPro17j9P3G7Tznesk7WiKiem9qkrj3k9U8KDwIBgIUHgwic1D+aJ10jVBLv7wx/BklnjrEdtrmhQSzc5TsR6pFjxBBAY/Ge/us/Bw9V0ZvyHH3p9Mu6CC128Mj7LwVJcURl0uvM/ZoiQnfGWp0t3EukiZ/3Gd9SOFx/CqEmsZchuk9YXFA8di99vCI45ZgWZlUe/9+pVV9JfFmy2r1XPfOMxYI8j6fE8kes2p4yndk0qkmWJ4TDV4FJd/ejKdO2MvWr6tiV5ZGdtPyiqq12p6c43dhaVfS1sbY8LSTdj6tfDwNjg1YwYgEWDhSUYMT98E4CYEMj2V248VK6zIrU30Bso339V1LWYLj5g8k1Ght7+FB5WFRw/Q5bGribI/LoOgQbdxWVoO8TFKsLDo4DTr6OudsS7qbJFQTULjXFoecTfcA45dOXpMixQKSlD0O4ZHWniEq0y9t3D9bkvsqGOxYU+r47Kk+FLWHNkoVYlDaUWKjcf9Fs+ixfQZ3rcNfX3MFH/7wO7C0i1sW7WA/f64tJxeA6A/QPAkw6XVd+N1e/LN9DRLe5xS5t6IEjXw3PzyKvrp8yviXu+djCOptfAEuPGz9VG5hmSGlqKoz33Tn5iyoBORbqFyCuBXy+VJuEJYprjYo9qvxcLC02tRjfgWmyOrS41ZS9JSocSQX+HK+3H+xzto7S67GJb3AnYlynXwODlzUCILBboJHpPFRrm58gNaePTv62JFd2nt1Hro6cdxq1amoD8Wnky/z4BwAsGTjKDlvovV7QLN9DTLTI7hkSQatPyvT+wmf0V7ElxaT7y/mW771ypjL6mgFhUZYyHjdxTKwtOfp+eg39W33yk+RgkjjqmRFp4WYeHhOjTFhaLeTN/rvE1eE+SoQX2Cx4eFh5flZ5wPvbuJfvj3j6zaNdLV7VaHZ1tjG23cY3f/NLu40KS1SVlj9OU7uWul68sJ2TRVwee0VzVu3YLTHwuP6RzP9MxWED4Qw5MUC48Pl1aGX7yZnKWVDAuPFCN5fZYGnoR5V8jYnqCC5/1N9XTjS7Gy/VccN6lfAkMWA6ypMNWcGXgLj+7OdZoIlZDmmJoKIXi4YrJap4zhkdvip8VHVPBoFh4pRvT2Em71apg7X1sTrRfEBSiPmjjUkJaeT4ViH7R09Hi2LJFIIaXideQxUELH5NLSCxT6TVvnY+RVbVoXJCzk4ssX7KT73t5guVnPmTnKamRrsigZXVoZfs8E4QMWniQ2D3W7QDPdH53JMTzUzxgefvpUVgmeiB89fxYdNHqQUQwFFTycSSStBU7r98v2pnZjSrqeqdUfd0FwC48Ww+MoeJSFJ8/WDmGPyDpjoSnjV9Sk66cysnJpSVHTu758o7UjaKaWU2C/laUlRJVJnOkPUV6Cx966It8xaFlltAUWPD4sPPo5pFt4fvvGWrrir8to8aYGWr+71QrSvuyJpb7P8UyPewThA4IngeDV+F5a3haedGdpraprphtfWmk9hfa7l1YGP3kl0sdITkYHjKqmCUPLbYGejSKbJajgkZOK0+QURGDIqs81hqyfWNBy4sewO3BauneWFsfiqGHyxC0L4+1ujY2pN2g53qXlJ+aGg5Z7l6FZeMTy5OQftDGsnKDj6vAIMWKynJhqPJmEl5tLS+i22Hs+LDymz/Ax83RpaeeQrHfEvLexPu47/JopA870sJjueybIPiB4AsI3gm6HFEo3V0+6n1Z+86/V9MT7W+jnhsDb4DfzzH3yMlk2nlqyhc7540KrJooJ2Yixsm8ilmZ5GdwZdJJUDS6ZKkMn76AWHrm8mr5aNqbJrX8xPD2BChHGpaUbJje92San1Ctk5WjdpaWOp8nCM22vSgeXlnMMjzyuC9btoS/86Z2o2yqI5Tc+hse9T5er4DG5tGSrjQJnl5a0hgWh18IT3+pDIkUzb0+dFtQc24Y8OnTvwa51pUyvpfueCbIPCJ6AmJ7O+LLkUvsfbY8VEDt532F0z7kHRguopdsfrWpk6JkUfvHTLywTMFk2fvHPlbR2Vytd8+xy43eaRAZNRXFhnJUgiEuLJy/O6uGGpox8iub6MyYSDRI3Bi1HXVrJi+HxiumKbwERv25bTEpBvs3Cs6evvYSawGUgbtSlJfb75w8cSXd/YQbNmzvDto6hfdeiW5aWFDw3/HOl1WKBY1A2uqSNm4Sv3lpCrsPkKnN3aUkLjyGGJ69/QcsmrCwtTwtPbBt2NHc41iBjkSa3w3T/MJ1DmWxJBuEEQcsBcQrk494yEi6Nf+DoQY5l8AcatX6+1/ANJ2gBPrtLK4MFTwJiTVp4KkoMFp4Agod7T3H9lb2HlNHjF8yyiaXqUifBQwlhapSprCP9KewWVySup4eKXZ6d4htDGgRPt38Lj62AYjSGxy5KDx7Ta1GYd84M+v1/1tGZB4yIZujFZ2nluzbaZNbtbqWxQ8rIDena1JuHFhZEXO8hvoOW+7bdZhHrExOmGB4/QcvMTWfsRw++s9FqHKqOkWrc6oQUJHr8joSPmdzHJsFjtPBk8H0GhBMInoD4CY6UN5pkxEwkA73fV0G+d30OSXeWpKUnYmlrEk/flcrCI7N5bIUHe39/9ZM6uuv1tfT5A0fR3INGRd9XxeY4iJOf3KVVwCkjKNH9rfpRSdT5GOk7pjJ+JVV9j/TPm9x+esyLPYbHLnhkaQEl5OV1KY/NrL0HWz+SuCwtsQ9MGUTMTpHu74QUvm5p6f2J4SkLauHx+WDD7SWO22cozb71Nevv+tYuT0uujLHRa/To+9urWzwsPGAggEsrIF6pmgp1g1PCJ91xL/LmlEh9i2zJ0tInZz+NMGUPLZOFR8IWHrac/OntDZY75O43e7tHOx0TaeGJ2GpCk3GCCGKYMxWds8W/JHgc9QnLS0Tqk5nJCqYLBJvgcY3hiQ9aNmUdSdzq8Dgd181aQK4pAF7GT8nJWhc87QFdWrbCg0XOFh5TjSnZc8sLtvap8TvF4zhdS7J/m2l/y/iiLt8WHggekFwgeFIkeNSTdLTvT99EmC7kzSkR95q8SSm3WCag73N9kvdTU0haeFR9GLcKtrx/VV8o2QFcp7WrW5skvQWPFAJemCZvGUuR6IQS79KK9Dst3VXwaBYemaX18xc+tmoZ2S087vtIpryr9Xl91xTDo19HjhaeArvgaQto4ZH3HLV98tiqc9GpW3oQ1Pkhz0sn5IPTHpFJZ7bweNXcgUsLpB4InoD47bGjfNbKpMyX7tceXkz/8/SHabGQyO7Dibh19MkxU6w8+k1TH0eHj3E1G9xOTpYA5bJRy+H/nKxI+lOxkwCR2yRjW9zIcwhYVa0letcX8SUYZdCwvj36ch56d6OV2fTG6l2B0tL1ZptOdXh6Ky3HxrC5vs1q+RHIwuMzS0vC6/Gqx6VEAgvUXcJCotfhMd1D2MLD1j7T+Sc/r/bLL06fZv3Px/grh45xFDxBs7SCfF6er14WHrmP/cfwwMIDkgsET0D89thRZuYicQP9YEsjvbyyjh7vi+MYKHjSSqaFp/fvzLgZ6ZOr/iQZ1+fJMBk3myw8Lk0ZeZ1yfztZkTZpVgM/Fp6KvhgiL3j7TAHJQS08HIx/0l3/oSff3+womNVyWNjd9q/Vlivvu3/9wLj9jkHLWrNNWWlZ1r2SvbQU3KZBuoS8LDxxLi2xPCextMkgePR6XGzh4X1w4cOL6f9ej7kyeXttFh7DPWTNrhY6ad5/LLGoHxdT89A544fQA18+mJ742qFUW9lbX6jQ43gnW/DI+4guil1jeAziBr20wEAAwZMyC0+f4DE8dS1Yt5sGEv3GkVAMj4dQCCt6zRdp6TLtC2/BE5+WHrfOrh5fMU+61cCPhUf2mAraH0mf3L2sdLtbOqxyC/ypG0T7C33CUueCk/tO3+cmC49eh0d3Ozm5tBQ7mzsDWHhcXFoO32ULhh5n02oQPFzgc9nWxrjl211azseZg9lfE9W39fXI827q8Mpo9Win5qF+Cg8GjflR5Q6CWHg8g5bRSwsMABA8AZFPW25uDXWjMaWFumU0pAL9xpGIqTjewpO44OEb+P0LN9AX73vXqv6cCDy5+tkGXcCw+OOJS72uT8amp+8mQ9Cym/DgrBo/lal1q0EyY3iczk0pwL2eoL2afEaX07cP9botqnCdXpnZHMPT40vw8ORpuqZUXSMv65uX4HESiiaBqgseTks3CWa98KBXHOCGPW30tYcWW646ts5KgaS3xZCYtE0qXFo1fS1LbDE8boKnyB60bHRpobUEGACQlh4QebPiuimyO7VpYjE/jQ6s4NEn3ERMxfFxG4k9ffH3vvrAIsuEz3xS10xfOXRstAquH7g9BvfkGVFdSo989RDXWiP65MpP4Kfd/ZYlCLgnVmeXbv3q/XvJ5gYrI2r/kdU2C49KS5cuF0+Xll8Lj4ObUH6/wmcMj5OlwpTh5IRTIK1TDI8e6MqCblBZkSEt3TtomS0CPAZddPFx01sYxAkeF9Hi3S3d+Vy6b+EGGr1XNalqPLrFh3fDNsP9oCCfLRzxpQucUJWdl25poGMnDTUGLZswNw9NLGjZDbWPZC0nGVge9/nCApv1yXdaOlpLgCQDC08/XFpunZTVTdRkUnYz/6YCPWanM41ByywklNhR1HuUsNe5/MkPrDGx+f+fK3a4flZ/4uZJnH/4GPz+zXXxLq6uHvpgS4MVh3HBQ4tp+bZGY1q6kwUiFrTc47mv0mLhkTE8HsdQjttpe+S50dDaFRdbY4r38gpaVtYQ01jZAqGKCkq2C6HhZeEpS6AOD/Pch9vpc//3RtTKa3Jvm4Kb/WRpOcEPBPZeWs7Hvz+FB90sPINEQczeYHh74DufD/V9gmevqt54IjcLj++0dFh4QJKB4OmPhcdN8KigZcNNiC/4IDe9/uKVmTSQLi1T81K/qf6mCdMtndf6rMtYuRy+Lgb58zfNj8Wr/O+/10TT0vPEZOmWLaVbePy7tHxkafU3hke4VrqSZeHp+1sWUZRB2frnTW4fPY3baawsSGaOrqYffnofGl5ZbLTwuIlRc5aW7Jbufktk6yxXXXY6b42Ch11aQlT5dVGp/aLWw2LVLc28P4UH3WJ4ZE82XoeteatVkbkzWkHKKHgK7UHL5rT0+HMCWVog2UDwBEQKlSqHVgAy/dcpCFA9/Q4E8YG5kTQKnvgOyq0did/YvOqMuHVc7m34Gm/hkU/UEWHpYOuOKu7mFsPD6cqRBPaVvywtny4th4nUnqUVSYrgUftQtlaQgs5f4cHYa2pyNIlKFiTsQuEK1hcdPi76uhSu3oUH3YKWvffvpr5rV8/SchM80sIh48QGOTSMlftW3XO8hFx/Cw86WXjkceCx6G5RabEe4WDhkZuBtHSQLiB4AiLN2KbS/X762zAbfDQjTBZ6nEoiKeW6MEiklg/fuDkuQcc0cfjFqyeYW28rvseasrTkDZmXryb+CpES7mbhkYUKgwkeJwtPT4pcWh4WHs1io+oJxaelR4xBy0rw+OmWrsfwuFl4vHqPeRceDFaHZ+7MUfTjk6dE/95U33vtmqy06j03C4+8h3CMk7eFp8eXkEtm4UGJtOjwOKQoYqEpA5aHGwQPWxs909JReBAMAAhaDog0Y7sKHlV40MGHvqHPLD4QdKTBpcVF1CpLCmy1YLgOkekmphdwC0KPx3a4ubR4Ao8ritdtz7DiCUM1D5XWFTcLj56e7VccOgkeewxPYRKDloNZeNgVwyJEn7CUcDIFLZvGxePh80dOxnrzUGfBU+BpYQ1s4fGI4eHtmDi0PPr3/I/r6MXlO+ijbU0+Y3jsdXic4mNM8H5RFiEvC49pHUGztEzjl3GIfF+zdavv6rEFLHPKOr8vzy0WmI3twQsPBr1P8XXHx8pk6QKAgYWnP4LH5WalbqKmLC1m/QBaeOLS0hNwacX3T3JexovLt9OJ8/5D3/rLEltrBxm/c8SEIUmx8LR6ZHK4ubR4SPpkrNfQ4ZunesKWQeo8uThZUZoTtPDwLvWqUVIurBNDXKwDJQ6To11keMXwdMVN5lwjRg/WdbLwbGtos9ZhGpN+XIwWHgeXlqK6JH78bEnwqj2ju/uku8lkHWKhMVpkEbJwN4kdp6KeeqVliZeFh8Vk1MLjIXiMMTwBBY/p81I08VjsFp4eq16TTFnXrwur8KBHWnp/LTxvrtllFW48/8FFvvrjgdwEFp6AyIBDJ5O6V5aWU28eJ3gyeOidjVbV5nMPGmWsoJvqoOW4Fg0u7pBrnl0ejddZsb2J9t2ryvqbs6oUs8YOpjfX7E4oaFniFfxt6sztZuHhiVhOvi1i0tfjZ3giNLnM4i08/m/AluVDE8lqe/hlaZ2YWFtO00dU04dbG2j59iZqavduryAnNK+K27pwO/+hRQ4ZVmYLDy9+a2O7UfDxcZEWHHszTJcsLTEu0wNHpQ+Xnx7XIvc3P6DwXxFNIA0uK7IEWCLinM9RGRgdxMLDYkftG68A5/wUVFrO0857/l3uP763yOaug8uL+pZhPxflfTAVMTyXPdFb2ZuF6NvrdtNh42t8fxfkDrDwBERNzqxn3EzM0eahDk92+tOwG39buoX+97U1dOsrq+iVT+xVWBNKS08g4FiP+/FrtZDpwnK9Q0Xmh1unaB39ZulV06TdxZpliuGxXFpiHXL7KzR3krS2SJqF8JDi0M+Tp+kmHxU8/HQtJhueWL5zzASaN/dAmjS0IngMT8AsLad4KCcLj3JrmSxJ7T4sPKbrSwo50wMH12bygoWBXI4UI/wwoQsi/iy/Pnqw/1pRUtBwReTCBC080nriZeExrSJwWro2dj4GFx8xzhI+DMcy6aJZurTY6hhv4bFXWvbbPDTRSstucXsgt4GFJ0HBwzcCN/+4uok6ZUkEuSgffGdj9Pe/f7CVPjW5tn+FBxO4IcRn5vgTPDKgUW6HnKyCWHh0N4uXhcftpskCxNRLS26nTHdWNXjs8TTtntsYbSTqQySaRIgSeXxOyclE/q4/yTtaeGTzUM86PP6OSzQt3SB4OD7LbOHRBY89bsopI02OuTdeo9c1qRhZHR80a4LFgxLLuhjhfSe3TwmNMYNLaeWOZl/L5+38zVn707iasrheUkEEj2yZ4RXDw6KM1yMfCpxc6k7on2exMq6m3CrSyVY5ttb+W7S+0C08HMOj3xettPQE6vAkkk2aSDsNkDtA8ARE+tPdMiDUBORkynaLLdGRN7BEAvL620uLhYF+j/Jr4dnWGBMEUlxUi3TcIBYe6bZx60vkL4YnErcveFtkjIqt0KRm4XGagPRtVOP2s89McQvq+PNkZhc5+Y43eedeWonH8DhvszktPRYEHkmKhYdfldccXwucOFAvhJbfit12C4/9mjLFoDCjB6kay/4sO7P2jhVITDRouU5UZfcKxlbrMbkH/aJbhJRbcYII2i5yieFh11+chcxHWro5hicxS03QzDSQO0DwBCRWE8OereDYPNThM35ER6/vP8+KhVAkci33t5dWf25GWxvbjE/xiVp49DgRr+71bjE87O7SrRxygtGJt/A4BS2bLTymp1gdt07iuuCRE4vuOnVyacmn70Tr8JjOBR6zXnjQFBOlj/O5j7bRw+9uogoZEB4tPFhorMEj4fPIJnh8uLR0MaXHTOmuIyU0ZOCyDm+HtHDpVdj1dfi18Mgu5F4WHtP9ob9ZWqZ12oKWuyK0paE9ug9438UJRj0t3cXCI+OnEnVpmZYPAAPB0w+XVqEfl1ZBYi4tDmrmjANeh2rC2LvcvAHvpWUKUHazVvC9Xa1ia9/NUF+vfLINEgiqBwR7WXjcYnhYLOnuPenC0jEFLZu3sdu4//3ciE3iMubSyrMVqpP7UD8X/RUeTI6F5/f/WW/9OJ3n3YbzR53/d7221gpsNl07qiu3mziosvZHTFSP9GvhEftHt8I6Tfoy7sy+vXk0ZnAZfSi6pOslK0x9roL0RtO32QnddRa8l5a34JHL5HNEWXHHDu61gHnF8Bjr8EQDs2OB4f3p1weACQieAPDEowKAy3y6tJxuOF4X5a9fWWV7cu2PS0sPWg765GSahF0FD1ul+r4jJzNlTenN/JAWnh5fQodjmfSCjV7WIbex8nd1MefUDNY0iTlVPXa08PT038IzdkgZfemQMfTRtkY6e8bIwBYeKYySFcPjNR7TuaLiZ6QFQ6Emx6MnDaXjJ9fSsi0N1vV24eF7x31Wb+/i18LDAoUzemorij3jn5TQOGBUlXXN6+Nhtw/HDtkET6k/C49fgebXwqMLq6APSPoDmikzTH5mzc6WqEWGY5xMy/Bj4VHuVd7XSvC4Pay44ZV9CHIXCJ4A2LsW+3NpOVmBOkSnYT99lhSy67BfdCuGavh33QsrqKGzh3786X1oSLn56dUxq8JhsuTX5Q1na0NbdJxK5PF+4x8VYOmn8OD9CzfQHxZsiHvdO0vLedlsHdJvjm4WHq4x4mcCcqrD40fwmESItPAw3z1uYtxn9HPRKYZHCqNEe2l5wWJLWXAsl5ZhAuJYKT4vTAJPjZOXc9MZ+7muSxcWI3wGLV969AQaWV1Kx0yqiXuI0GsYqVIAwypL6M7/PogWrNxB/1q5M9oEl7+v95CKc2k5xPKxG+jOzx9AL6+soyeXbHHdZj8xPLqFJ3hriTxvl5ZY5uqdsUbAew9xtvDYergZXVpq/b3WID7nYeEByQbh7D7Z1dJBr4qUcL4RyIwXHSV03LIk3J5EnFxhyYjh4b9fWL6dnv1wO722so5ufCnWLNOE32Z/pqwpHqPqtaOWw2ZzFkCqsJyTS4snRC5WyKLJJHZM6wviOmQBq4/DzcIzRHOxOLV5iBM8fetwEonSctTlYeFxIj5ouX+VlnnfyxpEQZCun95CjvFj4vpMPKmZdkkQq4Semq4LDSc4uJlT+g8cPSjuPScLD3PK/iPpkqMn0KTaCpv1UU+H162BjscjP4/mjB9CVxhEbCIWHn3fud2j/Kalx31GnEOr6pptVjP9fbVNfi08va0r8gJZovWHmiAJISC3gIXHBx9saaBLH19qm8h8By273HD4wnQOLnVyhUWSEMPTY6sUy0+XbpgmLKfJ2+RiYrcWT4LRm1o0C4dLzju7pf7+wTa67sWPrRYVTnhmabnsLxZL+vtue1ePKfEzAfkJWmYhpYKxTTd53cJjQndplfrqpeU8Wiv2JkHPALuJVIsF3r+mc2Xp5gZH61wQwePW0yxR4mJ4DNay4VUxUcfj05tmVmnnrNPxUELAjyXGX9By/2J4dLFiEvVymdISrSw8+lisdHmfaen8Od4GdnP7tdS0aK5XuLSAE7DweMA+6m89tiTuqb03hiffW/AUOvvU3fo8ObnCvCwavgoPdkcC1ecwxvA43FRMKebcYkCtV1oZ1M3UKS2dxY4pCNgpS2t7Y5t1rH72/IpokT+3pz3enCBWDN3t57eRZ8ylZX6fU3ndBK0SnG4WHj3Y1NmiYK+S67cBalDBo5AuLT7lVJ0cjndxErpO8S4mvFyaieBm4TEdM5MrTbc0GXtU5edFXdosVLzESWJBy/1LSzd1j3eyPjsFLev3Pbe0dD72ahv8Chc9kQEuLeAEBI8Hjy/ebLypWnV4XG5Q6qLVLTzSLeI2GTsJkkRu8KbWEkFuhCZLQBALj0pbVcvR66zwd2TPrSBIC8+lDy6ihev30DPLttF7G+o9Y3iCVLzmAGX9Ru7XuqBEjFMMj+yJ5VaHx0+QvNtEFV+HJ+K7U3oQ5DkuK1fzZHzAyOroecw9qYzbGMANI8sUOAWRB0WPfzJZX3RX2sgqd5cWCxtdSOnHzCuF3KvSsi54ePFuItlEsfaAZgpa5hY3pv2hsuhM45AvdXtaePpcWj7vdXqSAAQPcAKCx4MtfdYJnV6Xlg8Lj3ZTk0+Gbhe007K9XDh+6/AEqc+hMq70ZZgwZVypfahcWmqfKAsJ3/8SLQcvLTxvr90Vt06vTA+/gseUkuzfwuOels79h5z2KwtBtfsLg8TwOKalyyytnqQHLDNSu3aItHQWMgeM6hU8zDvrY81kE3VpfWa/vaK/f+PI8ZQMpLBlkWLKjJTlAay/y+wCx9TnSxcsfq1y0WX6iE+SAieRisN+XFqmhzFl3XEah2daetTCkx8VmH5jeHRxnojbH+QGEDweqIBbHa+0dHWB6zc1KXjcXFpOdTu8Cu35dWkFyW4PEsNjCkBW7hH1HXUjljEJiTYQZQHIokA2JpV43TT1QoZOmDqT+47hCWLh0fa1rWpusmN43Cw8CQYs8+JPnjbMHrSsXFr5eTRDCp4N/Rc8s8cNpquOn0TfOnI8nTNzFCUD6TpysqocObEmety+e+zEuGxLvSq3tSy9aameUeUhUFSMjBvyvhG06KDpO6bxm5bL5RLc3ncLWmb3c0Rsv7pn+rXU6C7vRAsWguwHQcse7HSovGtlafmINdAFzxCfFh6nizYRS0h8WnpPoOU4paWzxYY7onNzRGWlMMUYKctONC297+YnXUIslIZQcHjLFqzbTfM/rjNaKLxcWvWGOjB+MrSCWHiUK6/LJWjZSYTIfZ+cGB5/hQcTqcFz+vS96LxZY+xWTOHS4gl+yrAKy0LAIlymNCcaw8NC49yDR1My0S08Ttf/n750EK3d1UJzxsWfubEp3DkGJ07wuFh42LqjB82bkOdI0IBlo4XHWHgwfjvHyHpChtW6BS1L16qVpRXJ91W6w8nCA8EDnIDgcYEvNk5HN2HV4fERa6DfdGwxPC4XppMgSSxoWY/hiQRyjZkED0+Wd72+lu5/Z6NVcv/JCw+1TP+mAGSexHlfqsncaOHpSPwm9Z0nPnAMZPSKA/Br4dFr8JgED8eQmFxBXhYeGeCqixB7j6l8/zE8DpYJW+FBVwtP8PPsmIk1tE9tBTUKN2Fv0HIs6JrXz9WRnR4krM8lUFwzmcj4J7dAYU5tl727Tt53GL2wfIf1O+8Ht+WahIObRYabkHpN/PGCJwELT2GwwoOmoG1TPJ487/TrQLq4ePuly4zPfy/hBpcW8AsEjwt801fuIG6exxlb8ubl50lUv+lIP7yblcXpvYQsPIZKy7rlg83KTlWcTZYAFkyPLtocTU1lSwlnMZlcU/x93oSIZmUoE4LB5AqTBewSOXb8Xa8gbz9VnhnT07Xu0uJjaxQ8HjE8cgL51Uuf0Csr6+jWLx5MJQEsPF7tEYK0lnAT+m4oASgnzd46PPaga68CekEsPKlA7ju/bkvme8fvYxUg3G9EFdVWxhdA1MVTXNCyy37hjuV+kGIxkTY0+jbJa9TpM6ooo8JYW8mvhYdr9uTZzx8v4QYLD/ALYnhckI0k2RQfJIbHT8l/N+uDo4UnAQGg3wD4iVtfvlvHcpOF500RIMyo5ZkEBLt0ZEG9aNCymABMQslPZVknFm2sp1N++x/HGCwv9IwfUyVq3dxvClT1U2lZTiC9Lro99IPH34/7jrtLy/6ek3i1paUbtofFzlVPLaM7/r2GgqLEgXxCly4ttf1eIiJIllYq8OPSMsFu3e8cM5FOmBKLYQpi4SlxEXrjfcTvMHJzg2ZoGVtLmNLSDftkeKW7hccthkePU7MXx/S+3+kPGcjSAk5A8Lggn3L1LB2+N7Hb4LJjJlgxLBcfPs64jDiztRQ8ri4tswBhYaFqzPhFr97LVitd8Oi1LOzfj1+fXpFYLc9kqeH121wzRpeW2cIThCe+dXj092VbG13r93ghs06cLDy6S8spiybq0nI4bqYn2Df6qnr7Dlr2aRWxp6X3GI/ra6vtYtYvFX2BunlaarF0afmpJ5OIZSKZSHeg3maif8tNPIZnvE8Lj2w9k8hejHNpGS088ds5rDJ2fzTpejfBI5MieJ/YurH7cE/F1+GBSwuYgeBxYVdzzDowVHvCV5fUlw8dSw98+WA6YmKNcRl6CqfNwpNADI/Xe/6ytOItPG7iwK1RqL5NJuHCNyD51KVu9FIwmIRSkPsWC5KJtZWULPSMmJqKeMGjx8notVn8urTcxIrvoGWfVhG2/KjlmCYGvTlrEPFRVpwfN3FyJqJeR8irnky6BU+iLq0gyzVZstxjeHwKHmHZS6TvXnzzUO+0dB6XPPc9BY8m/PVz3I/b1T2GJ/0WHhZhP/z7h/STfywPxfaAXiB4DLBJll0isv0CW3i4yR9fkBOHVdBh44cEKh1vejpKxKWVSOCyqZeWvny34N1AgscUw2M1AozE7QOvtHTT/uEsoJvP2I++cujYuOq+lQ6Cg61wPzpxMvVL8JQVe07MToXvPF1aLmIl2Rae3vX1CR5DuQGZ3n/EhCF0/3kHW9ZMP1QUFcZNnHwMleusIANjePrjVvWuw+P8MKSjOpF7Eeln8LcuZqTbOfaZ/Djrjgyo3mdYTJzNGTfYs/CgPTBft/D4ETzhS0v/3ZvrrMzR5z7aTo+8tyndmwP6CHQ1b9u2jS677DKaPXs2HX300XTDDTdQe3tvFd3XXnuNzjjjDJoxY4b1/6uvvuq6rOeff55OPvlkmjlzJn3ta1+jTZvCc1I8/v4WuvjR9+nPCzfYnvC5yd9L3z6cXvzuMfEl2B3M9Hwj4Dohk4dV0O1n708l4nvtLiYMV8ET0MIT30srElfPx13w9PRP8GgurSKThcdgGTK59SYOLafjJtfGWVNYkPIxMU0aZx84kioDVuGVdUWc0tJ1nCwXXpWWk2HhCVJkLlbnJLZsbtI674219P6m3grVzH8fPIb2GVbh29Im3R/qOPQWHjRX2A5rDI8UOX7aOSSy3KBBy34zrmT8TCLJbvo5Zjqn9W2RAcvMyfsOtzLWDhxVTdeeNKV3uXn+YnisLC2fcY7OQcvpd2m9sSbmFubq7yDDsrT4QmKxU11dTQ8++CDV19fT1VdfTfn5+XTuuefSpZdeSldccQWdcMIJ9NJLL9Ell1xiiZoxY8bELeu9996jq666in784x9b4ummm26iK6+8kh599FEKAzfP/8QxLZkDU02Ti1Mpf4brhKhaIZyB43Ux8752t/CkwqVlv2nwxMdp53zj8pMOG43hcUjLlqJL3ejdLDy8D0w3LhUno08eKsaKhY0cG0+yHFwcNEVXxiRY63WwHvl5QvdqHuq2bX4tPEHcQGr/q9iaPS2ddPmTH8SdE7roc0NPJ1ZP6SzO41xaXhaeNLu0OCOTt5G3ffqIqqQtVxcPfl1aQQoq9kjxkIDi0a91kzjVRdFw7Vpht9r1p0+zvSbvmV1uael9zUODiJe41hIh6JYu932CXXNACvA9C6xevZoWL15sWXUmT55Ms2bNsgTQM888Q1u3bqW5c+fS+eefT2PHjqULLriAysvLacmSJcZl/eEPf7CsQCyUJk6cSNdccw3t2LGDdu1KLFgy2UR8thZIJMDWz9OLVbfGZRlBqy3rFh6+3+jCZPm2JvpoW6y30R8WrKf3NtbTzS+vstVVcdsmdgOqvllyn7DrpNMjaLlFq8PjJPhUzRr9yVs1rKzQAoe5vw/fxIMWYdOPt1PW09cO29v6//MHjnQRPM4xPLPGDnLcNnZdSutaIlk3rhaevu155ZO6uP3N28Qp1n5hUSknS3WeSyHrx8KTl8RxJkp1aRHd/+WDLYvsZ6aPGDALj37+/Py0qfSrM/aj7xwzwfc6pD5IJIZHx8+xkBlaTvhOSxfNQxk/8S/6w1oYXFpSyzo96IAQW3iGDRtG99xzD9XW1tpeb2pqojlz5lg/TGdnJz311FPU0dFhubdMvP3223TjjTdG/2aR9PLLL1NYGFRaSPViks8zdEd2e3ob5/JkbHdpJVZrpz2ohcewPN2F9fB7m6yf286aTkdNHEq7+9K5+ea0YnsslsmJu99YR2t2tdj2GYuT9q4OS8B1mYKWXSw8TjctZeHRJ01p4dGPpVynX1hA/ezUqXTf2xvoq7Pt8UISbmnwxYNGWynJ9761zvgZ5TrSb/TcSPMnp0x1PN57Wjt9W3iCZO6piVZt1/yPe4vlSbiYZBDhoWesqclbDtlPlla6xY7MivKbGZUqC8+o6lI6cPSgQOuQ58FAhUIN8yGMXdPS4yw89rIGQV1afmIOU418QAqaVQtCIHjYlcVxO4qenh564IEH6LDDDou+tm7dOjr11FOpu7vbclmZ3FkNDQ2WO4w/c+GFF9Ly5cstYfTTn/6U9tor1gjQL8kuysqulDj3ipgk1Pr09fL7/3fOAfTqJzvpiwePdtwu2dSRL2bT5zq63S047d3d1vdYyFz3wsfWDePHJ00xppA6ZeM4paHf/upqOnrSUNskLC0/TkixowSJqivCYkfe1PjGzttfXmIXPHJfOD3ZVZayJSF+8qitNFt4WKjy54O6tDhGiFsl8I8XQ/oyuJzcmnyD522QN74fnbgPff7AXlfFJi0zSgoe2Y6CBY/TeaU/RbpdFypImvcxF4w0NfHktPwg11avhYc8G0jyZ9wsPG5jTDdO175f9KrFRYV5rvuMhWHQdcm5ni1uTt93G8vRE2us0gQctO5n/ezS8vqcDETnc1V+3hbfJ5qH+un7x++ZgpbTfQ5JgcfXvZ/t6e/5FSbyPMaSrjEmXGn55ptvpg8//JAef/zx6Gs1NTXW34sWLbIsOOPGjbMCkyUtLb0T4/XXX2/F/Fx++eV0++230ze+8Q168sknrZigIAwdmjwfO7OnpcPoN66trfJc7+m1VXT6Ib0uDieGt8cm8vzCgrjlMi157kGdRWUl1vdufXGFlQXAHDR+KH3ruEnGz5uycZx849zok5fdIW5CG/aYO8a7UV5SSKVWXZZ24obl5ZUxq1d1Ze/2dxXFrGY9+Xm2feG0D8aPGkyDy4tpr90x1xkzcWTvk/AQzbw+bFCptdxhosSAH4YNizW59MtQrXZPlL6xlZXvjr40uLosOt7uYrP1sLuoiCrLYtdDVWXvWExUbrVb4Zw+x5T2iUKeaBZubTIGJU8ZNSi6jNkTauhtEYRpoqKs0LbOSkNWW3lpkfUZx/1kiYB8120PA4nec2qH2IuX8j6SYx0yyL5f9qqtCrwv8oWw4OvP6/umsdz55Vn0+so6OmqfWhrkI1h/8pghnuuRmaX5BfZj3CHO3dG1FfY6SOX2feQnhofP53SfQ7J+U36B+T4/UHNaOhkasrEUJip27rvvPrrttttoypTeKHymqqqK9ttvP+tn1apVlgVIFzwFBb0nwjnnnEOf+9znrN9vueUWOvLII60YoYMPPjjQtuzc2ZjUoLBPdjQbX6+ra4wqUz6Iia63tSkmHhqa2qPLlWypM2+DYseuZut7f31vY/S1fy/fRufsPzzus/x0EaQQF6dW87JbfPaYcqKUn177IpE6urqpblfsptbZ0Wmto1k07mxs7rDti60O+6CtqY3qWtqpo9UueIp7em+oRXn2sZbl5/WuqzGYaDMdFy8628yiqrW9y1renoaYJae1OXbsGx2qQa/fWk81Ipaoo92+jySjymKX8vGTh7puf17ficsWnoWr7E1XFTXF+dFlXH3CJLrmmU5at7vFsV5TfsS+z/IMIru7q8f6TI9LJ3Z2aSSy7weC/l77XW32Yp3dfF2IsXa228+DlsZWqgtYBqhDxOaxFd1pX3qNZc6oSups4WvN+7op6e49v92QVpy2vutBsXxjzMI4qDCPGsV1tHN3i/u5bFl47OdTW4fzuAeKHmGhbu/w3j/JOL/CRJ7HWNT7oRc81113HT388MOW6FFiZuXKlZabigOZFZMmTbJidXSGDBlCRUVFVrCyfG3w4MFW8HNQeGcm8+So0yoIq8BUfR2JrlcGKrLbSC6DXT8c0OuVhcXF/fh7svUFT4ym7elg80oAGlq7rOUEzQTTYbeFylRgwSUtSoV5+dY6ZMwCZ8TI7Tel3pf3LZM/J2OhZCXkyr5qvzJomT8fJIaHRV8ix9YtS4uXJ2MXOKBUrcMpboXbYnAArb7fTIysLqXrT9uXPtzWaMUcuW2/KgvAm9PkEJDOMUxqGaMHlVmdwRes3U2XPrHU+Hnev3Kdpowj9Rm3AH99OWEk0WtfHzcfB7kcvR4T78Og65GuTY4j8fp+Mu6fXJTVaxlyZHwdyM9vqW+zncdtomchu+3dlm3VeTJkoab7HJIxPPp4B3pOSyeRkI0lkP/ozjvvpEceeYRuvfVWOv3006Ovv/LKK3TttdfaakAsW7bMJmoUhYWFNH36dCt2R8HZWbt376bRo3tTt9PJjuaY5eALB42iGz87jS6c4+6mCoKcqGVA3m3/WkXH/O8bVpEqr9oTbYa+VSpLSSdolc/drZ2W+TloJphJ8ETTn7VeWsqfLycAPXDXtA8qRcyPHsNT0Sd0KsRnZNCy30rEbi0iEhY8hqBlmbbqlI5sxfD4rMPDnDxtOF1x3CRjZ3cn0d0gBM+PT55iBZtzB/AjJsRXDnerE6OPwfRZP7200p2Snkr0GK/4hq/+6/L4ieFJ5a7kYH3mpKnDfNWA4ngiddrpQcWbNcFjb7/jPluaymCEI0tLxvCkdVOAwPednV1Ud911F1188cV0yCGHWGnkCk4xv/vuuy3XFLuq3njjDXr66aejdXU4Y4stQBzjwy4tTlv/0Y9+RNOmTbNcYmwt4t+dsroGEtkj6uCxg+lTk+1Zaf3FVmm578JkgfHQu72FF3/9yiqrorMbpkrLTpNtIhc/txfwc5GyMHAqWMhB0WxdUUhxpvYB3wRVR3RdYJkyl1RKulstlwqDhcdUvZeDmVlQGMflo+aOiSBp6XJid6osrGdpJSuDSU5QDeL48bl+zMShVsaVabLVq/Dal+ldNThWh6cgtFWWU0lcLy2PwoNurSb81OFxKqWQDNjqfeYBI4w95tzOO3Zr6oJHlbLg84OTD4KkpTcZ3KNhKDwoDy2ytMKD7zv7/PnzLZ/wvHnzrB/JihUr6N5776Vf/vKXVtwOW2o4EJktOQwHMX/lK1+xlsGZW6eccoqVrcVCZ+fOnVbxQRZTfgrcpZqdwk3kZDXpD6Zu6R9rcUMmdw67WVRXYO475VaeXeKnUqnO2l3mrCGdEdUl1LjDLHg21bfZ9p/slSU7yLNwYXGjCxyT4JGWFydxobd3GNTnEtKztMYOLnUUPG5lBdwoKfRfaVmKF6eJKUhaehDk/pfxEmw1Kyxxa18RwMJj+KyftPRcsvDI48DobtqgzXP1yTWVgsdPbTIdZdWU5zR7BbY09Fp4RlaXWNscpLWEKp8h4eXzfkj1+IO4tECGCR627PCPE9wi4rHHHjO+xzV6WBRJuFAh/4QNaeHRq+0mAzlptPfF13y0tdGxpcL5s8dabSnYDXDlU8us1/64YAM98E4sYNmp83WinYPXainmToyoKqGVDkHeLFjkWGVTUflkq27qcS4tw3hkewe23HCfngXr9tD3P7WP0QrEDO4L5tWLvI0eXEZLt8T2+wEjq+iTumbrRsVuoUQIUmnZj7WGb+ZBXFp+kcdFubR4/3iJDTeLg582CTHB4+bSyt72frrQ0wWk3GdsTUvkAdBWeDBk2lEdfykA2EKsHuTYncUUC9ee1wMbx7k53fd0F2H6XFoQPGEh4bT0bEUKHr1DerIuep5YeCJTk/pHWmE/OfmzFeWkfYfTcq0WTnygXsR3SrpkeFWJZWXhpzWulMys8yl41A3KBNciUk9ujKxtJONpnASP/JutNlzN9YuH2GO87vj8AdYNT1qSKp0sPNpEqleHnTi0wloeH59EO2R7Cp6A4iVlFh4hTpRL0s+YuW6M8zI164RD0HLvunLUwuPRPFQKykTidxgZRxmWIo5xgkds45b6WMxkVPAEaC2xuzU+yUS5whKxkCULGaMHA094yN7HqQTZ2Re0zDEeid50vJCNFRldzMh4F/VZt7gHN193p0eW1mdmjKInLzyUfiCsJEFcWiY42PuCOWNtT+u2FgM2C0+Bp+C54riJ9NgFs+jgMb2dlxVsjdHdjvGtJcwWHr3/D28TW4cSFTu9Y8l3PTY2wePj6Z0DyFPRWkLG8KhN8tMVvL8WHj8xPGGbpJOJvo/1scrzx8k9GixoOS/0Fp7N4qFo5KDe+0mQGB6TSysMgcvy0MKlFR4geLSnox19MTypiN/RJw5uLcFCYI1Iw2QaRFyF+qxX12bHGB6PC18tV4oXvy4tU6+lU6cNp+99ah8aUs7Bh3nGbAp5Q1PrZ4EjTb/SlB3k5q/H8FT1WXj0TBK9HH4iAaI6TqJBHRup6fxM7Fwi4KUVdUm3fpQZttOXhacgWVlaOWrhieul5bzPVJXy/sXwUKhQQ5ICQFqBlYXHKZPVS/DImKJEYhdTWWkZhAMIHgH3z1KuIdWqIBWoGxtflB9vb4ozecpgWjXZe1p4tIW88NF2enLJFpulxDTRKDM7WzdU2rf8jkwF9yN4ZE8lKXhMTSR7x2dupiq3IYilTY/hUevS5w/dwhO0uagJJ2Fmcmn5mdj502+t251064duBfMreNxEYVyKtWF/FvqJ4cniLC1ddOtBy8lwadlqPYXMwqOOv3w4kynp3DtMd516CRcpeOQ1nUjsYjJB0HI4geDRJkvuocTMHB28tUBgl1Z3D63YHh/0KxuXqqdCTwuPeBJatqWBrv3Hcrrhnyvpr0u2RF8v11K29YluRFV8TM7+I5z3A7v9dKEghZl8gm2xpaWbBY/MTpONVYP44nULj0IPAB2mxfAE7bVlwmk7ewuPRXwHLV9+7ASaOdbuvkum9cO0j9ysLk6TsGyo+4WDR7l+Vm6/V+HBXCEu7ikJLi1p5fBqeJwuwWdzackaPINMMTwegkc8HMoHsHS7tCTQO+EBgke72d73pYPohs9Mo/NmOXfITppLq6uHdrXEB93ZLTz5vp745BPNX96PiZwXV+xwneikkJJZUIrpI53Lf3OBO33ykhOnnLycg5YLjFYd+bspADaI9UJx8r7DrP8vOnzvuJTaZFh4eBlOS+GnWr9P39NHVNG9X41VLU++4InfR25WF6f18/789eemW9eMHsDulpbem3qcl3NZWl7702bhSVCA/+zUqdY1yQ9uFx0xjsKEiluTFh7lPudtVlmx9hieiC8LD59bsuCmKvaZLuS1DpdWeECWlsaYwWXWTypRkyubaxsNpf25g7XeXd3LPC2D+4Y6FANTVYedmtzp7iCGb0JcH0MVB7vpjP3oztfWWBVWuUAfCxbZX0lajIKkpesiR5qyg5j3eRL59lHj6e8fbI1LL7/utH3psmMmWplpOsmI4VGFFE11lHTB42bh4ePAMVD8Gft3kiMGTG7KRIK1+fgeM2mo8T2nbumK3vM5kuMWHudA70RTqicPq6RnL55j7X8/IjadQctcQJXrdTETh5ZH73FSDHvH8PQ+MA7RkkzSbeGR1ly4tMJD7jxOhQg1GfBlYCp+Z7Lw6Nxz7oF0rJhs5FOTU2uEibX2bs2MvClWGSZCXv9h44dYv48eVErH7jOUnvjaofSNvtLy+vbJ5dmClqWFR4gLu+DpNt6wgqaXXjBnb3rywtl0tDYZsyAxiR31XjJwy9TyK3hYfHAdD124ptulpeO2PWaXVuw1JwGfzTE8XjE9fN3ywwUzZXhlwsvlGlVhEzumtPR1u2MV3ScMLTeeO25ZWuwmVi4ttk4HEUqpRt6PoXfCAyw8aUBaE3Z6uLTkZ8/cfwT97YOt9F8HjqQDRw+iqcMr6eg73ogLWjZVKWYOHjOI/rZ0q2PmiMnCwzE5bBWZOXoQHTRmUNxEpU/w5cX5RteVU9CyXL/c7rYEXVqJIisO9we3Wjxd4qmv0EVgqTgydrttF3Wh0u3SCiR4XFxajNPwc8nCo4+V98+8uTNoyeYGOm6f5La0CaOFZ/XOZlsdLIUthsclaJkLFiqXFwueIOnsqUa2+IBLKzxA8KQB+QQjW1mY6vBIQXDNSZPpwsP3tioc6zdMGbQsvy+tLUeMr3Gd6IyCpyjfev20/fbylWorXSPyad3eSyu+Dg8jO7Tb0tITsD74QbqM9rSaW2QExUk4cEyBm4WH+6fdOH8lnTh1WLT/l14aIXlZWslxablZY9x6ablaeHJI8JjmQe5Mzz/ZiIrh4cuARcDqulj5C3Zpmc4Bp8KDXCT1heXbo39bLq0ABQtTDVxa4QSCJw3IyWBns7tlQQoCdrvI4FA5AcrgPlOn87GDy2hweZF1Y5CZDWXCvWFyhXmlw7u7tMwxPNLy42ThsaWlp8jCs09tBa3oq3KdrCKTbhYeN8EzZ/wQ+uuFs22vDU2V4DFm6wUfv1vxRC8Lj9NQwpZKnUpkUclcQF4afC2sFvXHJtaW2+5z7J5i0WJyTXFj4u88sdR2j+CAZfkglW4LD4KWwwlieNKAnAycuo37iV/hG4O6yKXPWBb5U4yr6b2hjK8pcxQ0pmBWr3R4fWKTE6esMyJjeJyDlrsdCg+m5jT9+WlTrf1XXlRAXzl0TMpjeOSNz4940S08qY3hScTC41KIMEELTy5JgFx78i8Q5wu77RZvqo8+9OhZfuphySRctje1x7nt+WFOPmClO4ZHrj4EzdtBH7DwpAG/1oQ8H+nSbC3p7GZftnRpxQseJXRY+Cza1GAUNMmw8NiztLzdFsmuwxMEjht4/puHESeTc8ZZOi08JlJn4SlIeQyPV5aWkyFHxj5kO07V0bMVGbf2zceWRH/ngGVTbCDH6JhcUybDWE15ke3c6QyZS4sDrJOVGAESBxaeNOA3CJcveq+LRFlL5M3TJHjGDSm3WXqCxPC4b2OBSwyP+bvOWVrxLi2eI1MZ11FdWpQ0seMZtCwrLecFFzzJ2g+8jbp4SsSl5bY1JpeWLwtPlpv/LzmqN7uRR6+yH3MFJ8Fuyh5V9whT0LLJFciu+jAFLevWu3QLMNALLDwhsfCwO0nWs/Fr2VCTiN3C0+No4dFdWlZAcN96zVlaHoKnKLiFR74uBZepDg9PnJn0ZOTYXiJAWrpCb2+SLAsP70/uKi8reifi0nKbUryDlh2WmeXzwpdmjaFRg0ppfE25JbZzCdP5y6+cMDk+I02lmJuEi0k8cKC/LekhzQJDF+7sYktVM2rgHwieNGCqMsutDpraWwILHvVU42nh6bPsKEuPFBwd7Z2OMTxeJe7js7TMaemmbY5zaYntVvE8qXJnpYqkurRSVIdHubVsLUwSEDxspk88LT03LTx87p+073DKRfRznv9+6sJDaYQWv2Oz8BgEj8kVOGZwKe0SfbU609w8VN/GdFd+Br1k1mySJZiUvt7M0r/gUU9CzoJnyrCKqPVG9asxPdlXJeTSSl4Mj8mllVWCJxKOGB5TX7VEXFpuQbemNht+LDy5FsibS+hZfXtVFhvFjhTMJkuNbvW5/nP7Ww+MYSo8qJ/H6d4e0EtmzSZZArcN0NGbWTJ+TN4ml5bK0uLJ95oTJ1v9jvTPm6wtFdokyPcPL6uCPsHL5TnF8AQRPJlmBi5NQqVlJ6tLsi08kkRcWm7GGLbgyLYTbD3kYpny/aDLBJmNfjswNTNWqOuerxldPEjrCffFO++w3p5hYYrhMbm0QPqBSysNjOorH+9l4dGf8P26tJQve1R1KX1uxsi47/zi9H3p9ldX0+dn2jtc8yTMEyFnR6gJ1yt+xs0CI9PS5aQtl+lUh0fdILLFwnP/wo20ShRaS6SDQlIFj+a+LEugO7e0WJm46cz9rDpHZZWlNLyY0/8LbVXD572xNvAyQeain7/lhmxBhbTWsHgpyI99Vt7rpMiRFuV0x/DEiTS4tEIBBE8a0GtOMLUGC49eh8WPhYfjKpRLy8kdxTEE/GPSMuz6UoLHj9hwKwoob0ax1/T0U++g5UzCaZ+9vX5P9HfeBYkEYifzllmhPV17uS4TibfhTKz9RlRRbW0V1dU12qw3HLxb39Zp7a9/rthBG/f0NpGESyt7kb3UvASPXlNHWjtlVXkpoopDZOGBSyucZNZskiWY/NbcyVyfLIdWeLu01I2Bry++yFg0RHzcUJyQgct+AlndgppNMTy6CJITraoQbWU0RfxliYUNuT+c3FZBYnG+d3xvx/fpLBx8COCBdGn1R5vwuc7d7L991ATbpAUDT/ain/emelCm9/RCqrbyDuIeY3dpRUIVtJxuAQZ6gYUnDfDNnievOtFHi2vB8OQurRx+JjgpKvgikwHLiUxiMnDZjwvFTZCYsrT0ZZpieGTRwUyL4ZHj4UBgvdRAUMHzhYNH05ETa6z+aclMz6+IC1pObpZWEGRNHri0spcggkeWyOBq9CPEe1LMyHuMvZdWumN47H+nW4CBXjJrNslitxYLDX3S8RPDIwUEP0XIFg6JTGLyRiNNx044ZJ73bpvBwuMmeFSl5YHoo5Uq5HicqlQHzbYaM7jMtY1DMmJ4vCp6K/7nhH2iv58+3dxQNihcJVdhqgUFsgP9vHcLWpYPXnr7HVl40G7hCWcvrTAIMNAL7i5pYtSgElq6hWw3el2g+LPw5NsC42TRwURSjW1+cB8+C7ePmMSK7tIyxfDIDvJDtFo0mWbhCdp0c6DQn679Wo84CL66tJD2qipJWlfvH356Mn3xz+9alp7vHjsxKcsE4UM/791c7rL6eWOb3Upqt/A4tKkxFF8dSFBpOZxA8KQJrraqP9HogaNBLTz85CO7kidi4bE/JUX65dYwx/DkxWVj8CsRIXi2NrRH3x9RZa7TEVaGi+DzvapLaUNfMG6q6ukkSqXL07XX+ZbswnlcFPPZi+dYomtwWWYJXNAPl5bL/Ula+rg7unMMT+yeKc+dnS2xh6Z0oLtm021xAr1A8ITEpcUXuB4kXGOo16NjC9RLQgyPvIH4uUjdLDwmN4yeqcGTHD+ZsTtLVVfeIgTPXoYU/jBz8NhB9LU5Y63YncnDKugdkZ2lSGVvsERdWmGsTQWyCz0cz9XCIwRPg5vgEdcS3wvZPcoVl7c3xu4h6QAurXACwZMmuEaOhCd93QXiJ2DXHsNjFzyJZGnZLUaRQBYNvZaQqQ6PyeoTEzy9N4VtjTGrCAfrZhLslvnWUROs3/+4YL3xM2Gw8LgFjAKQ7rR0KXiaRAsU/UFMjxPkAq4seNgtzqIjXdeaW7FEkD4yKyI0i9BbPOgWGb8Tkh6oJ2N4EumPJEWKn6DlIyYMoeP2GWoVU7z1rP21bfO28Ejfu/K721xaDqXnMwFOJQ+r4EnE+gfAwGVpFbgELUcc7yfD+h662Bu/O01uLa5PpcsbU9d3MPDAwpMmTJYL+VTgX/CIoGXdpZVASrd0Q/mJs2OX1M1nTrdiefTAVz8xPFKYWTWEIhHaKszRpgrUmcKsvQfT+bPH0kPvbrRVfg1D0LJMBQcgPYKn0F/Qsi54xIOYfj+RFuftTR3Ggq6ppsdgzUl35WfQCyw8aYLdVUdNrLF+/+9DRlv/qwrHTIXPoFKbC8qy8PTPpTWhJpZ5c8DIat/fM2X5mGJVTK8pCw/f2E6e9xYt2dxg/c3++ESsVGGBRcUlR0+g606fFjoLzyAEB4O0p6X7dGn5jOGRFh5mR1N64nhM7iuZSg/SByw8aYQtI+t3t9CEmvK4iqJ+xYo06eoxPImIhTP2H0H//LiOtja00f87ZQr1BxZBfENy6n1jSifd3dqZFe4sSbkWmxUGwbP3kDI684AR9MbqXfSzU6eme3NADpCo4NEtPLa0dO1+olt40oGpeCZcWuEAgieNsBiYOLQi+ndzR1f/Ynh6eqilI3ZhlSeYpTXvnBlGF1Ui8PbZBY/BpeXgesu0gGUn9AJrYXBpMdeeNCVpxxkAL/Tz3u0exw9BfK9gcdPYFsDCU5V+C4/JmIM6POEALq0QMXV4ZfR3brqYSN2cNltaeuKHN1mToP4EZgpaNll9mBEZlpLuhP4kGwYLjwJiB4QxLZ3PS2XliXdpmZuHqiyttFt4DC4tfhgF6QcWnhBx2TETacX2JiuD5muH7Z1Q0LKttUQIUo/1G5LJwvPxjmbjd7mabzagW9rCJHgAGCj0hx2vTEGuTcYp5o1aPzp3l5aw8KSpFk+X0aUFC08YgOAJEcOrSuix82cFeurWg5btFp70Cx79hmQyY+td4rPPpQXBA4B+3ntlCkoLD6d6P/n+FvpgayNtqW9zfKDi7/D9hDM+d6TJwmPK0kKl5XAAl1bICOpikGnkdc2dtEncDMIhePLi2gjoXHz4OOv/kZoLS5qnMxlYeAAIft4rwcPyYenmBvrV/E/o2WXb6L2N9Y73F75/KivP9jTF8JiCluHSCgew8GQ4slDgzS9/YnsvFIJHM2OPE2nvsus2xyxxs9Q1u1roe08to+kjq6yfbECvmF2IuBmQgwQVPLKf1ptrdxs/YypzwQ9K3MOOy3xw5msi5TmSHcODOjzhAIInwzHFxMjGnOlGL/0+3mDhYSYM7X19xqhqeuFbh2V1MC0sPCAXCXo7qiqNCZVtDvE4pn59shbPloY2mlQby4RNW9Ay0tJDAVxaGY5ThtOg0sJQiAa5fexb9xOIHIbtTjYyTgmCB+QiQVOzZS0eR8FjuJakwHl3Q8z9lV6XFiw8YQCCJ8Nx6rz9pVljKAzIrRszuDRnWxpA8IBcp63Lnm0VxKXl1P3cdP87YnxvBXvmP2t30UBjtPAgaDkUwKWV4ZhMun/675k0PUBbiFQiAwf1DvG5RLE4TtA7IBdp70rcwsOV3/1auKcMr6ChFcVWx/SF6/dYGVtOmaCpwBSfjErL4QAWniwKWlZUl4anT5JMDR09OD5gOVeQN1zc/EAu0h7QwiMFjynoN8/BWsou8SPGD+lbZw+9t3EPpYI/LlhPp9/9Fv1zxQ7POjxwaYUDCJ4sDFqWnYbDxKhBOWzhEYKHb8IA5Bqyevxx+wz1/Hylx33MLWHjiAnCrbXGnOHVH7gu0F2vr7WqOV/9zEe29+DSCi/hnBmBb0ytGqTvO0zsncMWHtkvDIIH5CKHjB1MFx2+N63f3UpXHj8pkIXH771PMXPMoOjvvL5k09Bqb3fhmZaOaz4UhHNmBL7Rn3K4krFTIHM6+MEJ+9BN8z+xApZnjxtMuYrNpYWnPZCjXHzEeN+flW0iglp4ZB/BVFxvu1s7Xa0/OnBphQMIniwLWvZ6Khpozpk5imaOrqaR1aWOKfS5FrTchqc9AHy12mHLqNP14pbtKK+3VLiTdrU4t62Q3dwVsuUPSB+5OwNladByGON3Jg+rDK2bbaBA0DIAweASFqZWNAo3S7Z8LxVVjve4WHhMLi1ughoxWH7AwALBk+EUhdzCA+IFD2J4APDHuCHOcX9uFmPO1FKV5lNj4Qnm0uJrvgVWnrQDwZPhmLoFg/CBGB4AguPUiobxilVUgigVFtU9LcEsPMzOZufvgIEBgifD0QP3wujSAix4Yn2BYOEBwB+mZsMKr5hAFcfTOQBBy9Jd5SR4djU7x/2AgQGCJ8uClqsheELJWGGa32eAmxkCkKkkGsMjHwZTEcOzWwtaln3C5Opqyot8BTqDgQGCJ8uClnM9ODiszJ05iqbtVWml2v70lKnp3hwAMj6Gp9Cj/boq9jkQFh7pppYWnuGVsWbJdXBppR3MjhmOftFXQ/CEEr753velg4jvhWgeCoA/SotirmA/bXWMMTwDELTc6SB4hlUW0/Lt6juw8KQbWHgynCKt2ihieMILZ45A7ACQHAp8xvCkJC1dEzwcl6c6utssPFUxCw8Lnoa2Trrw4cV08SOLqbnDuVozSA0QPFlm4UGWFgAgm7j1c9OtCvJBLTwqLZ0FiClVPFF4eXodnqufWU6n/24BzXtjLXVH7BYexa7mTrr3rfW0ZHMDLdrUQL97c13Stgn4A4InC4pzSRC0DADIJo6eNJReuuQIOn/22ITS0pOdms5WGl0+Ld3SYP3/h7fW2yw8tRUxwbOzpYOWbu79HPPuhvqkbRPwBwRPloGgZQBAtsHiRtayCpKWrmdRpbLoICMFD8fuDS4riqall4iYpPYuFCIcaCB4sgxYeAAA2YguePympSc7cNmtrQQjXVoFeXnR1PSdLZ1WbzBFWyfqcQ00EDxZBmJ4AADZiLTY+ElLlwIpmanpQSw8nKRQ0+fW4sBm6VpDAdKBB7Njlj8FAQBANhDn0tIyVF1jeAK4tNiCw0HS8vtbGtroh3//iEZUldDBYwb5Fzx5eTRUFB/cuKc1+nubcGm1dHTT9/62jPIL8ulXn9mXKooxNacCzI5ZmPoMAADZhiok6LvwoE3w+LOmvLdxD51291t01r0LqVU0+/zJP5bTh1sb6eWVdfT4+5tdlyE7S7CFZ6gIXN7S0Ju6rlxaShzd/eZaWrh+Dy1Ys4vufgPZW6kCgicLuP3s/enQvQfTLWful+5NAQCA0MXw+HVp/ey5FVaA87bGdvrLopiwWbwpll21dlfMSuNl4clnl1Z5TPBIO1NExANxqrqe8QWSD+xmWcARE2qsHwAAyB3B45GlVRg8LX1bU6wa8sZ6d2HjRFdPbF2F7NKqiLm0dOqaOiwLkB73A0Jg4dm2bRtddtllNHv2bDr66KPphhtuoPb2XhPda6+9RmeccQbNmDHD+v/VV191XdasWbNo6tSptp/m5ub+jQYAAEBWEjRouSiBtHSVQs7sdghO9hIkbUJcFWgWHp26vg7qXVrcD0izhScSiVhip7q6mh588EGqr6+nq6++mvLz8+ncc8+lSy+9lK644go64YQT6KWXXqJLLrmEnn/+eRozZoxRODU2NlqfKy0tjb5eXu7cGRcAAEDuEh+07K/ScpAYniFlRbSzT4TUO6SfsytNWmR0ZPaVFcNT4ix4djTFt6PwctWBARA8q1evpsWLF9Mbb7xBtbW11mssgH71q1/RcccdR3PnzqXzzz/fev2CCy6gefPm0ZIlS4yCZ9WqVTRs2DAaO9ZeORMAAADw5dIKZOHxJ3gGi4wqvSO6wkuPtIlgZ/6sm0trR5+4guAJmeBhgXLPPfdExY6iqamJ5syZY/0wnZ2d9NRTT1FHR4fl3jLxySef0IQJE/q77QAAAHI0S8srLd2epeXPpSULAzq5tPLIv0uLxcvg8mLrG6YtUNYkW7FCCJ70Cx52ZXHcjqKnp4ceeOABOuyww6KvrVu3jk499VTq7u6mq666ymjdURae1tZW+vKXv0xr1qyhadOmWe6xRETQQLs71fqywc2KsYQTjCWcYCzhs/C4jcMWtNzd42us0vVV38bdzCNxpT46RVCyl0uLt5GzxQaVFRkrNO9o6rC2Sw9azqTjksj5la7xJZyldfPNN9OHH35Ijz/+ePS1mpoa6+9FixbRjTfeSOPGjaOTTz7Z6B7jGKArr7ySKisr6fe//73lDnv22Wetv4MwdGgVpYN0rTcVYCzhBGMJJxhLeugptruGhgwqi26/aRw1g8qiv5eUFVNtrY+x5tlFVXFlmSVWJF4B0N3CAlQzpNJa7/DqEqPgqW/vst6PiO+UlRb529YMYGjIzq/CRMXOfffdR7fddhtNmTIl+npVVRXtt99+1g9bcdgCZBI89957r+X6qqiosP6+5ZZb6Nhjj6VXXnmFPvvZzwbalp07G0lYA1MOK1M+iAO93lSAsYQTjCWcYCzppanNLhjaWjqs7XcaR3trLMV8154WqqtrDLyOj9bupH2G9c5TfmkU621saKG64jwa7NDyZ2t9m7VdMsaou6vb17Zm8vmV1/d+6AXPddddRw8//LAlepSYWblypWWx4VRzxaRJk+jtt982LqO4uNj6UZSUlFjuL87eCgrvzHRcsOlabyrAWMIJxhJOMJb0oMfssOtHbbtpHHprCT/j1Ov1bG1sp0m1wQSPbAqan9e7jUNEMLT9s93W+11C8HAIT6Yck0w7vwLV4bnzzjvpkUceoVtvvZVOP/306Otsmbn22mut1HXFsmXLaOLEiXHL4M98+tOfpieffDL6WktLixX/Y/o8AAAAEJeW7tlaInilZT19fXtjO/UEnLFljyxVU0e2l5Co9hUyaNkl4x0MlOBhF9Vdd91FF110ER1yyCG0Y8eO6A8XGuT/2TW1du1aq07P008/Td/4xjes73LGFr/PwcwcAMZp7P/7v/9LCxYssKxDP/jBD2jEiBGWWwsAAADQ0YOHvSot2yw8Pist659jwRO0q7m08KiMq6EOxQfZ8sQByzJomWOElm1psLWbMLFiWxO9u2GPzdAAkuTSmj9/viVYuL4O/0hWrFhhxeX88pe/tOJ2Ro8eTbfffjtNnz7dep+DmL/yla9Yy2DX1fe//30qLCy0Mrk4rZ0zvX73u99RQUGB380BAACQw3gXHgyelq5beLinlmwi6ge98CBTo9Xi4QKHqs4PW4Sk4PlwawOd/9Bi6/c//vdM2n9kddw61u9upfMeeM/6/c7PH0Bzxg8JtI25im/Bc/HFF1s/TsycOZMee+wx43tco4dFkYzZ+eEPf2j9AAAAAEHxLjwY3KWlW3O2NwUXPHaXVu//enuJYZXFUcHTKrqmM9saY0HPv3hxJT381UPi1vHIe5uiv3/vb8votcuPCrSNuQq6pQMAAMg4PAsPanV4/KB/rrmj2xIkQZBp61GXlhbDM6yyxBa47GSAahfiSVJRXGAsdAjcgeABAACQcSS7tQTHwug1djgep7UjmIVHEovhibm0+BXZbsLNguQUP1TjEAQN3IHgAQAAkHEUJjmGx/QZFiNBXVomwaPaSzCVJYVUXhyLJjEVJJTbxGJN9udiSjzEHjADwQMAACDj8Oo5FTQt3ZTJ1St4ehLeBpWWzuJseFWvG6u2otjWs2tPK7ewMMNi6LS7F9Dpv1tAm+pbo693abnrqcjU2rinlRau351VWWAQPAAAADIOr3o1QdPS2w2iiF1aunVFwVJGChcvQXT5sRPpgJFV9O2jxlNZUYFnk1IpehrauuiOV9c4Cp56F9GUCA1tnfSlP79H3/7LUnruo+2ULSTcSwsAAABIFz0eike6tLz6X/V+xsnC0+0oZnpFVbcvwXPi1GHWD7O5YWP09T2iFYUbdX2d1ZkubTycPj/YoZqzie6eiBWgLYWXZFVdC7X0jXvljmbKFmDhAQAAkHHI6sReael+srRMAcKRaNd0s5iRbjMT3FrCRKkQGm4uLUm5+I7esZ1bYPilvauH5v7pHTpl3ltWgUMTUuSVFWWPTMiekQAAAMhqjp9cG/194tBy32npicbwMLtazBYYjsuR6wgS3yNFhFvQsqRcpKLrFh6uF+SXp5ZssQoXsgXnyqeWGT8j3XhOVqBMBC4tAAAAGcHVn55sCZ0DRlXTEId2DdK6wqKj133jJ0vLSfB0eri0gmeRlRWKGJ5EBE9PvEvLL7vF+pzGJgO1pTUq04HgAQAAkBFwnMo3jxzv+/MlBfnU0tPty6Xl9JndDhYezsByc2i5JXCVSguPR9CyydKiCx7u+eWXiI/PwKUFAAAAZBAqjqd/Li1nC49bGJG7S0vG8PgTPLJruz6eIBaeiI80cyl4SoU1KtOB4AEAAJCVqBgbX2npXWYh4JQ2brnLXMSDqsFjQrqJ/Lq0ZFB1f1xaPZFgHd+zKYYHggcAAEBWomJs/KSlS5dWZUmBt0vLsvBEErLwyPo9snGoG9KqowsembKedAtPUfbIhOwZCQAAACBQaeN+YnikoBhUGqtp46SVOCi5OwkuLb/IwGtd8LD1x6nvlk5PJGgMDyw8AAAAQIZYeHqoxaMJqBQMg8q8i/ixyyqSoEsrERFhs/AYBFxje1fgWCAnWsW+gOABAAAAQo6qtszWkU/935v0jw+3OX5WxvlUl3onMPcnaDkRN5HcPt3CwzQ5FEhMhHZkaQEAAACZg6yEzLEy/++5FY6flW6vQT4Fj5u1xE3wsOXJq/Go2/bphQeDWXjIk2ytwwPBAwAAICtxKwzoLniKfAoef728TAS1nLjF8AQRPBEh0pw0F2J4AAAAgAzCrfWDm8toUJkPC0+eu4VHZnqZCFrfRsbwmOoKNSVg4clziDNSgocFkVe/sEwCggcAAEDOWHh4MudeUfe+tY5eXL7dWIfHj4WHtZSbhaeypDC5Fh6PGB5l4Xnuo210/8INjllbPT4sPKoOD1t3nERRJoLWEgAAALISkyWkrqmDHl20iR5dtNn6e/rIKho9qMyelu4nS8ujDk+F6H1lImhsjC2GxyR42rpo6eYG+sk/VkQ/c8GcvV2XmefwurLwlASwkGUC2TUaAAAAoI+PtzfFvbajuT0qdpgV23o/094dPEvrsPFDErbwBHVpecfwdNMLwmI17/W1nhaePA+XVjbF7zCw8AAAAMhKmg21dzbsbjW6vewxPP4sPFceP4l2NndQdWkRvblmF7WJZVQUJ9el5SeGR7qo8h38VT1CKzm6tPrGkW2CBxYeAAAAWcnlx06Me+2lj+uM1ozAael5eVRTXkzz5h5Ivzpjvzhx4BW0HFRMeMXwNLR1+RIzEVsMT/yHOH1fxf9kUw0eBhYeAAAAWcmZB4yg4VUltLm+jW6a/4n12ltrdxutGVJQcPyN1RzUJSpZr6OjOrPHluHh0uqHhUdtF68xIiw8UmSZxIyfOjxtXbKPFiw8AAAAQOjhSf/ICTV06N6DHT/DGVu6hYfT2b2sG9xLy/a3lhHmmZbuISZOnTac/vntw2nGqGrrbw7hUZYd1VqCXW95IktLxuc4tbboEorHJIpk0UG4tAAAAIAMYlhlseN7KgVbWnhKCvLjJvs8LwuP9neFl4VHy4AaUVVi+5tF1+CyIlsdHGXl6ewTLfxeRZ+wYsEjCzDnO8zuXeJDutuL3V2yRUW2ubSyazQAAACARkVxoePkrVw47X1CgEUAixld8LBrzN2lFczCoy9fz/hSlZpl8UQlypRoYatSVV82GLu0ejysN0xXT48xS4utRl95YBGd86d3oq/BpQUAAABkGMMq7YJFd+Eo6wkLFxYC0gLDlhbdIqO7jPQYHq+0dL3GzX4jqsyCRwgptY3KLcVuNbUe3aXlLHgi4jOx1/+9aict19L4s82lhaBlAAAAWY9TET0Vw6Myk9TnpHVjSHksVsavhcer8CAHUru1wSguzItbrqrFo6w0LHiUhaezO2KLv3HK0uoSLi1p4eHv68ClBQAAAGQY60X9nTGDS6O/t2pZWsqiImN6KosL4wSOV5aWl4Vnn2EV0d/P2H+vuO8roSNjeNQ2KXHCn1GCh6lv7XTcPkWncGnJj6hYoP4URww7EDwAAACynq/OHhv9/aLDx0V/b9eytJSlRXYf53icuKysuKBlLYbHw8Lz2ekjaNbYQVYGGRcw1JfHgdNye9Q2cmCxdGlViZpB9W2d3i6tbmHhEa+bLDxBU+fDDlxaAAAAsp65M0dZgb3ja8rpiPE10deVGygqePosKrJKc0VxoU0AmSwohQXuaeo6LFS4aKGTS6yo0BzDI3WJdGkxu1uEhcfBpdXpUIjHVL0ZMTwAAABAhsE1a644bpItbkdmaekuLRZH0sJT0JTnEbTcP2uIntZeUmCO4VE1eJTIsrm0REq5U2uJLocmpLIOUbYKnuyyVwEAAAABApi5Dg+7iVRAsHpPVlnmeBzPGB7xtx6P44c4C49DDI8UKexGq3Rog+Hk0uoU35fGHtmcVIGgZQAAACCDkWnn3EtLZWhJofHz0/bt+zuPzj14tKfgkX9LN5RfdJeYWobdwtNji8HptfCYrTAyRV3SLVSO/F1afrK1Dg9cWgAAAHIOdtdwHy3+WbWzJfr6yOreej0nTh1mubK4fs9eVSWegkdaXpxS4N3Qg55VsLJcFsfZyMKBegwPeQQhO/XkcrbwQPAAAAAAGY2VgdTaG8+zfFtj9PV996qKCpqjJg6Nvu6VpSWtRHqRQj8U+bLwxDK01DY4pb+bgpAZ+f1uYQUyBy1nlxMou0YDAAAA+EC5aziG56NtsQrD0/aqNH5eD1LW/5Z1e/QigonE8KjCg7YYnu4em+WGM8GcChxKYWN7vdvs0pLbn60WHggeAAAAOYeM4floa6+Fh402U4c7CB4Pl1Z7X7YXU5JAwT7dYmS08GhBy/ydCocmpfzZuuYOWiPcdXrhQS+XViKWqjCTXaMBAAAAAlh4eJr/eEez9TvX6HEK1PUSPBwL1K8YHsdKy1rQshbD49SklLfnc/e8TXP/9A4tWLfbaOGJiOBmk0vLq1p0pgHBAwAAIOcwxadM0xp4BhE8so5NIi4tvVChWoZc1m3/Wk3XPLPcl4VHxhX98O8fOhYeVB3WpeBht94tZ+6HLC0AAAAg0zH1iZrm4M7y59ISFp4E0tL1woOmbunMml0tNisQCyK2DjllZak4JYbrDUk3FsMuMt4V8vs/OWUq7VMb6/WVLcDCAwAAIOcwWXimuAieQi1IWf/77Bkjo7+fMm14/4OWo5WW8zzjfipcrDxSnHUZApnVSzYLVT+rRocVWHgAAADkHCZ3jarBk4iFZ+5Bo63WDuVFBXTyvsP6n5Zu6KXlVKyQ43j2iE7pcdue5yx4ug0urUQqRWcCEDwAAAAo111aPMXXVhQnLHg4UPnSoyckvD1OWVpu8UBBLTydhsBkJXhkllZ/+4KFlewcFQAAAOBVeFAwpLzItcO5l+BJRrsLPzE8EiVMnGrxKNSmdpksPH1ZWnaXVnZaeCB4AAAA5Bx6jZnhlc7uLGPhwSQLHp2iADE8XunjMQtPxNHC05UDMTzZOSoAAADABb2K8LBKZ3eW0cLj0I082RYfN5eW2iYvC48SRl2ihk+8hQcuLQAAACDrXVrDq9wtPLru0GNuUoWb+CjM9+vS8rbwqPgeNiil2nqVLiB4AAAA5Bz9tvAM0OzpVtNHubv8urS6XLK0VAyPWxxTppO9IwMAAAAc0PtdDfOK4Ulx0DLz1cPHWf9/7oAR0df81eFxt/Cobe02WXiirSUiWR2/wyAtHQAAQM4R59LysvAMQNDyT8+YTmdPH04jq0ujr7mmpfeJoQq/Qcs98TE86iXVLT1ba/AwEDwAAAByjniXVknag5Y5UHn04DLqM7rY4m/cYnicGojGFR7sdonh6cl+C0/2jgwAAABIVlq6JngGKmjZT/+tCo/Cg2pTOw0Wni6tW3oijU8zhewdGQAAAODTwuNlJdEFThgymaIuLY8YHmXX6TL10lJByzng0oLgAQAAQLkew6NXOk5H0HJQooUHPSw8ypXV6SMtvajPTZaNZO/IAAAAAJ8WHi8GutKyH6J1eDysU8qV1eXQWoJFj9JC2Vp0kMnekQEAAAAOcO2a82aNsbKzfnP2/p6fH+hKy5JrT5ps1QnSNVa0Do9PC0+XQ/NQ2VS0uDD9Qi5VIEsLAABATnL5sROtHz+k06V15gEjrZ+731hL97y1Pr4Oj6eFp0/wOFh4pKsLFh4AAAAghykMQZZWuRacrFxaXiJFWXY6HSw89k7p2SsLsndkAAAAQJIIQ9Cyno1V4DOjSll2uoytJexCqBhZWgAAAEDuEoag5XItVkfV4fFCCZouh9YSslM6emn1sW3bNrrsssto9uzZdPTRR9MNN9xA7e3t1nuvvfYanXHGGTRjxgzr/1dffdXXMp977jmaOnVqYlsPAAAADADpDFp2dGkFtPB0OjQPtbu0YOGhSCRiiZ3W1lZ68MEH6bbbbqNXXnmFfvOb39C6devo0ksvpbPPPpueffZZOuuss+iSSy6hjRs3ui6zoaGBfvGLXyRjHAAAAEBWu7TKi8wxPMwvTt+XasqL6PDxQ+K+xzqnuydizNLiwoPSpYWgZSJavXo1LV682LLqTJ48mWbNmmUJoGeeeYa2bt1Kc+fOpfPPP5/Gjh1LF1xwAZWXl9OSJUtcl3nTTTdZnwcAAADCTEEog5Zj23DSvsPp+W8eRpccNcHRytPpI0sLQcvcWG3YMLrnnnuotrbW9npTUxPNmTOHrrnmGuvvzs5O+stf/kIdHR2We8uJt99+2/r55je/2Z/tBwAAAFJOGFpL6IJHbwPB1aKd3Fyd3T3GoOWuHLLw+K7DU11dbcXtKHp6euiBBx6gww47LPoau7ZOPfVU6u7upquuuorGjBljXBaLoR//+Mf0k5/8hIqKivo1gIF2o6r1pcF9m3QwlnCCsYQTjCW3xxGXll6Ql9T1+hmL3u+LxYn+eafmn90Rs0uLw1X0LK3+jstrLOk67xIuPHjzzTfThx9+SI8//nj0tZqaGuvvRYsW0Y033kjjxo2jk08+Oe67//d//0fTp0+no446ihYsWJD41hPR0KFV/fp+pq03FWAs4QRjCScYS26Oo6alyzZhDx9WPeBjKa0qs/291/AqKim0i6D2QvO0Xj2onIpK4g0MpeUlVFpRGv17cHUp1dZWZeX5VZio2LnvvvuswOUpU6ZEX6+qqqL99tvP+lm1apVlAdIFz8cff0yPPfYY/f3vf+//1hPRzp2N1NfdfkDgE50P4kCvNxVgLOEEYwknGEtuj6OpodWWoVVX1zjgY+nR3qjf3Uz5mrmksbnD+N1tOxqpoak3q9q2jIZWKuzujv7d2d7Z77F5jUW9H3rBc91119HDDz9siR4lZlauXEn19fVWILNi0qRJVoyOzosvvmh99sQTT7T+ZvcXc9BBB9HPfvYzK6U9CLwz03HBpmu9qQBjCScYSzjBWHJzHFJYcPxOqtbnNpY80mJ2KH47Ch38RZ3dEerqayIq4Xjl9i4Rw5Ofn7Sxhe38CiR47rzzTnrkkUfo1ltvpVNOOSX6OqenP/nkk1ZNHQ6aYpYtW0YTJ8b3KDnvvPPos5/9bPTv999/n77//e/TU089RUOHDu3faAAAAIAUIIOU05Gh5RenoOPOnh5bNpaiN11d9NJyiAHKBnwLHnZR3XXXXXTxxRfTIYccQjt27Ii+x1aZu+++m2655RY655xz6I033qCnn36aHn300WiQMlt1OMZn8ODB1o+CU9oZjvcBAAAAwoi0nKQjQ8sveuaWosuy8ESMdXhQeFBj/vz5lvtp3rx5VrCx/BkxYgTde++9tHDhQjrzzDOtwoS33367FZjMcBAzf27Lli2pHAsAAACQEqTISUeVZcU1J06mQaWF9O2jxhvfd7I+dToUHuxtLWF3aVGuW3jYssM/TsycOdMKRjbBdXpWrFgR+D0AAAAgdIInjRaez80YSWceMCIaPqLj9HqXSx2efLi0AAAAABAmweMmatzo6nFxaVFuuLQgeAAAAIAMEjyJ0NnNQctml1a3tPCg0jIAAACQu8ig5TBnaTlx679W04bdsVpCMktLGn6yuZcWBA8AAACQIUHLibJmZ4vxdTb6yPo82ezSyl4pBwAAACSJTHdpKY7bZyjdfvb+jllahVls4cnekQEAAABJIlsEzyFjB9PgsiKbS6tDxPBks0sre0cGAAAAJIlsETzlRQW27ef+XJ2ytQRcWgAAAEDuwjqgqqQ37HVwWbjDX90kS3mxXfB0xVVazl5ZkL0jAwAAAJJY++aHn96Hjp5YQxcfYa5yHBb++KWDrO08amJN3HtlLHhE0LXVS0ukaWWz4Am3TAUAAABCwkn7Drd+ws70EVV061n700srdtDrq3d5urTapUurEC4tAAAAAGQQpnpB5ZbgIZuFp7mj2/qdP11WVEDZCgQPAAAAkIWYqiaXG1xaTe1d1u+VJYWUn4E1hvwClxYAAACQIxaesuICikRiMTuckd7Y1it4qkqy17rDwMIDAAAAZCGFhhTzci2Gh7uoNwoLTzYDwQMAAADkiIWntCjf5rZq6eyOZmlVlULwAAAAACDDY3jK+sSOFEL1rb3WHUbVGcpWIHgAAACALESvmlxe3CtopEtrT2tn9He4tAAAAACQcRTm26f48qLev6VLSwoeWHgAAAAAkPEWnrK+Gjt6awkFBA8AAAAAMj5ouby4T/A4lNqpRNAyAAAAADKNQi1oubxP8HBfMFPDd9ThAQAAAEDGUaRbeIpigka6tRRwaQEAAAAg4wsPlgnBY2ohgSwtAAAAAGQcRflml5ZTUUJYeAAAAACQVRaeApPgQdAyAAAAADIN3W1VXuzu0oKFBwAAAAAZT7mLhSdPE0TZCAQPAAAAkAOUCUGj1+LhgGWT1SebgOABAAAActzCU5XlNXgYCB4AAAAgBygvdhY82Z6SzkDwAAAAALlm4cmzC57qLM/QYiB4AAAAgByL4cmHhQcAAAAA2W7hKYyL4YHgAQAAAEC2xfDkaYIHLi0AAAAAZAPlLi6tA0ZWU7YDwQMAAABkKQeMrIr+XlIYm/Ib2jqjvw8uK6Jj9xlK2U7227AAAACAHOWXn5lGTy3dSkdPrLEVFty4py36+2n7Daeiguy3f2T/CAEAAIAcZUR1KX3zyPE0XXNZHT5+SPT3s2aMpFwAFh4AAAAgx/janL2puaObTphSS+NryikXgOABAAAAcoyZYwbRvV+cSbkEXFoAAAAAyHogeAAAAACQ9UDwAAAAACDrgeABAAAAQNYDwQMAAACArAeCBwAAAABZDwQPAAAAALIeCB4AAAAAZD0QPAAAAADIeiB4AAAAAJD1QPAAAAAAIOuB4AEAAABA1gPBAwAAAICsJ+O7peflpWd9A73eVICxhBOMJZxgLOEjW8aRa2PJS9MY8yKRSCQ9qwYAAAAAGBjg0gIAAABA1gPBAwAAAICsB4IHAAAAAFkPBA8AAAAAsh4IHgAAAABkPRA8AAAAAMh6IHgAAAAAkPVA8AAAAAAg64HgAQAAAEDWk1WCZ9u2bXTZZZfR7Nmz6eijj6YbbriB2tvbo+8vXryYzj33XDrooIPo5JNPpr/85S+Oy+IC1L/73e/oU5/6FB188MH01a9+lT755BPb+7fccgsddthh1vpuuukm6unpcVzehg0b6Pzzz6eZM2fSaaedRq+//rrt/TfffJM+85nP0IEHHkhf+cpXaNGiRaEdy2uvvUZnnHEGzZgxw/r/1VdfDc1Y5Oe+9rWv0ZNPPkluhPm4BB1LmI9LQ0MDXXPNNXTEEUdY59kPf/hD67VMPC5BxxLkuPA2fv3rXx+QcezcudPaZ4cccggdeeSRdPPNN1NXV1dGHpOgY0n2teK1PJ1nnnmGPv3pT1vLv+SSS2jXrl2hmVteS+NYgh4XHnsgIllCT09PZO7cuZGvf/3rkY8//jiycOHCyIknnhi58cYbrfe3b98emTVrVuTXv/51ZM2aNZFnnnkmcsABB0ReeeUV4/IeeuihyJw5cyIvv/xyZPXq1ZGrr746ctxxx0VaWlqs9++9997Isccea63nP//5T+Soo46K3HPPPY7b9tnPfjZy1VVXRT755JPIb3/728iBBx4Y2bRpk/U+/z9z5kxrmbztl112WWTGjBmhHMvatWutbfvjH/8YWb9+feQPf/hDZPr06ZENGzaEYixMd3d35Oc//3lkypQpkSeeeMK4nEw4LkHGEvbj8t3vfjdy9tlnR5YuXRr54IMPIv/1X/8V+c53vpORxyXIWIIclxUrVkRmz55t/c2/p3oc559/fuSCCy6IrFy50loX3wPmzZuXkcckyFiSfa14LU/n/ffftz7/17/+NfLRRx9FzjvvvMjFF18cfT+dc8vaNI4l6HG5/PLLI5/5zGesfeCXrBE8fLB5UtixY0f0tb///e/WDlYXzCmnnGL7zo9//OPIlVdeaVzeOeecE7n77rujf3d0dFg7+/XXX7f+5oMoJ6CnnnoqcvzxxxuX9eabb1rfbW5ujr721a9+NXLHHXdYv//mN7+xThTFsmXLrLG88MILoRvLW2+9Fbn++uttrx166KGRZ599NhRj2bp1q7V+vhnyDdVNJIT9uAQZS5iPC+/fadOmRRYvXhx9/7333rNea2try6jjEnQsQY6Luofxuvh7qRxHe3u7NUnyJKP45S9/aU2EJsJ8TIKOJdnXitfydL7//e9H/ud//if69+bNmyNTp061Jvl0zy1vpXEsQY8Li92DDjooeq34IeO7pSuGDRtG99xzD9XW1tpeb2pqsv5n0920adPivqfe1/nBD35AY8aMif6dl5dnmecaGxst19mWLVvo0EMPjb7PptRNmzbR9u3bafjw4Zbp9ayzzqLvfOc79P7779N+++1H5eXlts+zSZfh92fNmhV9j9c7ZcoUWrNmTejGMmfOHOuH6ezspKeeeoo6OjosE2S6x8IsW7aMRo4cSbfffjv913/9V9z3M+W4BB1LmI9Lfn4+/fa3v41bXnd3NzU3N1NJSUnGHJegYwlyXNQ9jF03PFb1vVSMo7i42HI1KFauXEkvv/wyzZ07N/paphyToGNJ9rXitTwdXv5FF10U/Zuv8VGjRlmv81jSObfMSeNYgh6XsrIymj59uu1a8SJrBE91dbV1ESnYT/jAAw9YvkN1oOUFwz7fZ5991trRJuSOZdi/zD5hPmAsEhg+YAoltLZu3Wq9/vjjj1s3P2bHjh22zzJDhw61Pmt6n8cyadKk6PthGoti3bp1dOqpp1o3+quuuiq6PekcC8MXEP84kSnHJehYwnxcSktL6ZhjjrG9/+c//5mmTp1KNTU1GXVcgo4lyHFR97AnnnjCGkuqzy/FeeedRwsXLrQmjy996UvR1zPlmAQdS7KvFa/l6ajJ3rQved3pnFvSORavdXuNNacEjw4HrX344YfWDtVpa2uzLize+V/4whc8l8XK8le/+hVdeOGF1lMYHxCGFaxC/c6KlFE3P6a1tdX2WfV59Vmv98M0FgW/xtvDAXA33ngjjRs3zgo8TOdY/JApxyXoWDLpuPAN9rnnnrOsGZl+XLzG0p/jMlDjuPbaa6m+vp6uv/56uvLKKy0LVqYeEz9jSdW14rQ803idls/vqb/lewM9t9SkYSxe6/YaS84KHj6I9913H912222W+U7CZudvf/vbtHbtWnrooYcss5gbvNPZZMdPdZdffnncQVPqVO100/L4M3v27LG9xp/np0X1vn7Q+G9W42Ebi6KqqsoypfLPqlWrrBs/n5TpHEtQwnxcEiXsx+XBBx+0JqMf/ehHdNRRR2X0cfEzlkSPC2cgLV++fEDGse+++1r///KXv7Rcpxs3box7os+UY+JnLKm6VpyWp+O0fB57WOaWqjSMxWvdbmPJybR05rrrrqM//vGP1sHUDxD7KfmpgH28fKDHjx/vuqwFCxZY6cBs7vv1r39t+e+Zvfbay/pfmezk76anQP58XV2d7TX+W5nnnN5funRp6MbC63vnnXdsr7GJdPfu3WkfS1DCfFyCkgnH5d5776Wf//zn9P3vf99KK87k4+J3LIkcl3fffdd66k7lOHg5//jHP2wpwvvss4/1v9q2TDkmQceS7GvFa3k6Tsvn+22655aVaRxLosfFr0U86wTPnXfeSY888gjdeuutdPrpp9ve44vh0ksvtRT//fffT5MnT3Zd1scff0zf+ta3LJ/6b37zGyoqKoq+xzueA7P4xqTg3/k13cfIcM0ADkBVJj71eX5dvS+XxaY7DsTikzJsY3nllVcsszEHDCp4bBMnTkz7WIIS5uMSlLAfl7/+9a9WDQ62hvAkl8nHJchYgh4XftrmuAiuZ5LKcfA+u+KKKyz3kNyugoICmjBhQkYdk6BjSfa14rU8076Uy+fAXv7h19M9t7ySxrEkclz4wUCN1ReRLIFTOjk19LbbbrNqPMgf5tFHH43su+++Vp0H+d7u3buNy/vCF74QOe2006w0O/n51tZW631OkeRUPk6J4x/+nesGKHbu3Blpamqyfu/q6rKWxfU7uH4Af5dTCVWtBK4zwDUo+HV+/8ILL7RSB8M4li1btkQOPvjgyE033WTVz3jggQesWglcjyQMY5Fw+qOeyp1JxyXIWMJ8XPg7vF85fVVfFx+DTDouQccS5LjMnz/fSuk9/PDDI9u2bUv5+XXppZdGzjrrLCtVmeuknHTSSZFf/OIXxvMrzMck6FiSfa14LU+Hyxjw+4899li0ds03vvGN6PvpnFu2pHEsQY8L1+HhGkRB6vDk8T+UBXAqJ5s5TaxYscJ6EtMrUDJc/ZGfMCRsdnPyyXNVyrPPPtuKIOenPK5+y08S7C/miHJOl2Rkuh3DwcFcnZWfQjgI6+qrr7YqtSq4oiT7nVX0+vr160M7Fn5C4G3lbRk9erT12RNOOCEUY5HwdvNTpHw9k45L0LGE9biw750DSE3Mnz/firHIlOOSyFj8Hhe2djhVB07F+cUp3bxeTuFmPve5z1nbpmIvMuWYJDKWZF4rfpanw/faO+64wwqw5srQHIoxZMgQ6710zi3pHkuQ48IVunldY8eOJb9kjeABAAAAAMiJGB4AAAAAABMQPAAAAADIeiB4AAAAAJD1QPAAAAAAIOuB4AEAAABA1gPBAwAAAICsB4IHAAAAAFkPBA8AAAAAsh4IHgAAAABkPRA8AAAAAMh6IHgAAAAAkPVA8AAAAACAsp3/DyZa974nQHyZAAAAAElFTkSuQmCC"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAsWFJREFUeJztfQmYHUXV9pl9z0z2nYQEEpJASEggiCAgCEQEQRRxYVVAPxZ/4EMFUfED2WVRBJFNPkH4EBFZBNkRUIhASCAhIfu+ZzKT2bf7P6fm1p3T1VXd1ff2nem+c97nmWSm773dXberq95+z3tO5SUSiQQwGAwGg8FgxBT5fX0CDAaDwWAwGJmAyQyDwWAwGIxYg8kMg8FgMBiMWIPJDIPBYDAYjFiDyQyDwWAwGIxYg8kMg8FgMBiMWIPJDIPBYDAYjFiDyQyDwWAwGIxYg8kMg8FgMBiM/kNmtmzZAhdffDEcdNBBcNhhh8H1118Pra2t4rU333wTTjzxRJg+fbr4/4033jDuZ/Lkydqfp556SryO+7zyyith9uzZcOihh8IDDzyQaTsZDAaDwWDkKApt34irHiCRGTBgADzyyCNQV1cnCEd+fj6cdtppcOGFF8Ill1wCRx11FLz88stwwQUXwAsvvABjxoxx7eutt95y/P2HP/wBnn/+efFZxE033QQff/wxPPTQQ7Bx40b40Y9+BKNGjYLjjjsuUON27NgN6mINeXkAgwdXaV+LI7g90UYutSeX2oLg9kQXudQWBLcn+L6zRmZWrlwJH374Ibz99tswZMgQsQ3JzY033ghHHHEEnHrqqXDWWWeJ7WeffTbcfffdsHDhQi2ZGTp0aOr3devWwR//+Ef43e9+B1VVVdDU1AR//vOf4d5774Vp06aJn2XLlgkCFZTM4Jds+qK9XosjuD3RRi61J5faguD2RBe51BYEtyd7sCYzSEDuu+++FJGRaGhogDlz5ogfRHt7uwgXtbW1iZCTH37961/DZz7zGTjkkEPE30uWLIGOjg6YOXNm6j2zZs0SZKerq0soQQwGg8FgMBiByQyGl9AnI4HE4uGHH4aDDz44tW3NmjUwd+5c6OzshMsuu0yrylBgCOnZZ5+Fxx57LLVt27ZtMHDgQCguLk5tQwKFPppdu3bBoEGDAslVpm261+IIbk+0kUvtyaW2ILg90UUutQXB7bFHuvu0JjMqbr75Zli8eDE88cQTqW1INPDv+fPnww033ADjxo2DY4891rgPfO++++4L+++/f2pbc3Ozg8gg5N+o9gSBV9wtnZhclMHtiTZyqT251BYEtye6yKW2ILg92UNhukQGzbm33XYbTJo0KbUdPS9Tp04VPytWrBDKjReZ+cc//iHMwxQlJSUu0iL/Li0tDXSebACOH7g90UUutQXB7YkucqktCG5PhAzAEtdccw08+uijgtBIooIGXcxuwlRqiYkTJ8K8efOM+9m0aRMsX748lcEkMXz4cKitrRW+mcLCwlToCYkMhrqCgA3A8QW3J7rIpbYguD3RRS61BcHtyR4CuWnvvPNO4W+59dZb4fjjj09tf+211+Cqq64S6dsSixYtggkTJhj3tWDBAhg5cqRIuaaYMmWKIDGYOSXx/vvvw3777cfmXwaDwWAwGC5YswMMG911111w7rnniuwiVEvkDxbJw/9vueUWWL16tUijfvrpp+H8889PhYnwdTQGS6Cag+qNirKyMjjppJPg6quvFqndWLMGi+adccYZtqfKYDAYDAajH8E6zPTKK68IMoL1Y/CHYunSpXD//ffDddddJ3wyo0ePhjvuuEPUiEGgIRjJCO5DZjht374dqqurtce64oorBJk588wzobKyEi666CI45phjMmspg8FgMBiMnERegsaGcgzbt+sNwEOGVGlfiyO4PdFGLrUnl9qC4PZEF7nUFgS3J/i+g4JNKAwGg8FgMGINJjMMBoPBYDBiDSYzDAaDwWAwYg0mM4ycwc6mNvj+nxfCj59ZDB1dORCYZjAYDEZ2lzNgMKKGm19ZDu+t3SV+P2DMJjh1prOGEYPBYDByE6zMMHIGb6/amfr9060NfXouDAaDweg9MJlh5AxoZImLRTMYDEb/AQ/5jJxEfjbWpmcwGAxGJMFkhpEz6CLVm5jKMBgMRv8BkxlGToaZ8liZYTAYjH4DJjOMnEEXYTP5zGUYDAaj34DJDCNnQCvLsDLDYDAY/QdMZhg5CVZmGAwGo/+AyQwjJ8HZTAwGg9F/wGSGkZNgKsNgMBj9B0xmGDkJ9swwGAxG/wGTGUYkUd/SDu+uqU17wUj2zDAYDEb/AZMZRuSQSCTg/P9bCBc+8RHc9eaqtPaRz2yGwWAw+g2YzDAih7rmdli2rVH8/sf31qe3E1INmMFgMBi5DSYzjMihtaMr433sbGqHC59YCJf/bRG0hbA/BoPBYEQXhX19AgyGijDIx1MfbU79/sj76+HsOXtkvE8Gg8FgRBOszDAih9aOzlD3t3Bjfaj7YzAYDEa0wGSGETk0t4UbFuroZP8MI7fR0t4JtU1tfX0aDEafgcNMjMihuT1cZaajiz0zjNxFQ2sHnHz/f8T/f/7eZ2BsOQ/rjP4HVmYYOU9m2lmZYeQwFmysh13N7aIm0+tLt/X16TAYfQImM4xISuZhopPTtBk5DBpG7UyzyCSDEXcwmWHkPJlhzwwjl0HJejuHVBn9FExmGJFDc1tnWlWDTeABnpHLoGpMJxN3Rj8FkxlGTnhmvMZwVmYY/YXMpLuWGYMRdzCZYeQEmenoNKsv7TzAM3IYNFuPPTOM/gomM4zIoaW9K9SMJS+iw2DkljLDfZ3RP8FkhpETBmAvXwxL74x+Q2Y4pMrop2Ayw8gJA7CXMsPSOyOXQZcy477O6K9gMsPIDc8MKzOMfgqams19ndFfwWSGkRNkxkuZaWfPDKO/pGYzmWH0UzCZYUQOrWllM3kYgHmAZ+QwKIFh4s7or+AVyRih4rVl2+EfS7YCKt9H7D0Y5k4ZnpEyU5ifl7EBmLkMI5fBygyDwWSGESJw1d6f/n0JtCYdia8v3w6zx9bA0MqStA3AxQX5oSwmiRWC8/LsiBGDESdQvxirkIz+Cg4zMULDzqb2FJFB4Li6o7Et8H6aSZ2ZBNgNzn71Neh5MRi5BFZmGAwmM4wQ0drh9rqkM7jSOjO2H/dTZpjMMHIVtGuzZ4bRX8FkhhEadIShI2MyY6nM+JCZFiYzjBwFKzMMBntmGCHgyQUbYcHGejhwj5pQyExzWspMV+hVhRmMOIDrzDAYTGYYGWJDXTNc//Jy8fvfF291vZ7OkyI1AHdZft5vMUlWZhi5ClZmGAwOMzEyxOqdzdZPjTbAsBINVyWSmUiZGoBZmWHkKrjODIPBZIaRIfzKwARd+K5Vs2K2zcOmnwGYlRlGroKVGQaDyQwjQ+SDN5sJOrjqTMRWyoyvZ4bJDCM30UHuDyYzjP4KJjOMjNDlUwcmaJipRZfeHYIyo0sbZzByAZTIswGY0V/BBmBGRtCFhSj8nhQXbKiDFz7ZKkjPIeMHwZ6Dy13vsUnPZgMwo7+CipJ+CiWDkatgMsPICG0+g6fXkyIOvP/9t8Wwq7ld/P3Uws1w85enpkVmOMzE6K/g1GwGg8NMjAzhp3h4Da4NrZ0pIoPAd67c0eR6n0+ikpUyw2EmRq6CDcAMRhpkZsuWLXDxxRfDQQcdBIcddhhcf/310NraKl5788034cQTT4Tp06eL/9944w3Pfb3wwgtw7LHHwowZM+Ccc86BDRs2pF576aWXYPLkyY4fPC4jWvBbJsBrcG3VqClNpMaMBCszDIbdPcbKDKO/IhCZwawSJBTNzc3wyCOPwG233QavvfYa3H777bBmzRq48MIL4Stf+Qo899xzcPLJJ8MFF1wA69ev1+7rgw8+gMsuuwzOPvtsePLJJ6G4uBguvfTS1OvLly+HI488Et56663Uz7XXXpt5ixmhoi0DMqOriYErb6flmfFNzWZlhtEPyAx7Zhj9FIHIzMqVK+HDDz8Uaszee+8Ns2fPFuTm2Wefhc2bN8Opp54KZ511FowdO1aQlPLycli4cKF2Xw888IBQb0477TSYMGEC/OQnP4Ft27bBzp07xesrVqyASZMmwdChQ1M/AwYMCKfVjF5TZryeFHWfbdQqM5C5AZiVGUY/SM1mZYbRXxHIAIyE4r777oMhQ4Y4tjc0NMCcOXPED6K9vR2eeuopaGtrEyEnHebNmwc33HBD6m8kQK+++mrqbyQzhxxySND2MHoZfl6U3lNmvMkKr5rNyFWwZ4bBCEhmUBlBn4xEV1cXPPzww3DwwQentmG4ae7cudDZ2SnCSGPGjHHtp76+Hurq6sR7vvOd78CSJUsE6bn66qth+PDhIpy1atUqEVq65557xPuOO+44oQJhOMoWeXnmbbrX4oi+bk+bT3gHMy1M56bLhNIrMwnYsrsFRgwodWzHp9DN9S0wurrUdxDHMFNffEd9fX3CRC61JZfa4/bM4D0X70blyrWR4PbYI919ZpSaffPNN8PixYvhiSeeSG0bNGiQ+Hv+/PlCeRk3bpww+VI0NXVnrKAH5pJLLoEf/OAHcMcdd8D5558v/DObNm0SvhwkLujHQd8NvrelpQWuuuoq6/MbPLgqrdfiiL5qT15hgefrpWXFMGSI/tzK6rqN4xQtGnL0309/Aks274Yfz90Hvnf4RLENCe/p98+Dt5Zvh+8fMRHyi7zPoys/33gevYFc6m+51JZcaE+esqbIwEFVUOC3zkhMEPdro4Lbkz0UZkJkHnroIWECRm+LRFVVFUydOlX8YKgIlRuVzBQUdE88X/va1+Ckk04Sv99yyy3w2c9+VnhyDjjgAHj33XehurpaPGFMmTJFqECXX345XHHFFanP+2HHjt2gRiiQ9eEF0L0WR/R1e3Y1tHi+Xre7BbZv3619bduORvf7m9pc25DIIG54fgl8ddow8fvqHU2CyCAe/vcaOHCPGs/zqG9sNZ5HLl+fMJFLbcml9rQoauaWbfVQXBDvqhu5cm0kuD3B990rZOaaa66BRx99VBAaSVSWLVsmQkdoCpaYOHGi8MaoGDhwIBQVFQnjL91WU1MjjMQI/J0C94Up4HgMVH9sgF+y6Yv2ei2O6Kv2+GUzoextOi/dZ3Wp2RRyX28s35Hatru1A/6zdpevAbgvr3cu9bdcaksutEcNseLirkXx5jI5c21UcHuyh8Bd/s4774THHnsMbr31Vjj++ONT2zFFG0NAdFHARYsWOQiLRGFhIUybNk14ZSQwi6m2thZGjx4t6tWgmRhDTRKffPKJIDi2RIYR/TozOs+MbQr1P1f0kBlJaLywYGM9vPrpNqtFKxmMOEG9x9gEzOiPCERmMGx01113wbnnnguzZs0SqdTyB9Os8X8MF61evVrUoXn66aeFDwaBmU34Opp5EZi6/cc//hGef/55sd8rr7xShJPQCDxz5kwoKSkR5AjTwbH43k033QTf/e53s/MtMLJWAVgOrC3tnfDp1gYHmdCSGZ8UasxawrWckJwExY+e+QQWbAj+OQYjylAXc2Uyw+iPCBRmeuWVVwQZufvuu8UPxdKlS+H++++H6667TvhkUGFBUy8qMAg0BJ9xxhliH5jhhNlJmNWEoaodO3aIisJIlNAjU1lZmdrXKaecAhUVFaIeDZOZ6MEuzJSAcx79EJZta4SLP7cnnH7g2O7Pasy+fsPwRX/5CN5fV5f2+S7f3ggzxlSn/XkGI2pQa8t02Kz/wWD0ZzJz3nnniR8TcFmCxx9/XPsaho2Q8FBgkT380QGL8j344INBTo8R0TBTXUuHIDKIeWt39ZCZNGq/UCKDCRvHTRkGf1+81fj+E/cdDgPLi+GheeusPDkMRuw9M6zMMPohcsQmxogSmSkj7kMcaOlg20V+9yt054fffnU6HLNPd3aTCUUF+XDg2B4zeWObt7eGwYgb2DPDYDCZYWShAnB5caFjYKVPijS+n0lV3tl71IifcQPLPN9XmJ8H5cUFnkX5+hrvrN4JD7yzFupbelYQZzBsoSoxPnUsGYycREZF8xgMHSGpKC4AWUIG4/emcuuZKDOFyTKRIweUQnFBnrEScYFCZqIWZtrV1A4X/eVj8fvaXc1w9XGT+/qUGLFPzWbPDKP/gZUZRlbIDH1qdJIZ+tn0HyFlhVP8f0xNmacyQ8+nqT1aZGbZ9obU788t2tKn58LIkTATlx9gZIC4huKZzDCySmaQvDjITCIcZYaWax83qNzzfRUk7NXYGi0yQ0NyDEY64NRsRli47qVP4fN3/gv+9P56iBuYzDDSBqZc62rFVFDPTCIBHWSwpQOt7rO2QMVFwss3g+8ri7BnhkMCjPBTs5nMMNLDXxduBuw+t72+EuIGJjOMtIGDpm7cpB4VnKxNnpm2kJSZ8R7KTGF+viA0JYXdXb2pPVoSqjrx4ArhDEaQBwpOzWaEgbhXR2cyw0gbpmwkR5hJGWwdZCYEzwxi3KAy3/fJc4qaAVgldPXN0SJbjGhDx1s4zMRIB3EnwUxmGOGTmRJnarbJMxNemMlLmYk4mVEI3XbNquEMhgk64sJkhpEOmMww+i2slBlXNlP4Yaaq0kKYOXqA5/uk0bahrTNScqpqgt7RyGSGYQ9d5hKTGUY6wNXW4wxOpWCETmbKi5yp2R3GMFM4ygzi9q/sB8u2NYiFJH/z5irX+6SPB4+PNWlKCp2f7yuohI7JDCPTCSjuT9iMvkFHzNf0YmWGkTZMZIQagL3CTBkVzVPIDB5z/9HVUJQ0+po8M4imCNVRYGWGkQk4zMQICx0x7zdMZgIAwxOvLdsOr3y6LVKhir5Ci2YpA0RZUQEU5BFlxpCanclyBjTM5NierAzsUmaKopme3a48We9o5CUNGPag91auTEqMaIxFcQOTmQD4eNNu+OHTi+HHz3wC763bBf0dJjKCadCSbHh5ZjK5eVTSktqu9OiUMlMSzSUNXGEmNgAzMlVm+EGLkQbiToKZzATAhrqW1O/LtzdBf4fJwEvJTIdFNpNBZAlZmSFVgCOtzDCZYWRGZuJu5GT0DTrYM9N/UEr8GC0RW+MnSspMKYaZLJQZSWYwLJWpZ8ZEcgqTUo3TMxOda8cGYEYmYM8MIyx0xJwEM5kJADrptmTg9+gPYSasvOtfNK/LZRjOWJlRtkulhh4jSgupsQGYYQu8d254eRlc8cxiqG/p9lZxmIkRFjpiToI5NTsASotYmaGghA45hLwXBpQWOpWZRPjKjInMqIpNYYGbzARVZv6+eAvUtXTAV/cfCUWqKSfkMBMeBwlO2MdhxAeYXPDUR7hGTgJOnj4S8pOE/OmPN8NfFmwSvw+uKIb//vxeWgMwKzOMdJBJdmkUwGQmAEoLC0LJxMnF1OxvzhoD766phRmjq2HkgFJnNhOZsPFXHKzz8vJEvZesh5mSE4EjzBSAiL67uhZ+/vzS7n0UFcCJ+42AbA8g63e1wJ6DzVWNGbmNVz7dDte9tEz8XlVSCMfsM0z8/s7q2tR7Xl22XZAZrWeGyQwjDcS93/DjXwCUsDLjACV000cNgD+dMQt+eNReDrKBg6369Ij3DPXSCMNwXjjKjHyKVZWZCrKSd2Or/bV79IMNqd/vf2eN9j21TW2wrrY5rT6hM1E/u2hL4P0wooWtu1tFn0hnVfQ/vb+e/N7T/5pJ/5IPALoJKO6TEqNv0BHzfsPKTLoGYFZmoJXUmSlWitVJ461qAJbb6OrQxQV5gpx0BjCgFWbkmbEnHbXNPXVfBlUUu15/7IMNcNvrKwRBQ/Xn3tP2h72HVlrvX6pTFM98vBnOP2Sc6ztlxAPoa5HhoGGVxfDYmbPFkhvpTCq0P1OyLMciNgAzwkJHzPsNj5YBgFk6Ei3tTGZaySKJlOhREqGmZiPQQ0NVnWJiGA4/m0njmWm3NwCj6iJRU1ak9dPI5iFJemP5DgiCdvI9TBtR1X3M5nZRnJERT1BlbWtDG/xnbU94yAb0fqH9vJmMOVKZYTLDCAsdnM3UX5UZDjNRZQZDRRSmOjMI/Jt6RYoLeurSZGwANtSZUVOzl25pgOte+hQWbKjzPM7OJqLMlLvJjOqdag84kdD3f/2AUanf31q1M9B+GNEA+sHUPtEaMNREDfO0n+vCTExmGLaYt6YWbnx5GSzZstuqzgxVz+MADjMFAJ2wWZlxTuRISChMdWYkwaEDfFGIZMYVZtKQmd2tHXDOo/NFiOeDdXXwxDkHWrWxqqTIV5oNOpFQUjdzdHXq9y27WwPthxEN6K5/O1Ewg+6DFoGkZEZmVrIBmGFLsn/69yXi4eyJBZvgF3MnwxenDvdUZrq6EpAf1MzYh2BlJgAwA0eqM6zMOM2rqjJDDcBq3Qtk/HSA7w4zZYfMyPBVOTEA/2tVbcqrsqa22XqdLd2TirrYZlCpln4efRWY1o5gMhNP6DxQpkrZVmTGEGaSRndOzWbYoKMr4VCZr35+KazY3uh6D0Xcok5MZtL0zdCBpb+iTSEkFHIQTmjSj3GwpQO8NAAHgcljY1JmvI7RYMhuUjNRtE/dGj9QEKjhtmGVJeL3bQ2tsZN5GfpU+6ChR7NnpqefyvuHw0wMG3QofSKRfJDLpTATk5mASCkznJrt6PzqmkiUOKgeAjeZcSszfuqmeW0m599yv6iq0VATRV2ymqqK7Uo1Xh1RsSE8tk/yeK7Dq0pSxfRqyZMUIx7QERdq8k43mwnVQ7pdkiZtmClmkxAj++jQyCwNrR2hhsz7GkxmAkIa77honvIEWWBPZjo0ZEYlJ35pyeZVs83nIVUPFbtI+rUXmemwCCEEXaxNfr6oIE8QrmFVPenfWxs41JQLykzgMFPC3X/Ve0iGJ7V1ZuIWH2BkHR2acclFZlTPTMxIMZOZgJDGO1RmbL0WuQo6kLqWEfBTZpTU7KBkRiVPZs9Mz9+XHDEBZu9RA1OTKdASdc36VO1tDQqZ0VxvdTmCoE8zcgCRBmqpzCC21DOZiRvU/iC2Be4TRPFM9l+VcEtFj9dmYtigQ9NPdrd0ePbTuC2izdlMAZEqVpXo7iD4RN1f4SQzegOw7skUP0bDK7owk5od5ZeCbUNmDho3UPwgHp+/AW5+dYWnMqOSGXXiUKV/3XvslZl8l3rEykz8oFNhgoaZHKnZye5br0w87JlhZEpmGpTioa6QecxIMSszAVHChfOslBkaBrJRZoKSGbNnxhxmoqguLbIIM7V6yrC6p3BTWqxpgpFhCTQou5QZzmiKHXTLF2SSzSR/VX1d8v5hMsOwQYdmrMISFY73qMoMk5ncBhfO098gXl4VfwNwXnhkxkOZoaDVfE0GYJcyo9zc7RodVjeRPLtwI3z+zn+JIn0qpEKVUmaYzMQaQQiuCfTt8rMmZUYX+gzq22L0U2WmJbcMwBxmCghe0sA9uef5kAhXLZaEU5nRFc3z9cyESGaMyozqmVGesHXF0HSDxoV/mi/+/+vCzfBfh+7pOLZUZoo0ygwuVsiIFp5btEUsYXHeIeNgf1Lk0EuFway0K5/9RCyp8eOj9xZ98qWl2+AvCzbCmQeNhc+MH2TsZ7I/1QXxzPTvYYmhgY7gbqxvgcv/tgjW7GwWNa5UXhwzLsNkJihyVZn59+qdsGRLA3x1/1HWi+LJQVdnxqWkQh3gu5WZhKPgnluZyctumKms0NcAvIOsy5SJMkOBk5KezOSnsuWwcB4+iW9RyBSjb4EeqatfWCp+n7d2F/znss+lXlu6tQHeWL4dhmoy5l4l62wdNWkIHDCmRpAbxKa6FvjbuXMc76fijrzH6lRlxiPMxBWAGTZ9Ytm2RvFjQtzCTExmAiIXlRkMZ1z8l49Tv+PTY5AbRKd++IWZaAqrTpmRk3smYSbkQ5junK4yQ4uUyfPONKRA0yFxcpSkjobVUJ1BMoPKDA4ostoro2/hlfGM5GRtbbNvfSRUad5btyv190afjLUeZYYNwIz00Z5Gun7c+hF7ZgIiF5WZ98ng+pcFm6w/10Nm8gORGZygM60zYxNmKvQgREhK5RIMJs+Mrj6OX0jBbwDYRZ6w6f6oEiUzmtQS5FEHEtRcrr9kurZISpHIiPck/L+jf3qsrK6We5DpsjoDML5Xr8zk7jVgpIeONPpEzLgMk5l068zk0pIGqgJhCy9lptCvaJ4jmwkNwPmhGIDpcf3We6pOhtN2GcJMOkXJL0PAL52Reh8oGaJKFA2BqYWtooodjW3wpd+/C8ff8w5srm+B/kRmgoR1sE+9ubKHzKhKjqtuUbKPqAbgRPJ8dMeO2xM1I/voSEeZiVmYiclMQJQW0jBTfJSZRZt3wxkPfwC/e3u167V0SZkcNHXEwqvOjG45A5cy46PX2ygzfus9yVATEgxdAUQ/MqPzzOB6VVc99wmc938LxPpKKmhIS11sU9e2uPgffv3PlUJFQm/HTa8sh1yEiSQEUaMWbqx3ZMnlK33UpAaqBmDx3s4uDjMxrNCRRp/AVbPjBCYzAVFGlJmWGEnq33n0Q/hkSwPc/85aV8pvNpQZ/9TshEOVKAwpzET9Jb7KTJLMYDsalQJSSG58w0ya6//Rpnr4x5JtMH99HfzPPz71JjOEDDkVpZ62d8akNP1m4v3I1ZRyE0kIUkfmvXV1LiWG7rdVCV3LPqcurSE+25HQr5odsydqRkTJTCJe/YjJTA4bgHEyfnnpNlhX2+wYMJuViTvddnhmM/kUzXOuFu1e0TqMOjO2yozOk6B72lYHBL8B4p3Vta5t1MipqlN6ZSbafUw38AVdAT0uMC3gqCO1JugUFnovqA9I2MfwYWNjXUsAZcb6dBj9BB1pkJmYPEelwNlMGRiA1aeoqOEP766F+95ZC4PKeyZtHfmg4bIg85CnZ4YcQx3sceJTl0IIvNCkxarZfsqMM6OpA2jZEB2ZcWczBZ81TGGmIhpmKohfmImepimDLO5weaa6EqKPBQkz6a4nfl4+JKlkBvvYyu2NwiOjAl/TGoCT/RK9S1iEkbPhGB10va88O6LCYaYcR5yWM0Aig1AzYtQBlYaZ5KrgGWczkQE0ofmcuhSCSjxK/JQZwwCNE6nkAgWWBmDdE7ONMkNDZV6g3yklM2oVZAn6fcaHzPScZ44KMy7iIEl60OUKVNDP60Kby7fra4Hge7VkJpGA/523Dk64dx5c9tSijM6NkRvoIP1Ehtf9wGGmHEcupGarAyA1ANMwmu1+dKTBi0hgTJ8+KaASoZKZokIfA7CHQVgeO5gy409m3NlMdpMYPVeHMmMKM1FlpjOGyoyoCZ17UK+/VGZtSa0JtK+5PDOdSGaaUn/vMbDMV5nBbb95c5X4/a2VO9kQzABKZgYqSr0JcfNeMZnJYc+MCergRkkZGpyf+HAjXP38Ek8jJ10x2s8ArDu+nzLj65nxkM4lSRlYXuy5D/qEolZYtSEztpMYJST0OPTzVI2JYzYTzQbzuXQ5RGaSykyGiQBOMuOtzEwdUeV4r27CUc8zbk/YjPDRQfoEfYjzQkzseimwZ6Y/KjPK4EY9M5g2emMytXZDXQvce9oMwz56fverM6MlM3Qi16Zmp5fNhPjhUXvDMx9vhtMPHOO5j4riHmLa1KaSGfe17UjTM0NNvKjM4MSP4TCHMkOUKNq2dHw5fYF+4ZlR75uQyAwNM6kPSNjnViRLzqP3bQRZuwszoXTKnW7BwACCKyMH0UH6yUCFzAyrLIatmqVT1tQ2wcodjXD05KEwyOfBMApgMpNB0by4KjPqANjUrn8y/HBDvcc+nGGiYGEmZ1pykU6ZSdMAjDh8r8Hixw8VJT0jfGOrkuFlYwC2UE2QuNBCaJ3JNPDKkkLHdlo0L47KTH/2zGBWUSZo81BmaFhy4pAKB8nH43ZYKTMZnR4jB9BBxltVmRldXaolMze83P1Q+9ryHXD316ZD1JGjgnAvFc2LUZ0ZzzBTGnVm1DBRZsqMOzVbriKtg9eaS0FQUdzD5dU6MzYG4HaL66/zK8gJypiaTX6PI5npL8qMX5jJb50mdT/dv5vvxb2QzBCSj/3Ppmgee2YYnR5hplHVpZ6ffW9tz3I3UQaTmYyWM8i9MFM6N0dgAzDWmSGfL8LU7Dz7bKaw6pjQMFOjK8wUjjKjenHEtiSZcS62medQquJXZyb4JJ4znhmDMlNOyHK6YSb1CZr2E/ycFZlhz0y/R4eHAVi30nscwWQmo+UM4jHR+IWZ0lnOQK0TE8Sgq1Nm1FAVrbuiQne8dFAZUJlRJwUbP4tuRW65FpRV0by4ZDOR/uBX1+T5T7bA9/+8EF5aug1iTWY6vZUZWi08XQOw+iAlF0fVkRn5mqrmsQE4t4CLmv6/Jz+GB5KlN2zQ0WlWZugDepwRqBVbtmyBiy++GA466CA47LDD4Prrr4fW1u6MlzfffBNOPPFEmD59uvj/jTfe8NzXCy+8AMceeyzMmDEDzjnnHNiwYUPqNdznlVdeCbNnz4ZDDz0UHnjgAYgKUBWQNUHiagBW4+zN2QgzFfhlM3UP2vhRnPz6Qpkpp8pMq4UBWCEvNmSmVrPqtSQ4Ts8MXe07fp4ZepYmMoP+oV+9tgJ+9velQrrG3+OEjoDKTEVJYahkBkNM1FuFJMqKzMSkDzHscNlTH8Pbq3bC3W+vhjU7e9L2vUAV3upSJ5kpIQ/o/YLM4ECERKa5uRkeeeQRuO222+C1116D22+/HdasWQMXXnghfOUrX4HnnnsOTj75ZLjgggtg/fr12n198MEHcNlll8HZZ58NTz75JBQXF8Oll16aev2mm26Cjz/+GB566CH4+c9/DnfeeacgP1FLz162rRGWbmmAqMI059MBEJ/abL0/uD7M++t2JSv46tcVsq4zkzwHOThTnwjdnk0yg5ODJKYNVsqMMwVZXeHYXpnRhZmoMhN3z4z+PfPW7ILHPtjgWGk7Tn4OU50ZEwGhYUwvUGXH615Egk9JPqb2U7VQkhl3mMnqNBgxweqdzanf6aKl1g+fBXnwg8MnwLiBZfCrk6b5Zo7KMPyLS7bCs4s2C2Uo1tlMK1euhA8//BDefvttGDJkiNiG5ObGG2+EI444Ak499VQ466yzxHYkKXfffTcsXLgQxoxxp8ei0oLqzWmnnSb+/slPfgJnnnkm7Ny5E0pLS+HPf/4z3HvvvTBt2jTxs2zZMkGgjjvuOIhKerbM8/n2wx/AA9+YAfuNGgBRgzBi+mQ72KoyOOB+63/fF9WEL//8RJgzbmDqNb+1mXTHl7KnJEIqQaFyumvfIabLVBQXQltzu1WYCYGnLbOobSq/epEZWmfGvDZTPGYiepomZWZHk3vg3d3aYV33InIG4HYfz4xlPrSzArD5fhRP0HldjnuS9g/Zh9Tz5DBT7sI2lNmhKOnfnj1G/CCe/miz7+cvefJjmJ/MbsXh/m/nHgRDhvTUPIqVMjN06FC47777UkRGoqGhAebMmSMICaK9vV2Qkba2NhFy0mHevHnwhS98IfX32LFj4dVXX4VBgwbBkiVLoKOjA2bOnJl6fdasWbBgwQLoiogZctpIJ3H5YL1zJdwoAAmD6amXdmw1JdmE/6zdlVoW4eZXVzgGTB1x8ctmkqnZKTKTZ5/N5FfZNwhkerY7zKTvazTUROPQdDkCPzIjixGalZkY1plxeGYM79FMqg3K9x5luIsmentmaBjTC62WygzWInIqM4YwkyLFxEn9YgSD7aXtUOp6BSmDgfho0+7U77irxZsb4qvMDBgwQPhkJJBYPPzww3DwwQentmG4ae7cudDZ2SnCSDpVpr6+Hurq6sR7vvOd7wjygqTn6quvhuHDh8O2bdtg4MCBIvQkgQQKfTS7du0ShMcWugdEuS2T7NFfzJ0sClj9ZcEm8ffOpraM9pcJTO3xyoLBSUW+30+ZSe1X2T8dIFGZUY+v3jDu5QySykxBvvisSl5KPJ44cLIP6/uuSJqAUZmh+2wzLMzWBT3fHa2Vg6HHts4OKzKDxQhxH5SolBT2tIl+F/g9RyXT2eveSRDXDL6ue49u4EVlJmr3TpDUbPysqRK0dZips3s/4nevMJOYdLqMZEZOSgmP+z0uCGOc7g/twXHeZp8dpO/i+EI/46WC+2XIZeP6pLvPtIvm3XzzzbB48WJ44oknUtuQaODf8+fPhxtuuAHGjRsnTL4UTU3dhqVrr70WLrnkEvjBD34Ad9xxB5x//vnCP4OeHEpkEPJvVHuCYPDgqrRes8F/HT0pRWaaOhN9Lrmp7anTGE8lyspLUue7vtmbzMj31exwxkkrB/SsEVNV0bM/iUHbzXHV4tKi1JCMNxJ+tmaAs5bBMI/rU1xUENr3XVNRnFKrqmrKU2a4vMJCh5GzPpliXVNTCdXJ1MZ8w3somjRf78b6FnH+BcU94ZXBgypSbRq0s8XxXfV137K5dxKE7RYU6q9PWXmta1teSd+3z3YsqNjkfBrF6yeuoyachOpUdZV3/Y6e/RSmvoOER6be8CFVjjIKf/zPeofKWqkYOyWqa8r7/DtOF5mO07nWHjUJobyyzOraFpI+OnRwpeMzQ5WxXQeVIJdXlETu+hSmS2TQnIsm4EmTJqW2V1VVwdSpU8XPihUrhHKjkpmCgu4v9Wtf+xqcdNJJ4vdbbrkFPvvZzwpPTklJiYu0yL/RTxMEO3bsdllGkPXhBdC9FgT5RB7fWNsE27f3yHC9CVN70Kxrwq765tT5bthqrvIr9pN8X8PuFuf2nT3rxbS3dbja39hgvkEaG9tS3gAc9PGzzU3OdaCadps/n5dIhPZ9F5O5Y+3GXan1nHY1tDhWvZZEZcu2emhPEqAGcs6mMNOWXe5sg+0NbbBmYy3Uk2M0N7Sk2tREttc3tLraun5XMyzZ0gCHTRxs9VQVFrzunU4yyDa1tGuvT73mmm7Yuhu2Dwx2X4eFoGPBrjrn+e/a3X0f1TW41zDDsGFXu10IbVd9z7WvbzSvh4Z9hCqplMigjyzf0IjtOxqhJmbZt2GN07nWnp3KuL6jthG2b/evE9NA/Gq765pgO+HfrR59zu9eyMb1kd9V1snMNddcA48++qggNJKooEEXQ0eYSi0xceJE4Y1RgSGkoqIimDBhgmNbTU0NbN68GUaMGAG1tbXCN1OYfPLF0BMSGQx1BQF+yaYv2us1G6CEjHIdZrRg+m1f33Bqe7zkamT38r1+nhn5PnWqpiGSwrw8V/u9ao10KAZg/KzbM+NtAA7r+64gtWYaWjuhJik4tZJJg3of8NzlsWk2U5khvbFWE2ZCrK9tcVwjbK/cr+qZoW3Fv8/504fCv3TuZ/aA8w4ZD70N3b1DVWiUpHXXR+fdwKKCUbt3TFDN2FhnCj+n81fh2IDFIE1A8ivDU/h5eXwvzwzus6NLv8+vTB8JG3bpHwBM1yMOyHSczrX2qOOJOj7YeGbU8dMmm8l0L0Tp+gRqBaZIP/bYY3DrrbfC8ccfn9qOKdpXXXWVI2110aJFDsIigQQFM5TQKyOBWUxIYEaPHg1TpkwR70GVRuL999+H/fbbD/JDKpYWVqaQXLALU0yjBq96FfQltfKtCSo5UT0zQQrb0VWze1Kz1YUmvZYzCDObSb8+E/3+6Htou6mvxlR4apch3Le+rsVqbSaVAKDiJo3YqM5EBdTcazKc6qwluzWhuVyoAIwThJeJHdfmUvej/q4Czb+6iefq4ybDD4/aCwoMx+NsptxBXbLgZpDyEGq1cnVstjEAq4iiqdy6FRg2uuuuu+Dcc88V2UWolsgfTLPG/zFctHr1apFG/fTTTwsfjAwT4eto+pWp23/84x/h+eefF/vFAnlIYtAIXFZWJsJPaAjG1O6XX35ZpHKfccYZEDUMToYb0OQZtQHDKwuGGhmblJRkE1Ru4pC484IvZyBjv6ZspuJeS83uISoNhNjRJ2T6Htpu+rQjaw95PUkNJyser69t9qgAbK4zYzvx9TboaZrSyXXF29AAnIt1ZrBfe6mLVYTMOJYz8EnN1pH8vYdWJI+pPx7XmckdqAkFNAnBC46FgQOUwTDuL4JkxjrM9MorrwgygvVj8Idi6dKlcP/998N1110nfDKosKCpFxUYBBqCkYzgPjDDCevFYFYThqp27NghKgojUZIL1F1xxRWCzGDtmcrKSrjooovgmGOOgahBrnGB1xXX25F+iyjAlGGhdmy1vooJKldTlyMIQjiQaMmPm+rMeEmfoaZmG5Y0oBMUXWOH3sR0IEFfjQ70yWn8oLJUWvb6umZYvr1RS5joE7ZKSr1WWI66MqMj/HFSZtTK2a0dCWNIF4mMVx8eUBpcmUGC364JM0mSbLovuAJw7kCu6xZUmenwqNhekiPKjDWZOe+888SPCbgsweOPP659DevQIOGhwCJ7+KMDqjNYjA9/ooxBhLyg9B8lMuO1ojPtiLZkRu28fmszoY/GBPokKlO4VULkRViypczQkJuTzBjCTMnJzHZAGD+oHN5d05219fzirSn1Z7+RVSmVz69oHj0vm6J9vQWHYmUKM2m26zLA4qbMmMJMhZZhJmfRPA8ygx49hSBhv5PEyHS8qKnGjPCUGVuFpIMu7KvpQ7lAZqJjQokhsNaM1xo8fQm5CJ5fmEktFmeCOiD6rc1kit+rA7YuzNRdRwbXa+oFMpMsmmfyzOCxaKEy56SdfE+et8dHAglLZfJ4NIx1yv6jHO/zWmjSGZKIBplBrxxVJ8zKDORU0bwez4y7YUgsim3DTJSgGq4pTjh4T6j7RFVGKtqmB4AohgQY6QEN816p2iZ4jdeZGICjBCYzoSkzbfHxzJCO2GS5nIE6Xnf6LTTpoczQ1calSZI+Vcrf5SDdN2GmztTSFSZDriQW+KRjQ7BwP2Oqe+rzIKpLC+HoyUMd2+iTUxw8M2LNKsffAZSZHK0A7BdmMhmATWqb3JdqKh5GfFjGMBMrM7nrmbENM3WabQE4xgWF6R7vSzCZCcEzg5AZJrHwzJBB2W+hMjmAq3F3WmFYN5F7Te50/RkZoqLKjExpNe2jN8NM+ERMj+fwzCS/Y5y4vLK36HnPHFPt2HbK/iNdMq9XmMnmKb6vibOqJnkNgLtbonXfhJfNlOcZZsLsN0lMnGRG/91JQ7xK8IdX0vCkvg9GZBUYRlbIjK0y0yX+x6FFzUxNZzyNYpgp7QrADIDBEVZm6ER3wrThYsJ9cuEmV0c01aagkyl2dpdnhjL9gGSGhkfkZ+k+UspMr6zNVOgZZlLJDP0epMSLk5KtMvO9z46HPQeXi7Dk4Ioi+OLU4dr3pY6hzES2/orehDqgmp7atAZgy7XBogC1XbIfa7OZfJQZfA37VntnZ+qa4vdjmiRKDMSIZsiZyFMUn6IZIaVmB/TMFGrGKZMC7r2/aIw9FExmclaZ6els+44aABMHl6fIjOzYOBlvTmbXeHXaEsj39sxo68zYeWZSYSbyVFngo8wU9rIyYw4z9SgzNrVvcD9oJj55+kjv95HvU1U5nGGmaBABVU0w1pnRjH+ozKDnJp0BtbdhCvnpFDJUZrzqzKDS0k12OlOf916XSZ8tx2Gm/oW6lswMwIUh1WqLUO5BChxmygCDSAYKLTO9rrYZPtnSN8sb6J6WheStmZA31bf6rroqQymq+u2XzeQdZtIYgMn75SRgmt/CDDNVOshMp+upGycRZ5ipy/UdF/mEFCRsBxKvOjOUpCKJiMJEpZoQbVKz5TXGfmXr2+prqKHWFAnRjOwYKvWqM4OmchlelH3Ny/9gqrvkUGYM90UUJx5GOKnZtgbgTklmLMapIPuLEpjMZICasqJUKEQWR9tc3wJfe/A/cMbD82HeGvfCemHCq3ovfVrGJ0Cd7wNrnfhBvlcdyP0MwKa6K64wk0zN1oSZTGpHuNlMZDmDJJnBNsv2ucNMPZ+lVYytwkyWA4lzOQOzMhMV34yqzHRYkBm8d+JWa0a3araRzPhkM/UoM8RI7DExmfY1rJKVmf4CHJPUUgb2BuCuUFVtJjM5BuwY1clBWSoz9/57TUrF+MlzPUs2hI2/LNgIn7/zX3DVc59oX1fX/aFP+7Ijrt/lXDzS6yZQB3J1kTsVZUUYerExAGuUmeS5mkIPYS5ngE5+eWiZpk7PTw0zdeiymfLzPLO3JGwHEvwu8kyeGYW8RME34/LMWNSZcZCZmGQ06erMIFHQTSh4z/mFmaQy46XwSJQU+SszJkIdxYmHERxI+tUraW8AToRKZjg1OwchC1bJFFN6kelaVWEDi67hoV74ZJvWO+EolW8wseLqy36Q7TGlpXqZyqjq4Rdm0qVmm+67sKTS1Hkm07Pl0g70/Nyema7UtXVkM1mFmezPW+7PK8yknmtkspks6sxgSnrcCue5r4Wzvo5roUnLMBPuR63Vo3YVWusIiyzqKgkbs5lYmckJ0OVWwjQAp4MomsrZAJwhpPwrjZp00vdaOTpTNBOfgW5CUz0zujDTBqLMYAFAnYlZtksdEGmtGNNEjn4U3USlW2DRWTTPm2OHqcxIEzCqA9IzQ79PVG503x29zuL7tTgnaWy2AapTmOniNp16k5u+gKpMBFVm4lI4T9cuk6rkV2dGhJmIDwYJjWMV9qICh4eLvvd/vrgP/HXhZjhy78EO9ZKzmXIbupIHgQ3ABeHoF7Zend4Ek5kMIaVkyZBp38oP0duhgk64Le2dLomNltrv9sy4B+UNdS0ptj5yQKmezMjJW7ln8JgSJrbfrcx4Z0t5GYBNY3CYnhm6XIH0IHkqM8mToj6RwpA9M6n3tnsrYlGpAqyek3E5A3JBZXg2TspMkOUYsM94Xe9iheygukq/R+yTlMzQWkRjasrgos/tqT2mDhHMomWEsDaY2GYbZupMhDp2RjF0yWGmDCFVBLy4KBVTBcM0lqFJONMQlKPeCFFJdK+7PDOJ7nPdkDQAj6ou9SiF3qXtvHR1X5OSQqucmtCTmk2fMLv3Z/qGwkovlKhIhpma27tEO51kRslmSg4KVPkKUmfGFvK96mAVRc+M+sRozGaKu2dGc8+aVCVUZb2UmZLCPAdBwetK+1S5YqCnYSYTjNlMrMzkBDo1yoz9QpNdOR9mYjKTIRw1QUgWjCnMdN+/18AJ986DHz2jN+7awq+svZ9nZkdTu5i8EWNqSo3+FHmzqNlMNMxkmshp2rMJqQrAlMwkfzcRvrCVGbo+E/pmvD0zbjIjFhXMFplRw0wuz0xn5JSZhMGnQbdRokv7Uq6EmbCtxZYGYHldVWVGfb8fjAtNRvApmgGhFKrrKwNwZwRvWSYzGQIzWejE7yAzmo5zz7/WiP9fW7Y91DCTCtdkS4gVduxaUrF4aGWJMSTWE2ZKGD07phvERpmRn0WPwNBkafYJQyt9PgOhwllrpsOVzeQggsnvgRrvkJBlTZnxWM5A93dfQDeg6iZ++hBJ14OJgu8n7DATdhMvfwIqLVS5wbAwDQ2rpQ1sFgNkA3BuQxe+tTEAd4mIQbiqdhSzmdgzkyFoxgIO6vQa+01emVQ+pV4JQWxK8o2TnM4ATF/vTk/2DjOpfVe3JEFaZEbWlMnPg9tO3hfeW7sLzvjcROhqbu31MBPindW1cP3Ly4yqVk+YiXiSCi3DTAHMd/K9qowcxTCTTurGiV8tNUQVAlybqOfzfd+GdAdwU42cbmUmgAG4w1uZMaVmU5hDxb4fZcQAuv5n45np8FhkUgK3JmLumWEykyFoLQlkyVTB8JvfsI8VpsFl1HBWt5JQaC6ah6EScp74Wfq6Vzn+VAVgV5ip0z+biYRvwIKYTB5WCfsMrxSVlbcjmeklAzANM/3ypWXO14oLXH4jlycpP/wwk2yjKi27w0x9P1PplBXdwEsVAlqe3zbu39fQLsdgCDNhizzDTCQ1W3rQsuWZYWUmN6AjEDYKSYdPgVMEKvNBCEoU12biMFOGcBRUQ2UmQGp2kFj2rqZ2WFvbrPVJ+HpmFLIilBklddt0qqkKwIZF9jwNwETxMCGdmjGhkxmDt2f8oDI4etJQrTJDn4iwDTZEpSALYaYokBmd1I2ZcpvqW3IqzKRfKNMcZvK63khkHAZgxTNTFqZnhslM7oaZLB4EOgjxMI1TQb00rMzkIGjoADsbHTj8yIytIxzX4/jyffPEGja//ep+sNfQCsfrrT6eGbXcPnZEr9dtiubZpGbbKDPUc6QiYRA+wyczhVoi8/hZs0UYsGBLg0sVc4SZNN8fTtZq2nSQAUOGL9VMoUgWzdOcw7f/+IGQrv/47QNg8vDKnAgz6QZwutI6RZdPCJkuZ5DyzJBrrRJsSnxMMD1U9MbEg8cI+75k+F9Hm3unw0aZCXjpokhmWJkJ2wBM68zkhdMhFm3enVqM7711u1wTmFaZUVampiXy1TATDqpGz0zyZlGf7mQmlGc2UwDPjA4mrhfmqtkmZWZgeXFqMqLnePfbq+HEe9+FVTuaUtvEQpPKOameh6DnncroUvqJzbXvbZhMiLj1qr9/oiXvpXEMM2k6JK0FQyHfuufgcvH/HgPLPMNMGD6kpLAs1DATZBULNtTBsXf/Gy58YmFWq573d6RrAO5QamLp8NNjJwc6F07NzkHQiU4YgH3WLEqHzFD2jQO/WldGX2cmkZpoJVGR5yOUBUp2yPpE1sqMZn0lFablDCjkOkxBEL5nxn2etNy+uu7S1oY2uObFT3te1ygzFSGRGdd6UFEkMx5Ph6t39iyZ0RlzZUY3mZgWe5Xk/85T9oOfHjsJrv/SFM8wEyqdVHWrSCfM1Eeeme89vhDqWjrg3TW74J0sL67bn5G2AbjLX5k5atIQuOXLU+E6pZ+aEMVblsNMGYJOxmqYyW/StR1k6ISFA786gVFiISEHRipl4/ngOeo8M2ZlRqZmg1GZKcyozkxwZaY3PDNVhOD4HQ/VOfU95ZrQVaBsJgeZ6YKS5HOHK8wUgVHFlox0GZQZddXtWIWZDMqMDAUPqyqBE/cdATtJKYS85PUtJeqLSmZcqdkZeGayHRKgk2VdczwKIPYnA3C7zzp6CBz/D99riKOfeoFTs/uBMuMMM/l5ZuyOQWV4HPBU8qJVZpKEh6aOY0duNXhmfFOzlc5LbyxzNlOGYSaDZ6Y3wkwDSousj4evq9lgGSsztBhjp0eYKQIF5/zIiCxB4DAAF8XPAKwnMz2T9yVHTICXl26H6rJC+NqMUY730YcKJCb4fVDCgg8H9Ht0pWZHWJmhYNdMbxfNC5bNVOSTcGG7nmAUs5mYzGQIShaEMkPDTCF5ZtrUMJMr1GA2ANP0UDnYYbyz1WVgBe/UbI8BMaPlDNIIM4VOZjTnSVcj9lNmUHFRSVnmnhkShqFhpghWAPZTZrY1tAmFgt4bdHKO4qJ16RiAcX2zB745Q/tZSmZk28sIocMilJl7ZvrOAMyIiwE4P5RFfKPYp9gzE2pqtlJnJqQwk9MzowkzeXhmqDzdU7vE6ZmRT4pBPDMUZgNwQVYMwGGvmq0Lh1UFIDMF2VBmlJR/CfXaR0HV8Hs6XFPb5FlnJjZhJk2HlMZ8hFeRPPpELN/nVmYyXM7AuDYT9BpCvjUZfp6ZkOrMSNg+WzKZyfmied0LFZokO5W82HYIOoG1BVRmqHKUIjNKTQtRIdi3zoz5/EyfVQt/BfbMQO+umm00APuRmTx3NlNFhp4Z2q9orR+VOETdAIxYkzQB07eJDLu8eBmA/TwzXhI+PixIlVQSE9UzQ6+tq2ger83U75G2MtPprInlBVZm+jFomAQHIy8DsNoB7LOZEp7KjG5Ck9vo02JPmMldh8Z/OQOzf8Wk6tgs1RBkgqfHDBM6s24QZaa7aF6+L0EKUh9Ql82kW4cpFmQmWexRrcEkiXZfp2ZjQcrbX18Jz3+yxfN9uqdgeg/TBwcd5Erh8n8aZkKFh5q5XZ6ZmKyane7yLIyIKDN58SUz7JkJOzXbo86M2vFsBxmnZwbJjLcBGCcNeSw1mylonRnTcgZhEQvvbKZErygzIrNEKXI3gPhofA3AeZpsJuXJ2ov06c/J6cUyhZSiQWZ8wkw7mxx9SH5XOPnjd97XobIbX1kOLy3dJn7fb+QAGFPjrAljO4B7LV+AuOhzE+CJDzfCOQfv4eojqMzQe1BVYjJLzfb9KCMGUAtoymvrV7CwI1CYKS+2dWaYzGQIddKhA55q+FY7o60hnD6RIwlRK8uq2U3qIoiqhIhqi3NV7TxjrNTPM5POcgQUfu56HbJRaRRNwC0dbdpsJivPjPIenHywbfJaBCV9jrW0OqOtzLRZKjNyAJRNk9e+r8NMksggFm/ebSQzfh43P5XxuCnDxI9EqeKZ0flqQslm6kU2w7pM9mAiEHj/FOQXhGQAtjuXCAw7LnCYKUM4vA1KmEntfOmGmehkIfwuPum5aghJr8xYhpmSE6lpIM/UjOt1c9Ejjq0pTQ3qU4dXQdhQDbs0zGSVmq28B7c5QnwBSZtaZ8ZUUyYOykxjcv0i2YdkX5PfT5QMwF6hIn9lJthw6jQAOz0zqhKT0XIGvRpm6rVD9TvolBmx3adfdlismi2B6rHNJeTU7H5mAFYJgNoBbAcZZ50ZfwMwfV3rmdGEmUykRJ6zab5Jx/Niq8zQr+fg8YPg5v1HCmNuTXmPapI1MhMgzIRERn0P/o0TkDSIBlWT6Pvl9cf1e6JJZrzPIWVg7nK2TU7YUUrN9uqPfmQmqMrYXayyO1SAZIZec5UY2RClviqax+gddDiyAfNT977f/ddpsdBk0BW0o9inWJkJ3QBslndVBm2bmk1VlDaL1GxnCEmvzDiXM7BYNbsvPDPK3xOHVMCQyhLIBmitGTVslE6YCScW+jTtJ+9aeWZ8VkePOpnpVJQZee2j0Aab/uj3BOxnAFZBC+d1KzPO0K9z3xZmei6al9OgCgtddd5XmekyJ6XoYMPJo0hmWJnJEI5KrcpyBqqa0ZFumIlMYvgU66fMtBk8MzSbSVVvjKtm+xTN8yMzg8qLYGdTe/I4ea6QgufnyTGzPUjSWjPqzeybzaQhM0hydapYev3KHGaiq5f3FfwWu6Op5Qj5VUQxzOTVFL/TTMf/hb4ZVO/QM1NW1H19cS9qf7LKDDT0sdqmdnjkvfVQ29wOe9SUwdypwwITL2twnClroMo+9htcD8up3HbB0x9vhs27W2FgWRF8adpwqC4rCuSZ6XnYiJ8yw2QmQzgqtXb6hZkyz2bSh5m6PFbMdisz8kkwSGp2utlMvzllP7jsqUVirRqcvF5dtt3xutegmujFMZKmwrr9L/nBw0wFeQ7fQ1AyUxSj1GzdeVFg38HMtC5NNpN8He8V27TQbMLrKVfeA6ahPqhnBlFelA87UnVmCn2LWHrBRLrfXLlT/Ejgd33S9JGQDXBNm+zBsVArGVukovd/8zfAr/+5KrV9bW0zXPGFvQN5ZmzVmyiSGQ4zhWwApoOhesE7Qqozo2YvqU/n9Ame1qegEypdKBLDIX6p2aZT9bs5Jg2rhKfPPQhuO3lf7ZNrOgtNZgP0LNTvoiADz4ztPvwqS5uUmSiEaPyUGQQ2QXZj+f06/GYRUWe8/DvyfqXrSmUacpUZTfhwIa+l/F7k+k5zSQaUF5AA2ZzDkq0NkC30Zkirv4HOHzQTTt5/7yorln+6rcGl6Fh5ZiyINN6uptIZfQVWZjKEs1Krs2aGOsbLFNvU65bzUKvv2kxmZcY0oVJC1K3M2IUI0slmkk+ZupvEy0Dcm7cKvTQq8UgnzITtSudJnX7eVpmRCzn2FWyrkEoyoIaZ5D5sMnaioMzgit/0YSBILRgV0jMjSi4kH0rk93L55yfC12eOgrED9anipocLPw9FXXN32DcbiOADe86APvzSgot4byUSCfhki5Ok7kpe5yB1ZhC2nDxqK2f3/egRc9AQBA5I9AnTL5uJutO9QM26OgOwl4dGtzYTDTPhJuzgpmJJssOaOm6QbCYdKbC1GWR7sqYDhUrQ/M6x0KDM0O8+qCxrWwEYX+rrQcUvzCRDqvJ+kG2jDwJ9pTCpT5deCpEMC+tIF/btdMJkdFKqT3ogJJnBPj9uUHmg/dos3IremWyBlZleUmbI2ma4fUNdS6r/ZEpmvB7e6D0btVATk5kMQS+uGu7p8MtmSmvVbA2ZUcNMJIXXlFHTlEwZlr4F04Qtn7rDyGbS1WKxJSnZ1h0cpfYDmi8LLOrMZEZmzAbgKPhm6PpEJohFWKUyo6Rm92WYSf3uvOpnyPtXR2aoxyndWjOyGGY6Ck8QTwQagrOFqE1wOeuZKXLeO4s373a9v6G1U6g2Ts+MrQFYDzqm9fVDlAomMxmCPglRU22YqdlOtcd9nBYPZcYYZkrK5PQpMJ0wU7orQQfN/sh2FGVIRXHq9z2SBfpsIZQt5QRVtSboEyv9LM1WiBqZwXbZkJluZQa0qdl9WQVYkvqe87AIM2kWUE2XgFAyk0lWVJDJSj6xZwOszPSBZ6azCxYRMkPHecx4CjPM5HhAi4jPTYLJTIYoIAOPGkf3zWZKQ5lBNCQrqqZeT/omdO93kBky4UpCJAdOc9E8mZoNGZMZ94Qfne73nYP3EAsAoux/5TGTAn1WJ8uqGWJB73s15V+9rnlZJjONbc4+ZksGTKDVsWVfowNjX4WZmpR2mp426b2s80KlW29JR2Yy8VrZKETomckW6UhnfsOxiBWdoGEmosx0Of0ynxk/0EFc6YNCmGGmqFUBjs5sElPQwUMd2NUb27WcgeX9qz6R7251TyC0VoepAjAdIxPK60YDsM9Ck0GydAaQJQICKzNZDjQNLC+GZ8+bAy987zMwflB5oM/qSFm3KTj9lFWq+MlBjF5XutxC2GTmttdXwJG/+Rfc9+81vu9VibWXMtMTZgJ3mElT3bhvlBn9d0n7PxJNte+mS0B0mVGZ1ICxUWbwllb9FWEhaD//aGM9HHv3v+EbD73f52t0xcsAXOC4/5ds6VZmRg4ocYxfSGZW7uhe6BUxmCjQaYWZMvABZhtMZjIEHXiaAoaZ0lVmdmsmEBpaopObwzOjGehk5zQWzUuy7zDCTHsoWRlBPtsbyTr4XdF6M7bQfXc44RVkEmZypPx3uUhtJalYbGPADYI/vb9BkN17/uVPZmiICZeasFFmtGGmPnrKU8mMSZlxGMTz81xG23RDQ1plJsuemWyGmoL284v+8pFQtFftbILnFm3JyjnlZtG8nj6yvaE1FRXAKumoMFMVbv76OvF7ZUkB7DWkwvc4Xg+ojgxEJjO5BTqIuTwzifA9MyYSRCc0I5nRMAJ5/n6eGfOq2fZdCDMzHJ/NwurXfQHdV4CTnTPMFEI2EyG1tGJxX9aacZAZMoiqwP4ju3Gkw0wWi/nhfaSSl3TVFH2YKf37wiabCbErSybgoGEm2n90D2kMf2WGfoflRQWOh4oPN9SnstdmjK62UtLZM9NP4SxE5x1mUgty2brBbQZ6SmBs6sxAwDCTsWheAEIyTlVmAkwAUaY9xjATJTOBs5nsw0x9SWZomEkNI1KIpT6UbKaiCISZml3KjH+YSRRJVPpu+mRGo5ZmFGayu1PU9GzMxHxxyVbYXN8CfVUBOAoVoKMMOl/QcR2zlqiqR5WZ10jF9QPGVIMNbMNM7JnJ5TCTMjCqN7b6dG5z46Ox1yaMYPTMWJIZkwG4PcPlDCgwNEJjtlELM6ULU5iJcpygY7y/MhMNMuMMM5mVGexH8ivoUWb6PszUaBtmSqhhJtUzE16YKdueGR2ZufPNVfCT55bA+f+3ICMvRCbGYlOtK4YuNZsqMz0PFCUKmcF1moKSGc8wE3tm+qcy4wozqeEiixtfrGtjcR7UM+PMZirwJA/y6dgYZvJZaDKox4SqM8EWSYzuQKcL36np2oGVGWWZDJWkVlJlJouqhl/J8kaizFSXmZUZSsjlfEtDIn212GSzEmYypWa7PDMKeQmiMmY3zJSXVpjp/+ZvFP9vrG/NyE+TyQSXQbP7dTYTfYguLnCSGRp+mjy8yuo4XpeB9s2o1Znh5QwyBH2KUlOzVQLgNgCb94shqf/3149h9c5mq/OgEx2tO0PXZtIrM8nUbMNYnKozY+i4tD6LDcYNKoMPkoY0HDhzQZnRSfs4uVHyGErRPBpmIgbgbGaB4PX3Mrc2kIF0gIcyQwl2am0mR5gpRgZgXANJuWGio8yYzwNfklwtW1WAM5nfOMzkDflQ002m87XqYnFhvvahYr9RVdZKuNcldBcCjc41YzKTIbBj5Rk6gN9Ck16S7JMLN8O7a3ZZn4djZe20PDPpFc2zSfWjGFtjv84MRXRuGcswk6LMBB3jtQtNOshMdgzAqhKDx/SaXBstPTNUeUlVAI7Acga2qdn03sWvQ1VAikJMzc5kjSqv8xhSWQJbkmEHL/XFhhxv3d0Kd729GqYOr3Rs5zBT9iAfjnFscJYE6bkH8Z6qKi1yzUnTRtipMgivS6iupxal4E50ziTGMD25uhaaDJCa/UmyboAtWokqZPLMaMNMfp6Z5MBmOtegZGZ0tX113UlDe9IIRwb4XDZw/zdmwOETB2tf0313uqrAmS402doLqdlqlMWvho2tZ8YRZspzh5n6Ks3TtmieO8wUlgE4ZGXGgxAMrSy2ymaioTY0eP/5w42wVFnE8OcvLBWp1De/uiI8MpP2J/sH5EONqC5O5hyHMlPQrQirDxZTLENMCC9jA1VT2TOTgzANPpkoM7aVVSXouj3GCsAeYSbTvOtXATgomRkTQJm57ktTYExNKcweWw0n7jsC+hLTRw2AW06aBnsTguUl7WOfyGBO8g0zOchMiH4TNZzop5hQ82GNIm/Tr4WSmZ4wU17kwkzGonkJJcykKjOhVgBOnwQXeKRmo5dC7pqGmdRxiF7zO95YCTe9shzO/NN8h8ftvbV61TiTrsjKTBBlxhxm0pVJmBqSMkNtC+yZyUGYnobcBmD71Gy1AJ8f2kyeGVtlJj/NMFO5+Wlch72GVogbCxdGu+SICb51aZ4858Csr5gdBKoKg3/lZ0OZ0WQzSTKD14pOgl6EAwk17sr2O1Svs58yQ9NC1afBsuKC1Ov0HGVfi0KdGTU12/S0SZOtdAZg+sSaaWp2JsqMl78Jv2+c5HY2tUNtU5vZN0QYyVMfbU59L+vrWnyLrmWWmp32R/sF5PzRXRogT1seoUSSGXIvIomlqlxGYaZcUma2bNkCF198MRx00EFw2GGHwfXXXw+trd1x2DfffBNOPPFEmD59uvj/jTfe8NzX7NmzYfLkyY6fxsZG8dpLL73keg2PG0WYMhnwWlMPgis1O0NlBis6+tWZcSxnkBfcMyOyqUgpehWDyoMpM3ic+07bH/5yzoHwzVljfN8fJSKjI33076MnDUmpVbj95OkjU69ddezegY5DBw15PeX/mMngjl27gSXOv3jPO3BegHRblWD7h5moZ6bIlUHhZQDW1dLp69Rs22ymbBqAM6szk+9JkAcmHz7QMyPHJtdab4b+ZKM+ZRJmitjcGDnIe6TQywBckO96yMDQfpBx1CvMlDPZTNj5kVAMGDAAHnnkEairq4Mrr7wS8vPz4bTTToMLL7wQLrnkEjjqqKPg5ZdfhgsuuABeeOEFGDNmjJYU7d69W7yvtLTHD1Fe3l0ldvny5XDkkUfCNddck3qtpKQEogivmxyvt7z+rtRsj85gkx6Jk4fstHTSkb93rw+U5xsOQXiNU9hpdeeK7D+d0ut4THVpg7hAJTNUQfnJMZPgkD0Hwew9asTfo6pL4cFvzoCWvHyYOdy/jDgFTb2USptMv8cBq5iEaEyemUv+ukg8hePPK59ug2P2GeZ7XFfIIYBnRlVmaNo+7Z8pZcaiDb2dmm0aoDvI96IaMINU3rXyzGRiAPZZJFCm7WJoEvsVHp9mpHnV/PFaUVwiE4Etak/6UYPsm6oyqKv4vpEUPxw5IJjf0IuPUhLVGbGieYHIzMqVK+HDDz+Et99+G4YM6X4KRXJz4403whFHHAGnnnoqnHXWWWL72WefDXfffTcsXLhQS2ZWrFgBQ4cOhbFjx2qPha9PmjRJvCfq8JJ2cXIoSObiuFKzk3++8MlW2NbQCqfOHC06I5JGmXXghcHlxbCxrsWYzaRmReiUmZLkhOIVEhHVWzUdfFBAv0wuQA3VUXKDPpYTFG/PfqMGwJAhVbB9+27PQUIFLYolyUwLua42IZrtjT2hhB2W5evV8cnXM5Mk0xXFBa7wiCMUpjEAO9vQVwbg9CoAh2UAxrGDpkwjSjLwzHilZqMSVkGKLSIRxWtEM9K8qjHbhAIzU2aYzHhB9kHVM0NRnOyHh00YDC9/uk38/pk9e1bRtoHXVaBzimnpj1iQGSQW9913X4rISDQ0NMCcOXPED6K9vR2eeuopaGtrEyEnHVB52XPPPY3HQjJzyCGHQBygK2dPO6Ac010G4K4E/Hv1Tvjp35eknmy/vN9IsaKtzUrIgyt6ZP2nP9oCJ0wbIWLi8gneRWY8PDNe5ju6SKDz+P2PzHgpM2GCXjtpvJSTiZvM+A8qtlMtVSCsPDNJZQPJjPrdUGWGPtWnDMAWobLeNwB3n2d9Szss2dIAB4ytEddYrTPjXpspvX6A8n95caFjXaLMFpr0CDMV5InrJIEkButE0ZCEV9Vvm2uUCSFhZcY2zOSsYUVRnOw7Fxw2HtbvahYJF8dPHR5aoUydly+WZAbDS+iTkejq6oKHH34YDj744NS2NWvWwNy5c6GzsxMuu+wyrSojyUpzczOcfvrpsGrVKpgyZYoIWSHBwS8Tt7311ltwzz33iH0dd9xxQgUqLrafQHVig9wWphXDayATZYXy9J4Z/Pv211c6zHYnTR8JWxvsisnRgnW46uy5jy2Ax8+eBa3JARknPdpO3VNbcfI9Xg+W+LSqG2gGlhWFXswuG9cnTKiDCP7tda7ptgcnTLx+SCZa2rvE5yWxKCnCMJOTCPjtX9RDygs+kCGBUttA9yOVGVSlijzIjGoAxn044+/+bQgbeDx9anZC3EsrdzTB2XPGwgWH7emYpPE+UpUYeR+lg+OmDIU/f7gpFbr9zPiBae0LP+MXZqJkBiuW42ca291VkMV25buhfcEE/J7S/R5wPPTqa3FGGO1xhJlIiJaiJNkPxw4sg4fPOCCt45g4Ct6ujsrkXelfay+ku8+MspluvvlmWLx4MTzxxBOpbYMGDRJ/z58/H2644QYYN24cHHvssdqQFXpuLr30UqisrIR7771XhKiee+45sR2JDhKX22+/HdavXw/XXnsttLS0wFVXXWV9foMHV6X1WlCUkTRZFdUDK1JpckVE4kUUlxSJAVNiv7E1IiSxcHvPNi98buoIeHrRlpSEj4SmuLIsNXHgeeH+JGoGuNMpBw4oE++p2Wo+5oCaCm0HHzGw3LH/MBHm9QkT5YrJtaiwwOo7SKc9SAaQwLQnEjBwUGVKNagoLYLhQ3qKleVbnENVVanVebYWKn20rNj1OdkWJLgy6666ohiGDnW+b2BlT6y+gPT9srIisc9hZK7ML3T21d6Cy2iPZKC0JHVfPvjuOvj5ydOhorbHg1BVUQItyv1Qbfn96nDzaQfARV9ogqb2Dhg/uMIRYgxTmcHzpqnbBfLaFu10vK+0okRsb9jenYwhUVbh38aiku5rmw7KyrqPG4dxIF1k0h5JqEtLCmDksAHa9wwdXJnxfZRveDgvwKUSBpQ5PDNRuj6FmRCZhx56CG677TbhbZGoqqqCqVOnih9UX1C50ZGZ+++/X4SjKiq6jZG33HILHH744fDaa6/BCSecAO+++y5UV1cLGRZVG1SBLr/8crjiiiugoMDuZt+xw+1TQNaHF0D3Wtrw2NG27buhPUlmdjc6FZcFa5yDSKKjU3grPl1vV/m3pgDg0TMPgFPufy+1bfPWemhNTjBI3nF/Es1NbsWnraVNvKehwbxa7pZt9VqzVzEkHPsPA1m5PiGik6yBhcjz+Q4yaY8MJTW2dMCmLd1LQCAKEglo3N2zzEV9Y6vvdcBrb3Ottu9yLp+xo7Yp9Tm1LY6U0Pw8qK91Tn4FiZ4+U7e7p3+1t3WIfTraYHl+YQLbo6Zmt7R2QO1OZ4E4PK+dtT1kv7WlHTrU8FRre0bnj2kP5YV50FDXBM6jB2uPl2emo60DCglR2rStAbZXl8DmHc7rtrO2UbRl9aZ6x/btye1eaGrqHk/SAfYRU1+LOzJtDyqm8mEm0ZmAZnLvUDQ39HyH6aLTEFrOV+YQtB9k4/rI76pXyAxmGD366KOC0EiismzZMqGoYLq1xMSJE2HevHnafaDqQkNGmKmEISnMckLU1HRnhNB9YQo4HgPVHxvgl2z6or1eCwov38Sf3t8gDnT2nD1chqn31vVMUHLBQDwnLBVug8riQpEVdPx+I+G5j7planySlx4KLHBE26gzABcl3+Nl/cDz0tky0OOTrYEmzOuTbc+MzXmm0x6Z0dTS0elY9wsXD1UXafTbtyhvngCYt6YW3li+A047YLSQolWo4xiajuW+sTbQy2+tgWP2GgyTh1XC7pYeMlNZXOAykZtq4eD7cJ/0vsGieX1xvXWeGfU08LycyxloPDOW/SDb8Mqqwvu/glwTJKMqKaX9Cb17apVxvzZ2l3JI79x1n43qOJAu0m0PvS/xvqELCKsPQIkMvy9jmAmzY5XFc6N0fQI7ze6880547LHH4NZbb4Xjjz8+tR0VFQwB0Zj7okWLYMIEd2E0fM/RRx8NTz75ZGpbU1OT8Nvg+7FeDZqJMdQk8cknnwiCY0tkojKAPPDOWnjg3XXw4LtrfVfJxgEfJwx8vw3kYoPUP6EroORFuvzqzHiZQL3K1/fHbKawIcMN6JlRl6iwqTNDgSuI4eBzwRMfweMfboSL/vKRXQVgctwzHp4P//vvNfDtP34g/qYpvRXFhW4DcJEhNVtjAF6wsR7eXLEj9IwW/G5e/XQbrNnpDqPisdSV7tG7oyv8Rj1jeK+opv9MCt2FCS9lBs+xgtSm2tHYBv/4ZCss2+ZUZmR/qm+2qz9DEeT6qf4sv/GxP8NV5yg/T1vbqNjgpQkC01UQZCbCBuBAdyCGje666y4499xzYdasWbBt27bUDxbJw/8xXLR69WpRh+bpp5+G888/X3wWM5vwdTTzYugIU7l/85vfiHASqjo//OEPYcSIESLUNHPmTKHUIDlCbw0W37vpppvgu9/9LkQRXgOIxEPz1vmmsqH7/Ow/zbc+riyaRyc2mpmgZkV4LWfgNSerA75ETcDqv7kAr6J5YUMqMzhoUAVBZDORa2uT+YZZSpT0bEim9KtQJxSvCYym9OIkqX4VTgOwczBG0MF4W0MbXPrUInjl0+0QJh5+bz386JlP4PSHP3D1YySJKlCZ0Q3S7tTscLKZwoYXqcIJEDOnJH79z1Vw1d+XwFsrd+ozutSUbSsyY3+uat0azmYyg5YMkA9UuhpFJSGQalM2E5J4B5npowzEUMJMr7zyiiAjWD8GfyiWLl0qfDDXXXed8MmMHj0a7rjjDpg2bZp4HQ3BZ5xxhtgHhpPQ/1JYWCgynjC1GzOifv/73ws/DBqC5b5OOeUU4avBonxRJTM2T2V43/oxWVRlbO9nnOik2Y9ObDTFU5UiPVOzPZQZDHOoGFFVAgeOdYYC+wPUUJ1XWn6moIMVpgpLdKdmkxCNxaCCRNrmSUqdULyIEi2Yh1kyapVRB5lxrM1krnR7++sr4AuTw6stdddbq8X/GKb7cEMdfGb8IE+SLgpEagZz3ZNxWFV7w4RXyFtNzTZBElja5xAySzIsZUYtzsd1Zsyg/U8+PKNyW6eEAoszSOuXMF0F7Fp0/IuaMhOIzJx33nnix4QZM2bA448/rn0Nw0ZIeCRQefnxj38sfnTYe++94cEHH4Q4wLbWiN+TB316nTmmGo6bMgyuf2mZ9r1VpNqqKcykypB6ZcZ71Wz1CfbAPWpEqurYmtJQbpy4oVeVGbJuD60IjU9fIr05OfDY1JnBJzubIldB1maifY0ufGmTmm3KvKlQMv7ChHr/6ZYMQWKo44bqQpPqA4xXFlFvwns5g3zhbfKD7CeqZ0YuBuo1iQV5WFeL87EyY4bDs5Ucq2kYN0xSbeKU3at1R3dtJl5oMgTYSsxBmCyu8zPUoygdmn8lHMoMGYBKFWVG65lJftYrt7+ZKDN4I00LsAJrzntmslgIg3qe6oh/obuWRJ64dsLw3WGrzPi/T+U7XvumyoZO8naszaRZNbt7MU5naGLEgOwtWaJOtFTFdFS79gkz4WVR7/lMVrrurbEIn+hpmMlfmdF7ZryUwEyUmag96UdXmcl3PexIhPGA2eUVZoqwMhONx4mYw3ZdFpvJJLXPgvyUwVcH+iRMJz1ZkTWoZ8ZLYaCZNNlUIuIAVzZTFicxWm+kTgkz0acwG2MmThw2g486kbcm963G0fHvVvJkrZrN/bKZJFSFQ64dlA2og7SaxYPA70itgqwPM0XUAOwxFmHGlU2YSXpZ6IMRvYZeal0gMqMw54jNjZFXZtQHiELxcJC98QirxNOHOVZmchC2E1oQJouTQ6WycB9FVWmBQZlxGkUpTKnZvp4Z8gTez7lMnxiAETQ2Lq+3fArPpmdGKiqqYoP7osfVTeYmMkPfmpfGYobpQp1otcqMCDMlvMNMwgAMkTQAF/oqMzZkRu+ZwRIN9HUdgkxwKgmP2uQYJdAQsbzG6rUsCSns7xVmovdu1JQZJjMR8swEUmZomKnATpkpDMEz09+VGfXJtzCvl5SZZi9lxt2vVCWlHRUH5X04caNkjf0SS9fj/lTzq3wKVzMXkHTQSU0XZqETvC7MRBfP7DmePnMuDKj3n47MCKO+ZrJWlRkVUTEAe5EqVJBtyIwkGaq5tN1KmbE/V7U/MpkxQ9f/VBtBcUh90BxmgtzJZmLoYSsxB2Gy2DFl6rWfAdgRZiIDNH2yN0nQco0PT8+MQ5np72QGei/MRA5G/QtyuySrOl+LOjEIZUYZpJBI7NrdCuf/3wLY2tAmCMmhEwZrJza17+J2qqLo7gE68DlSs9OoaRQG1DaoCyyaCJb6WTx/dWFW21BzX4aZZBgCQ000E00FEl8d2ZMhRy/1LEitGJcyw9lMRtD+15Oa7V4fLJtQU7OjRj6ZzPSmATiAhF5SmKd1q+s8MyYDsMrUB1UUOQyXOHnJwndeq2bTwb2/KzOuMFMWyV2ZwTNTbOGZkROPY7FQpf9h+PDlpdsEkeneTwJeXbZdr8y4yBFWmqZhpjzPidWhzHiMudkkM+q+GxTlwescnAZgjQoVQrGy3jAAI8r9yEyy/a5spuT19jKF68zTxuOEFGZ6fdl2UQjy9APHOFLvsQjjfe+sFUtWTBlRCVd+YVJooZjehq7/qZ6ZkpDaZlsBmMNM/doAHCzMpNbtoKApluY6M87zGlpZAj85ZhK8tmy78CrMnTo8RYrUSVmu2Ixgz4xHmKmgD1Kzk/Iy9cxgWIn2F3XCEcZWxYCOJFWdsFTI/ah9F5/eKZmRxOoP35oJf12wCU7Yd7iizLgrAPc1maH3Ci7NIb8LPzLTvep3/JQZeY6ozGzz2AdeW7zn1e9B9gUvw3kQA7Dap9IlM5c/vVj8/5+1u+A/l30utf03b66CVckFQ3ER3sMmDIajQ6xh1OdF84qzE2ZKGCrN4H3Lqdk5DtsJLcjF92PZzjBTT6emT1w62fHEfUeIHxXq/IKhDDmY0TATKzO9p8zQmDglHbJvyP+xW2Hfov1QnYiQ8KiTB3qhqMdKB5NnBic2XZgJ0/Zl6v5GUmXYsZyBRx9SFaWsKjOEzGAWlYnMoNr5/CdbncsZRLUCsMe40aPMeA/7SGReXOKmOzJU6EVmgvi31f2EXTSP+sx0huY4QV0bLJthpkTCI5vJocxEyzMTjceJfmIADnLx/Vg2NQfT9zrrzNhfXp0yozMA93fPTF8VzdMZgKlPRTUBq3/ryvRjZWeTb0QlFzplxmkA9vbM0M/TPnTRYXv2mjKjqlW7SdsHkpRwqkQizn98AaxMPuGnspkimpo9e9xAGF5VLO59rNKtG6f80rP/vboWrnnxUyP58FRmAoWZsmsAVneXxUS5PvLMKGGmgryskpmCiHtmonEHxhy2A5nOWGiCnBy+NmOU+H/voRWO1ysMnhlHNlOAAVZVp2kmDV3OgJUZdTmD3lFmKDmR66/Q66tOMNowkzKaI3HQ1VrR7cdFZoQB2M8zo/9uqD/rjIPGwkvf/wwMT0682SQz6v1H2z6QrDOmngNdiBGv/6ShFZqiedEYSnFc+Nt3D4Lnv3cwTBvpLG4pQwQqmXn0jFni/X5IhZlCqjOjqn1hkw31XKI2+YZNZoqyHWbKd45/2SyjkA6icQfGHOqgPW5gmfZ9ahEqL0iCcvHn9oRfnTQN7vrqdLMyQ8gM7WAlmgqRtsoMvVEcqdn9XJnp3VWz9ddPXlfndVfITKdlmMlHmTFlM2E/awuQzeTYnudesFSqTdlMzVb3LckMEhM6wXsRqsfOmAVDKktc/SAqYSZJWtALp6qoJmVmcEURDDIsGnv7yfu6DcAek1gQvqDuJx2y4fUZ9TVJbl5aug2++b/vw/OfbIE4p2arZKY4pDDT2XP20G7nbKZ+AHUgm71HDaypbc5QmUnWEigqgM9NdKbLepEZ5z7sO7dqaKQhKmdqNvRr9FXRPIqeOjNOjwxmb7y7pha+PXuMpQG409ozo2ZCqcpMcRBlRkOIe8hMFsNMnXoDMNZsosZG3cKqiEP2HAjjB5dr10CKSpjJq2/KcapC8cxUlWKWY3d1V0paMZvysxMGpbanPDOhVQDOPJvJK6nCpMxc+ewn4v+f/X0pzJ0yHOKnzORrPTMlIZGZb84aI/oDhl7v+dfqVLajyGbionm5DfWiDvZYU8kWfiyb1qAxkZZgnhnls+RG4dRsc5G8bIaZSgyp+fJ60wkUC5xd+tQi8fuizbvhe58d71sBGJWZRp8wU09qtlvpcaZm56cVZlL7Kio+OAllw5vlNgB3psz09FxNhIr6ZOgDjFpMLCpQ72k5CaqF82TbsU20j8hsGexvHV2dVtlMQQiJi8ykYQD2XifK++8oY/WOJvjX6p3id6z9pEvNplaAMEOdSIrOPGis+P2+d9Y4s5nIPdAZMQMwk5kQQDNNRMnnEAZiv45J68yYwhFBZEd1gqF+DWqIjOKg3ZtQs1iy+X2oT17qxE+fxLbU92QOfbxpt0aZca+abWMAxv1g2rdfmEnX10xkRheRoW3BY6oDdRigJAUJkwwz4b1EyZiRzJATdxKb6KkyCJUQ9igzZpJM12ErJ+HMpvbOHgNwSBWAwzAAe9XuUvcXtbCICbia+9mPzk/dmw+8sxYuOWKia8xR65AVZ6GGDu1D2OWdFYCj9X1G8y6MGY7dZ1jqIt/1temhhGJ0HfP02WPE//uOrHKoLsUF+sGJpmz7IV9ZJcekzPT7bKZeVGbUcuXuOjNkAvb1zLgJCQ6aOEl5IZEKUemWR+hKzzPjsXp70HCsF9QwAyUp2PYEUTnpdTQdn4aWHMQmQn4ZrwcU0xN96nXlGkpPhgwh9nhmvFKzAygzIZANdeVtzzBTTCoMr9/V7HjIQNV1I3lYMWcz5Yd+LvReFcoMGf+iRg5ZmQkBo6pL4YmzZ4ubfMLgCvh4U31G+zOtfnrh5/aEI/YeIjKbqMfF7JnJCyWbiZcz6KNsJh/FjV5fVWFptfDMbG/sjoX7AfelPoVhlVipzOBZ6Loa9lHcrj7A6T0zdgbcINBlb+kymdB/RgmJmpqtu9Z04o9KJpMt8TZ5HdTxQoajJFGV3194qdmZ15kxZdSgmugKM2nOTS02GQXoyDRVw1JrM/XCcgb55Kvp9szoyy1EAUxmQsKYmrLQJnyTkQv3O33UANd2Uyc2Pdmb9u38rD5DKqLjdk4agHXKWh6ZdKgaoqZYq6EAXTbTjiBkxqXM9BiAsf+ZJgSxkKVyLrowLO3zYZEZ9amd7ne3QmasPDOOMBNVZqJ5U6hdU56nyWdSZFJmiJ/JP5spfTKD/fHaf3wKY2pK4eyD90hrH++t3QVPLtwEp+w/0vVenTKD/dpPWftoYz08+O5acY/tNbQSLvrcnvDQvHXwwbpdon9/df+R8PlJ4VUWpg+PEpRAyr6qep+Ks0Bm6PimZjNFrWgek5kswGudIxsEHRxNnVgtd+0FdVI2hag4Nbv3yAweCwdaSiYpcaAEQE37V5+edXVmbMkM7ksduHBCk4TJazLQ9Rfd/aF6ZrKtzFAyo3pmTGEmk08mqmEmk4o4YkBPMb2JQ7qzs3TtkJOlugaY1/UJVgHY+eZ1u1pg3a7N4vdJwyrhy0OcdXJsQlU3v7pcFDhcvbPJfW6a08Z7y8+e9et/roQPN3Sr7fM31IvwChImiYUb62HO+IGuLLF0oVMGdRW0XanZBeH3Q/qQ61Jm2DOT+8h0wg/aKU3VV4PsR30n7lI3SGdK1OIO9wSR3VtIVdfopE8nVHWFY4yzq2RGfTK1DjO1u5UZ9MuklBkP8q1b6kPXLakSGFatGXWio/ulYTnVM2NSZmhbnJ6Z/Hj01eR5fmHyMDhwjxoYNaAErvvSlNTralVj1TODfQCVl/YshZkocAHUdArv7WzqrpS9LZlO7Di3REKElWzPwXSf0CKKsr+8s7oWwgI1YdNjqP1QVfCLs+GZoQbgPOfDHHtm+gEy7VNB6wXgwIpdjHYtzFgIEgtWBz5k5HhztHc6J5b+rsz0ZphJxsV3t+r7hpdnZqcyAOOgrz5JWZMZzWfxiVaSBa/JXKvMaLbRgTgsA7BuPSmTZ4Y2z+yZ6TlHOqjTkFOUoH7PsrvguWOiguoXUa+jzJahyi9+h62hVQA2v3cDWdcrnYwoHUnBc9MZ2YOep27fbyzfAUeFFGrShpkomUn2Q/X6lmTDM0MNwMLLCZH1zETzkSLmCOqZcRe3CnZZcEBSQ02qBBl84MvTnkdEx+2cDDNpMxYcZMbsmZFPqI7sI2Xw8UvLpgOp+lkMOdiEmXTKjF+YKTQDsGstKhJmIsqVWmfGZHCl7cR7bq8hFdqlRqIC9Z5WH25cK3/7GIBTJDZLC02mRWY09Y/o/45zQ3VSozD6H8Pd91W8vWqn1b5soCPzNgu1FmdFmaG/d68WL48fNWWGyUwWEFS9UOsFpMOwTQORLdT7A8m/LkzV7+vM9GI2k64vOMgM9cwoZKa2SVVm3NlMttB5ZnB/8qk4qDKTTQPw/e+sgR88+RGsq212PbU7spnaFM9MQAMw4raTp8FPj50Elx7ZUwMkSgg6t6mToeqZkSpda4eHATg5wT32wQa46ImPYNm2BuN7vVSRLVSO9IB6jeU+dSZlnHx19ZL8oJIUnSKBtcakrybbnhnTmFOcbQNw8nd5fJsQXW+CyUwWENRGoRKPdGLw6kDktzKuCmTceWqYSXNz9Hcy0+thJsUzQ6+zVzbTDpcy41ZXbAl0i0mZSdczk+9d7ThdA/Dm+hb43dtr4F+rasVk6jYtd//9n7W14n2ObCZHarbBM6Pc2CMGlMKJ+46AAaX6dY3iphCr16rHM5NvXMZCF8pBIv2r11bAO2tq4fuPLzS+10/JsOkHagjISy3Al1whIwuC7+r75Lxmju7JLp231t43g98REu/31+2yCjPROlKmMacky0Xz5EOIPE5YRv2wwGQmAoNIGCl2prTKtOOjxjBT/yYzLmUmy9+HWkvCWSzRS5lpdyszHk+h1aWF3mEm5bPdak33Ni+jua1nJgxlhhI49AO5nto7u6v+XpZc9sGZmh2sAnAuKsTFRs+MU7VSCzRSYJfY1dxhNKJTeKV4I9bu7DbaorcHa3c9u2gz/HPFDgeZCqIOCGUmEVyZ8VrEdb9R1anfV+9sTh1n3ppa2KXcgxTXvrhMEOrvPb7Q9SCiMwA7PTOGMgj52ffM0H6SzXXU0gEbgCMwiKgqSjqVHNUJJagygxAFzkgn1j1x93cy484QybYyo4aZyJpcZJJRB0SV3Og8MxQ1ZUWpBeVU4KClZkJhBV0bJVGvzGjITAgG4CYSOsLz0010WF2VThZTRg6APQeXO1J5TQtNZjtzLWwEPV2VrJVpPTP+yoztEOFHRFZsa4RZwyuEH+WSv/YQUKwh8+Oj9w5sQsU+7AoZWZAhr9DU6JrSVPkE2Yfu+/cauO+dtbDHwDJ4/KzZ2v6OpIz2yX2GVwWuM6MikYUKx7RLyMMW98IK9+kgXndnTBA0fVlVUdJ5AszUAKwaArEJOjKTBSUz3mGmrCszZtWOXh+/p1x8WvSaPKrLzKESJEaqMuMkM2ErM+kNkk1tPe1rbOvUTnR1RDU4YEw1PHvRoeKa0gnC9LQeN2Um6IOHKZuJEk1aX0gHEeZJhENmViZToFUvChaxS+0jgA9Mm81kcd+o3YgSC3yIHJssmIqkBPePRAaxtrZZbOstz0xXFsiMWmeG9gcs2RAl9POpKTsIOuaFYQA2mfeCgE48+Dt98pfo98pMXu96ZsbWlDr+xuqo6WYveMnC1R6+Dyyu51rXqd1WmbHLiAsjzNTUTpSZdjcBQ9S19Ej/U4ZXpq6f7jxVZNvsHTaCnq9bmcl3XV8kMn4VgG3VEj8isSJpHlZXdqdkwiZM5JXN5EeGdG2hJAzHw3GDylPnsknJwrLpy+oRdJ4tm2ymjixkF6lrMzmVmWiRGQ4zRdEzk0aYSZ1Q0gkzUVka1SWtZyZmA3rYUMMm2Z7gvjFrjBjsNte3wtDKEvjW7NFp9xNdLF6iuqzQk8wMrSx2bEPlw+Y8tNlMfhWA08ySaCbnhMqRKetEp3rZXMeoFscLaxyy8czQlHwdkFvYZs35EZGXFm+B8+eMcfQ1cQ7k+EHSofGtQZUZfb0acPSb8YN6lrJZU+usPGzTl1VBpTmAMoNlAWQRvzFkSZ2sFM1TPDPYNhFWdJVc7RswmckCgj6th2EAVj0z6YSZnMqMobIwKzPOv7NMZtDL8l+H7ql9rUijnHnB5AVBX46XGohkZmB5UVphJm2dmSwZgOmkZ/LMUGWGmqttQkixCzMF7JuqJ8iUzeS30KStWuIXZqprbodf/3OVo68hqDIURJlJJ8zkV7JfKDMDe5aEWJM0AWfSl/0NwD3X44YTpsINLy+DqSOqxE/YcCaFdP9fQsltR5dx6ZveBpOZCAwiFSEoM2GEmZyeGb0BuL+nZvd20TwvBO0npsq2WGfFS5nALKHxyqDeSMy2nspMfu/VmaFPtA1IZvyUGTII25h742YADsq91LCyrs5Md5jJfH0SAZQ1rxAPLjGBRR2f+XgLDFNUQUeYqSszMuOnIvm9jmP9OKLMqGtCqUTMKszUYZ+ajSZjrOacLTgNwM4wk7wWUSEz8bo7c3QQcRuA0wgzFYYQZlI6rt4zA/0a6oRWGCcyYyAJOHF4kTKtZ8Y2m0mzXx0noANiSwjKDHojaHYTfdrvOWYwZSbbmWthI6gf1LQ2Ex1b/AzAQcioSRUpK8qHr80YlfpbzbKj+w+Smi3WJwsaZvIhSwWqMlPbHJzMKBdKF2ai592bY06+xgCsktuogMlMBD0zVMZLd2JLK8zkqPaon6T6uzLT20XzvBDUKG4qBodeHC3pyOshM+qk0WgbZtIpM37LGaSZJaFOHFSF0dU9oWEmK89MzPp+0G/RZQBOZTMpnpnOsMiMqZ5PPgypcKoxFDiBSgIQZOXmbmVGv/yBCX77xyESl8MYlAzDrlGUmUaDGkqhEizTfdpzzF4kM/mabKYsLD0SBpjMRMEz41rKPYw6M8EjiHQPpjBTv89m6uXlDLwQVH0zeWYO2XOQts8OqyxJPdHWEkVDHcQ8KwBrSVKWDMDKxEGLt+lSs4OGmeJmAA6ygrXOqyf7RJBsJvkem6q8JlUE+wwSBBPwU1IpDJSajQZgw/IHJvjtX35HMj1bXRPNRplBNednf18CT3+82ajM9NWYU6ALMwUoCdGbYM9MFqAO1lhhdNrIKvGkOGFwOWysa4EP1teFawAuDCE1W0nDY89M36/N5HkuBfnCvGsbljFlM31u4mB49dNtWsVmc3KNHK+1ctQQp+Mc0/LMpFdnRs16oWZfifp+ZAAOWnfEROjotcG+5rfAoPq0jupHQb57PDKpIthnBpQU+h4DSVag1OxEwlX8sd3n3vHbvxzrTSqpLtSp4pp/fCr+f/6TrXDI+IFGb1tfjMEFugrAEVVmmMxkAWpf23/0ALjt5H1Tf//w6cWO1ysUFSWM1GxV7QlKwkQFYE24q99nM0UozISoKCmElg595V4VpkESTYS6OivDqooBNoEvmfFczsDaMxOuAdgqzESOaUNK41ZnJihM15GOLWrNFx1Uco3XUy3+6F2cMB8qPZQZqt4FXs4goDLjV7tFjocmP5VKsP2wbleL78rjfeWZyc8LT0XNBuKlm+ZIKELt97I4VWap2WErM3pZPWYJHaFDHUf6OsMlSKhJR2b2HdmdzukVZkJsMyx1oDOOpqPM4PvkW9MumqcqM0poTFVmqOnYqmhezMJMfgqKbRiNji2YJeYHVVkzTXimEA4qYH7KjAxlBSkUp0/N9vPM2IWZTOOATZjJJhTcV0b0Al3RPLqKeoSWNIjX3RnTMJM6SKivh+GZMa2rEgTsmbFLX9dJr3EgM+oTH3YZucaNjmAMq+ohM17wCjNplRnNsfB7lU986a/N5K/M0LnMEWbKQQNwUDeDiZN6rQGmg0pedOQUDbxeyoyXZ4buM5gy4yZ4fgZfP7Iku4RpHAiqzFDzr4mz9KY6nq/LZnKoqOyZyWmonc2vNkm5GmZKQ5lRY7bpVQBWw0y6tZniNaBnA/gdyEGxr8kM1ogJCjznXx6/jyiEN3lYpfFpT63vkU6YSffEaqrDhEoJ+nrSTfekSyyYPDMUNMxkY+6NW2p2UGXGNLE7lBkbMqNcP5XcbN3dCte82O0TMRqAffr13xdvgYWbdruyh3wXmgy4nEG7tTKTF7oygyFkHSHvTYUwnxqAlbWZopaazWSmD8JM6mDuXs4g+KCpDsbqastprc1kWb21vwGvZ2tEyF06pBWv61GThjq2FWquKxqAbVAUuGieNyHPZpiJgvo4bO45r3BaLtSZMakQ9Pqq2To6qMqaOuE99dEmeGd1rScBxr6AJMoUonrg3XWQTnaXOzU7Q8+ML5nxJ38mZQbvbR2Z6U1OXaCpAKwWzYsK4nV3xgTqmOdazycLYSb1M7Sary3oR0x1ZliY0Tv8+wr49KaGG3G9FhwIcZHKOeNqrNQSrWcGDcAWCJqabfrOMiEzGLZQDcB+aaNUzcRzysuxbCY1c8cPpomdTl47m/zN5ur1U/9WCZGqwuD3jOPXAI+V3NOBUGZUA3BnONlMhSGFmWgf1qmuop/24gNlgW+YiclMTsPlmVEmD3UuobH7dFfNDmOgdSwqxqnZRtCBq6+/j0pFmZk0tBL+dMYseP2iz8KT3zkIDtpjoOszuoFXtw1X0rbpi159z9Yzg+jxzHTCutpm2FTf4qqOagIOqkEXDabqJU4QfvdQ3OrM2H53fu+n6h81gpu+LXWCU5/eqRH9z2fNhjnjnH1UXocByuKn6YyLqgFYJXh+yot1mMnQd9TQpx9oGE+9t8Vxenm8yafWg7xoh5nidXfG1TOjdHT19W7ikJfRoJmOmuO9qJjeM9PXk3cUQL+DqIWZ1AFfN8jqtplIR7WPETOd5Qz8lBl8Gv7KA/+BE++dB5f/zVnGwISgT8B4Xqr3wO++6+trHRRBrZnHTRmWuga/mDtZq5xQooKLoFqRGcUkSl/HBzn1a5fXoVrZ/8AMlRptarZfNpNtanZI2Uy0H6uqa1/0wQJyuFQ2E1VmIhRmYs9Mb4SZLGqT4A3c1tkZWtG8TDsu9lv2zOhByWhfT3CqFK32A21ISXMNtd6W/DxtfZCM68wY+tDo6lL4eNNux7Y3VuwQ6dQDSr0nMr+qqSpUNVQ+EDRCZ86kZh8+cTA8mPSWnD1nrO/7kTw8esYsoYjN3qPG4enDK6ZO60hm1MrQuqd1dcKjnhokTyaPoXrN0bAuizimA+Qltqtmv7x0G9z3zhrfSury1MMKM1FlpiIKykyeJswUUWWGyUyvKDP6MuGmgZTKeNmSlHWgsVhsg3ZtJiYz0fLMKAOeavzWhU60ao3BqGtTfDGwMmP4yi48bE8YXFEMtU3tsGBDHWys7564cPVkPzITdNKgSxlIeIWZ8JWYWWZg2sgBQmHBgoffOGC01WfGDiwTP+qEVpFcxZqiWgkDmZUZM5lBsuzO/tQrM4PK7TxcXsqMzUKT+J4rnv3Eap9+BmD8LpBA2doA6Hds8sz0JvKVDFd17UAmMzkO9cnTlc2kIQS0s6fjfwlSPMpqHQ5MzdZEIWOW0JEV0OvZ18pMhU/1aFt/jL5Sb55YwTiTEKdpvzqMGFAKlxwxUfx+7Yufwt8+2mwt1TcHJDM6/4UXKZOm1Ljhi1OHh7IfDDWpZMYcZur0VmpIxg5eB7U/mDwzNcnFHDMKM6l1ZjSp2R9vqrfep+zfXiQD+2aRgfh5KzN9H2YqJveEVGCjGmbiqSkLUG9OOzKTn5HRLcgaJXaeGX3oipWZiCkzJd6eGd0EbZPNlJfspzbFF4Oumm0TqqSKU2NbB2yub/Gsm2KzOrFNmMmEvq703NfQqQRoELdazsAVZupM9RvsC2ofkf3Jpcxk6JnRr5rt7lP/XLHTep89nhlzn8b+a6ui0wrLlcq93RfjzRF7DRYrgo8fVAazxtZE2gDMykwWoI7t6oSi4yoOBpwWmcm8U6lrMwUxb/YnyO9ATvh9iQqfgou2yoypFlKmYSbXWlaWXxclMw/NWwdvrtwJ+48aAPeetr9WIfFTZnBApinBQcNMcUvLDhu6InYq2bANM8nX5TVQH5Bkf9J5ZjIB8hZ3mMk9br65Yof1PuV94lVQUc1o8hLRHdlMETAAjxtUDs+dN0e0M7VqNteZ6T/INMyUTmYSrnws8d2D9wj8+e7zor/nwYiqUseTPk4wmcatcwHjBpanFmjsa1T6KjPpeWbkW+wMwPaKhi0ZriAkDYkMYsHGeuOCl36hKPTi+Ckznt6fmJl/e4PM1BhCJ+oEZ0rNln3VpGS7spkyJDPdRfO8F5pcW9sMqwJUFZb3iZdyp/ZNL4XRSWb6XpmRfZ/OWc61maJDZliZ6YuFJjUdchAOttsaYUBpYVrse2R1Kdz51f3EzXjCtOGZO9fz8sT6KL85ZT94ffl2wJJiR+49OK0FLHMNlx05AaaOqITPThjU16fiUmZcqdmaQdZGcZN9wU6Z8QozOf+2VbKCVjb2q+eBZGbZtkbPUK5XVlbc1mUKG7qJ1RRm8iual1JmkoTSZABWi+YNLMvQAKxZzkBdSHLxZmc2XaYGYJ053auYoSM1W+uZ6XtSXUKVmbiSmS1btsAvf/lLeOedd6CkpAS++MUvwqWXXip+f/PNN+Hmm2+G1atXw/jx4+Gyyy6Dww8/3Liv2bNnw+7dzo7zwQcfQEVFBbS2tsIvfvELePHFF6G0tBTOOecc8RMXqBODOtjryMz3PjteZKIcu8+wtI2GWHxKLUAVBPS85D0zc0y1+GH0YEhlCZx+oH+qa2TrzFiQGfm3lTJTGL4yYyLNpkUofZUZ5aleH2byUmb6O5kpdPUh0zVqs8xmkn3VXWdGr8zoCFXY2UxBi9z5VQAOqsxQ4heF1GwdomoAtiYzaFq6+OKLYcCAAfDII49AXV0dXHnllZCfnw+nnXYaXHjhhXDJJZfAUUcdBS+//DJccMEF8MILL8CYMWO0pAiJDL4PyYpEeXm3fH/TTTfBxx9/DA899BBs3LgRfvSjH8GoUaPguOOOg3iGmZSlBjSfmTaiCm7+8jToS9Dz6msvCMMO6oBnl83kr9ZI0lFenFk2k0oCrJUZw0KDpidBOgnhIekchU2pUZ7qtQZgD1IWt3WZsh1mQnJjUuRcazORCQ/nEZdnxpTNpCg/mdbS6rJYaJJWJ7ZBoY1nJgCZodA9SETBs1gcdwPwypUr4cMPP4S3334bhgwZIrYhubnxxhvhiCOOgFNPPRXOOusssf3ss8+Gu+++GxYuXKglMytWrIChQ4fC2LHup9umpib485//DPfeey9MmzZN/CxbtkwQqLiQGbVfqxNFdBZN91pUrO9vGoY/VC8Hrjztm81kUQFYko4yC2XG62nxgDHV4glcTmCH7GmnHOpKuXvF6HElZhpS2krK7uN3oNZE0SkzXu3o78oMhpxVEm0KeXiFmejvKWXGYABWlZlMq5zrKwCbqxPbQN4nXuNlkDAThS4UGgVlpiSiBmBrMoPk47777ksRGYmGhgaYM2eO+EG0t7fDU089BW1tbTB9+nTtvpYvXw577rmn9rUlS5ZAR0cHzJw5M7Vt1qxZ8Lvf/Q66urqEEhR1mOomBGXmvQ1nNlOfngojTdCCVoHqzCiDsSQ3NmTG64kZa8dgNsTy7Y0ijDplRBXYwBTCUCcboRj/5WN4Z03PKszDq0odZAbbqy7LEDw1u+8nkSiFmbrJjN13Qic8dSkDLwNw2GszIW9RU7NVz4wpjJlRNpOSmm2tzER0OZnC5KKs2IpWZamKWJAZDC8ddthhqb+RWDz88MNw8MEHp7atWbMG5s6dC52dncIzo1NlpDLT3NwMp59+OqxatQqmTJkiQlZIcLZt2wYDBw6E4uIeWRgJFPpodu3aBYMG9b3p0g+qlF6gMIMQivVmBUMri1Pky2TuY0QbbmXGMjXbtX4YWBmAcXD1Cx3hE7asUWGLCkMZeTVGv3JHk4PIYHsnD6uAj0jhM2yvGrLQFs3zCjP182wmlczg37ZqFQ1FOJcy6O5b7joz3d91Fblmo6pLM1ZmbLKZgoaZrLKZlH3akpmoKjN5yXX7kJjGMsykAs2+ixcvhieeeCK1DYkG/j1//ny44YYbYNy4cXDsscdqQ1bouUHzcGVlpQgpYYjqueeeEySHEhmE/BvVniDQjbFyW29GUbqrh/b8nVACTZmcS5jtOf3AMeJGmzm22iUr9xb64vrkUnuKC519zRRmUs9HVz4A3+NXNA8zgLLRNrUYoAQOnvR4DcpT79VzJ0Nds3Mbfgc15aoyU+C6Np7ZTFlqZ1z62oDSAtf1sZ1XkYDKc6IqDSozuF3nmZHbf33KvvDqp9vhW7PHZKzM4KirW5uJfl9eYSY8H0pE8LSlMlPk45mh1wa9OzbQqYdCFYlAPyyRZIZc27CQ7v4K0yUyaM697bbbYNKkSantVVVVMHXqVPGD6gsqNzoyc//994twFGYuIW655RaR+fTaa6+JzCiVtMi/qVnYBoMHV6X1WtgYMqgChgzpOV6pYkakr6WLMNqD53HLhKEQBfTm9cml9lRWljn6U2Oee0CsKCtx9bmuYqdyUVSUL94zcpf3wn4lRQWh9F8VAwyTSnFZseN4RTtbUr9ffNTe8K1DJ8I/Fm12neMeI5wZeYOry1LXRP4/oKLEeD7lpUVZaWdc+trYVuf1GFxVCjU13eO3L/K7+xJiW3vPRF5T2d0PB1Q6x/WB5NqceOA48YNoJDVY0oaioCA5odc14aH+YMiV1oFBciM/O3BLT9q/irzCAkdfq0/YkbJRw91ZpOVl0eiHpUUFUN/SIchhFM4nLTJzzTXXwKOPPioIjSQqaNBFpQXTrSUmTpwI8+bN0+4DlRaqviCBwZAUZjkdcMABUFtbK3wzhYXdp4ehJyQyGOoKgh07drtCOsj6sEPpXssWGnc3w/btPWnoDY3OCYK+FhR90Z5sgtuTGXbuanT0p931PZO9REd7h6vP1ZPquIi8RHe/bGv2JjPotcmk/3qBGoclttc627eZHjvZrpIup6yfj1poi/MBqbOtXVwTem06PUIMic6urLUzDn2tQ+kHRZCA+jq74nINzW2p727ztp7vMNHRKba3NDuvTUtTm+vaiHMIwWu4WzlWm3Jd6xvM/V1V7lC9lJ9tbnDfZxJ1ja2O9mzf4f+94aF21boJUmdHNPphUVKRwtXqwz4f2Y+DIpBud+edd8Jjjz0Gt956Kxx//PGp7aioXHXVVY41JxYtWgQTJkxw7QPfc/TRR8OTTz7pyGBCvw2+H/0zSGIwc0ri/fffh/322y+w+RdPR/fj9VpYP6pnhr6mGsDDOFa229ObP9ye4Punsjl9TfVrSala3Yfqe8GxCrerWT/DB5S4Sgpkq106vw6SG/oemvaKT864bYiisGDGl8szU1DgujZ+a0z1575WqXiYyg2eJh3QJCr30+JYZLL7GugqpuvagsQ506Qy1eOByxnQY3gZgNUwF55Pz31mPjFcWJO2x4aUiaq7mu30mH35U5xUsPD7zFY/DgrrHolho7vuugvOO+88kV2EaonEiSeeCPfcc48IF33ta18T6dtPP/00/N///V93g9vahHKDnpqCggKRyv2b3/wGRo8eLbbdcccdMGLECBFqwtdPOukkuPrqq+G6666DrVu3wgMPPADXX389xBWu1Ox0rxaDocEp+4+EvyzYJH5XCxymu2q2KTV7xtga+OaMUfDJlt0i44guoxE20JdR2+xUjFSlpqmty5UBhQXyZLaFbK+aGaJdzsDjYam/G4DVuj8VxeiZSccA3EM+zUXzzN81Gk+bCSGyAe0Lav9BXoGhJtn/vQzALjJD7hkvA7B6TBsDcLc3ppu80ezxqJQIKE5+F7FczuCVV14RWUpYPwZ/KJYuXSp8MEg+0CeDJAUJCtaIQaAh+IwzzhD7wHDS5ZdfLtQXzHjC1G7MiPr9738viAziiiuuEGTmzDPPFAbhiy66CI455hiIK9QnvohmZjNiigsP21MspDhxSAWMqXGuF6UzTeqeIo1F8xQyg0+M00ZWwVTLFOtMUKF5+lefnFHmlpDEC89xIFlYEidHtao2LzQZDKLib1FBKjMHs5lsjZrG1GxDnRmvjB1UBIKSGZl5o54LVWcK8rv7g7cy4+wz9DQ9lZmOTnh20RbY2Lgevr7fcGsyI/fbSdhMFFKz6biCKhMlg7EgM6jI4I8JM2bMgMcff1z7GtagQcJDPTI//vGPxY8OZWVlohgf/uQCVNZu62ZnMGyAE8t5h4zXvoYThuo90T1Fule3TiozSjZTb65RpKs1I5/yV2xvFOuQoQkx9X5CvLBwniQzOh4StAJwFFJi+xq4nIAkM6jMVFiGmmjfU8NMNnW5KNLJaMJr12ookoegYR8vpcFbmTGf85KtDfDe893z38YdjUJJ9YPcd7f6lYhcPywm14iSwb5E/9ZOewlqB6RkJiJ9k5GjQEVCXTFaJ1Wr/VBOMKrpsTdXj8YJUwVONrtbOuDsP82HHz69GB55f72W/NDqsQ2t7tCBTlXwChX09zATgpZrQAK95+ByOGKvwVBWlO9Z2ZmGmVClUAmlqc6MDuksaUD3pwsj4WTs9ToCbwPT+mV+4R/a/1ChCarM6LZHan2mjmiEmnjV7D4OM6W7qCSDYYshFcWwsa7Fc0BU4/NSmVH7Z2+GW0xk5s2VO1KhBjoxUBVpICEzuxTfjdyPCq86M1GZRKKyPpO8NrieHJKBZz7eDP9a1VO8kIKGdlpCCDMFBb2ubRplhqo1pjATkniTr8zvnFXYGoB1+41KPyyJ4JIG/LjRC1A74In7Dk/9fsnh7owvBiNMuJQZ04BIBmfTnOGlXoSNCk0YA5/sTedPw0w1hMxIE/HXZ45KbZs6vCrQU38UPAFRqgJMs5tQ+fAyA5vXZjKFmcK9DlRNpCpMaluXPgzm2Ee+O5PK1gCsIhNlJir9sJh8p6zM9COoHX2f4VVwy5enQW1TG3xpWg+xYTCyAczuoTCRAdwsBXHT5FTY58pMwpLMuIe27x86HkbXlME+wypdixhG6ak3qhhe1Z3yjl/T4OTSJxIqIaGgJlEaxkkpMwHUh3T8htTnpVNeqDIjw2C4llcd8WMhwXL7yuzOOZ02xCnM1BYRZYbJTC9ANwEcvlf2UloZDAq3Z0b/FJlnMTn1pndEZwDGycYk09MwU41SZRtRUVwI3zhgdFohjO6l9fo3vj17jAjZzRhdLUKXFF6rRlOTqCPMVOS9arYOyjqRVqD706kiUq3B12QYaoCLzLjXIHOEmQKQfJu5P0VmAoTgehMl5DuNyvpMTGZ6AVHpgIz+CeswE31PBLxcam0TKWnrQgE4l1BvxDBFObCB10KTEfg6+hyY9n/DCVO1r/lFWfC6YQl8Z5jJVGfG/GV3pqPM+BANqczQc0Plbt0up8/MtLK8+D0vO56Z/KiGmQqjF2Ziz0wvoDczQBiMdMkMNfuaJqfefAor0UxCKGnT2jJUlaHnf+iEQTC2pnvNn//54mSr43kZgKMxhUQXfpO5DEXoVs0OEkpJp+Con5oolRla0K9aqRitDTNZZjOlQ8jkd+A2AEdjLinhMFP/RD+vt8XoYwyxJTMGCR0neSm/9+bApUk8EU+BOjKjK+736JmzYXtjK4yudhYSNMGrAjArM97wqwYsn96xtH8mYSZdn8hUmZFKCVX8sAAj3ifyNSQuahvpeQfyzAQxAHuoQZEhMx3RqJsWDZqXg6DmRU6/ZkRJmTENiLSb0sGZTi69qczoBn18steZONVlF+SAa0tk/MJMrM14w8sATMmMfjmDAAbgruwpM47qxEXdxSZT+8AwU765zTrFJC+DbKaCiBuAhyfN4NJfFAVE4yxyEPd9YwY89sEGOGby0L4+FUY/By51YKfM5BmUmXxoTOY59SaZGTOwzF6Z0ZiFg8IrzBSROSS26nNKmXHUmSkIbgDOMJvJyzNDiZasnN2YXMi0MI1sJuyT8vPphpmimpr9hclDYXNzBxR1dcG+I7O/tIkNmMxkCXsNqYCrjpnU16fBYLgmB2M2ExknKZmhMr2uTke2cMj4gfDFqcNgxfYmWLq1IUWmdAZgnTITFBxmyl6YSRJQ53IGepOrtwEYwldmNGEmNCvTzxXpwkw+npkKDZkRay0FCDOp3CUqykxpUQFcMXcKbN++O+1VrsMGh5kYjH4GmwGRjv99FWbC8Owv5u4DD59+AOyRVGmyqcwUFbIBOFthJlnSX9ZxQcKSTiiFEgFc7FT1SqXlmdEYgFGZoR+j5ytByQ3+rp62rk8W2pKZiFcAjiKYzDAY/Qym9WfogycduOlk0FeZC/IpHidDGwNwOvAslc/SjCd0fIF6Thrbumu2SL8TfU0tA+DlMaTZTOMGlsHz3zsY/vCtmRl6ZpKp2YpqpHpi/My4KtEo11Swxn3kQpgpimAyw2D0M9BiYCbPDJ1QvjVrTOr3bxy0B/QF5OSHWVWm1OxM4TXp8RQSPMyEVXQlmpLhFumZkX4Z8dkAs9A5B/f0v+OnDhfqBy50mVmdGXfaOIZRKHnBX1Ue4UdudMpM0DCTizBxaqwR7JlhMPoBZo2thvfX1Ynf96jRZ/g4xmby9HjCviOgqb1TDKzHTRsBO3d2+1d6E/RJvl5DxsJQZrwmPZ5C0iAzZUWwtaFN/C69I1IVpNcziNrw1f1HCSUFM2jmjB9o5dfx8kI5PTPOMBNVZtB47AozKbvtzmjqIUQVmj6Jb7Hx/RhTs1khNILJDIPRD/A/c/eBa178FMbWlMFB42q073FwGfI7DuLfnDWm++m0j2RuOvnVaVbBDkOZ8QozDUmjonB/go4v0MU+m5JhppQyQ9SUIBM0Vp4986Cxjm1+n/cLM6XqzHgoM3JtKa/jusNM7j6J+7HzzJiUGQ6mmMBkhsHoBxhWVQK/OWU/6/dHJUNBrRaL2NWcHWVGnYyO3WcovLO6VtTUOHHfERnvP5ehIxS0ii4qM+h3kWSGXs9MfSB+YSprAzBRZoRnhnwM1RRfz4xyHN1Cqagq2YWZ9DV4WJkxg8kMg8Fw+WQixmUcNWAw5JWN1GzVeDpleBX8/LjJguRw4ct0wkw900tDW6fwO8l+lW6YSQd/Zcb9Oh5ScgqpzKhF8+h5YbE+VZVU22xjAEbiFGjVbPUY7JkxgjUrBoMh4LTMRIvOUMOoDuXF4Q9lOJlhiIKJjD904Uf0zFADsEzLdpGZDL/fvDTCTLQ/derCTIUFDjKDGUgqj/DLZtIpM6jw2NRqMhqAOZvJCCYzDAZDIMpzNp38dAgjzKSC02DtoRMMqGemsbVDqf7bcz0z9WH5iRU6LxT17HToDMBFGGby9sy4C9rlW9U+slll2uiZ4T5pBJMZBoPhQsSEGV8yE4YBWAUr+iGmZrejMuOu/qurMxP42D4TvI6U0uPrDMD4ukOZwTCTT1hJDQGZyIyugrUKVmaCg8kMg8EQoIN1Guv5ZRWYxeIFVmb6FjpCgeEdeV0aW81kJtO8d6/UbOQXuutIw0wdsmieGmYiH8P7wasCcPex/MNM6nECG4C5TxrBZIbBYMQ+zBSGAVgFTxz20PlecD2jipIkmWlzhploNlOmbnMvzw2SLL/qxB1d7mwm1QAswkzKcfLTVWaId8jfAKzfznCDyQyDwdAgESsykw0ixmTGHrqvCpUZqU5gajYlM9THUlVaCFUl3SGp46cND35sj67RvWaSd5jJZAB2eGYS7mwmv3WTKjTZTNZhJoNnhvukGZyazWAwBOgwGbUwEzWM6jCssiT0Y3JND3voJlmckGV6MmYzUUWihBbNy8+D//32TPhwQx0cufeQ4Mf2DDPlaUNgegOw2TOjrQCcRtE8+zCTITU7yNoP/QxMZhgMhkCUU5B1nhmc+AaWFcGBe9Q40oAZvQ+d+oH1XaQyg3RhF6ncrJLTMTVl4ifsfotzf6GfZ6YrAU9/tBk+2lSfOm8kLtNGVMFbK3eKbTNGV1ukZivZTIbQJ01RN4ENwMHBZIbBYLgQMWHG6bFIYs/B5fD9z47P2jFtVjdmdEM3x+LkTk2wtU3tdiuUh5h1VmARZnp/3S54dtEWl//q9APHwoKN9cJL84PPTYCXP93mnZpNTgRJiCk0SsNZJrABODiYzDAYDAE6TkataJ5uYijzCT1liqQvlBGCMoPYSciMnwcq0LE9Jvhuz4x7Oz3+pvpWx2vH7jMs9R66BEiQtZkKvchMAM+Mny+H0QMOwDEYDE0FYIgUSjRP8tnIYKJgZcYegyqKYRhZjBNJzB4Dyxwm2J2N3Stoh05m/LKZtJ4Zfd85Z85Y+OFRe2lf81ubif6N7zW1MUiYyZX+zWTGCFZmGAyGC1GbxnUTAzVxZgO4Hg/DDjj5/uFbM+HtlTsBdYc542oEkaEm2FrimQmTzCBQyEiWi3Ft1xmETccfN6jceAzVe+uV3YTKCv5N14AKFmZiz0xQMJlhMBjuhSYjpkroMkOyrczYLAjI6MHQyhI4afpIx7beCDNJYtGpYTMizKQ1AOuP70UWXMTCI8yEBArvJ2xnsxJWsslmKmDPTGBwmInBYAjQsTlq0/j4QeWuCdAUKggLLMxkjopk/Zhshpm8Qk3dRfPsw0y6RSkl3EXzwJjNJD0vOqMzLc5nAntmgoPJDIPBEIjyMImp2fuOrHJsK8tymInnjcxRYQwzFfTKtepezsC93USm0LRsgm+dGZrNlHxNdxxdOMy6zkyIWWC5Bv5mGAyGJswEkcMBY6qzHma6/ktTxP9Ykfa4KcGr0TLMZMa4NlM2lRlDarZp3SQv5cN3oUnFM5OJepgyALsyqNLaXb8Ae2YYDIbAeZ8ZB1f9fYn4/RsHjIaoYaZCZmjhs7Bw9OShIgtnaGWxsYIrwx6m79Bv4dCgMHlJTNlMlSWFQolMBAgzqWTGK9PIS5mxgc4AjL9HubBlX4PJDIPBEPjCPkNFNVScaA4aVwNRw34jB/RKNtOkYZVZ2W9/RIVhfSK/5SnCUmZMRfOQZKF60q7EfLyUGfU1dzaTnWfGBjKcRMNM7JfxBpMZBoMhgIN+Ogv99RZUyb7SMFEyogNTOCf8MJN5u06ZwfNCcuAiM17KjPKSu2gehK7M0I8zmfEGe2YYDEZscPtX9oWasiL48r4joKac12OKOnqLzJjCTLhd5zMRyoxm0cYir9RsV1jJ+TrdnzyfsMNMDDP40YbBYMQGn91zELz4/YPZOxAToDdFhzDXZkKYeoOpzgwuAqlTOjxTs/2WMyCsSRKbQycMgn+vrvU9f9Ox6DFZmfEGkxkGgxErMJGJD1CZwEkYvVjq9l4xAOfp68xUFBdqPxMkm8mzAnCyeafOHA2H7DkIlm9vhMv/tti3Heq+6DGZzHiDw0wMBoPByBrxxDR3lciETUiNBuB8/UKUZUnPTCZ1ZrzWaiogCs+YmrLANZF6PDMcZrIFkxkGg8FgZA2VJQVZDTEFVWakWkTDQjYGYPXtBV7ZTC5zcH562UwcZrIGkxkGg8Fg9JpvJuwQk2c2U3KxR50pWavMeIWZXBWAweyZUZiPl+JjWwGYlRlvMJlhMBgMRtagCzOFDXOdGTcJkIX8dGqJTq3p2ZdPBWBKPJT3ehmLbbOZgqo7/Q387TAYDAYj5sqMR5hJJTPJekU6paPIgzC4lRmPbCaFFAUNEXFqdnAwmWEwGAxGzJUZ/XYkACrp8AozeSkzhQGymTJWZrgCcGAwmWEwGAxGrJUZY9E8nTKTrBytkgPkMSaFR7vooxeZyc/MMyPfzsqMPZjMMBgMBiNrqCot6Lswk6YCcMozo4aCfNQTlUu4s5tINpMH0bGBTF3nbCZ7MJlhMBgMRtagrqFVkoXVzr0MwOprPQbgYOqJS8lRCUuBlzKT3lTLZMYeTGYYDAaDkTVUlRb2Qp0ZsDYA93hmnB/yyxZyVQD2yG7KVJmR4DCTPQL3qi1btsDFF18MBx10EBx22GFw/fXXQ2trq3jtzTffhBNPPBGmT58u/n/jjTes9vn888/D5MmTHdteeuklsY3+4HEZDAaDEWPPTMBquDbI8wozWWYz+SkzLs+MB5mxUWaGVRZDcfKY+LsO9JRYmQlxbaZEIiEIxYABA+CRRx6Buro6uPLKKyE/Px9OO+00uPDCC+GSSy6Bo446Cl5++WW44IIL4IUXXoAxY8YY91lfXw+//OUvXduXL18ORx55JFxzzTWpbSUlJUFOl8FgMBgRqwBcmg0DsCmbKUiYyYcsqNlMKmEZVF6s/V3sW3OCA8uL4X++uA8s39YI7V0JuOONle7zZ2XGGoF61cqVK+HDDz8Uaszee+8Ns2fPFuTm2Wefhc2bN8Opp54KZ511FowdOxbOPvtsKC8vh4ULF3ru86abbhLvV7FixQqYNGkSDB06NPWDJIrBYDAY8UFfFs3rXs4ArFKzfQ3A+d5KzZ6Dy+F7nx0Hx00ZBl/eb4Rz3xoigptmja2Brx8wGqoUwifBRfOypMwgobjvvvtgyJAhju0NDQ0wZ84c8YNob2+Hp556Ctra2kTIyYR58+aJn5/85Cdw3nnnucjMIYccEuT0GAwGgxFxMpMNz4xuMUm5Pd+Umh2wsJ17oUn3e75z8DhjGAzVmfbOntXDbRaRdC5n4Hl6/R6ByAwqI+iTkejq6oKHH34YDj744NS2NWvWwNy5c6GzsxMuu+wyY4gJic5Pf/pT+NnPfgZFRUWucNaqVavgrbfegnvuuUfs67jjjhMqUHGxPraog46sy20hL9raZ+D2RBu51J5caguC29M3BuDSIlw1O9y2qP6V1HaNZ6aipEDs153N5H1ebiUnz/r8uo+XD+2dnY5zk59X9y23jx1YBnsMLIO1tc1w6IRBkbm2eVnsa+nuMxCZUXHzzTfD4sWL4YknnkhtGzRokPh7/vz5cMMNN8C4cePg2GOPdX32t7/9LUybNg0OPfRQePfddx2vbdy4EZqbmwVxuf3222H9+vVw7bXXQktLC1x11VXW5zd4cFVar8UR3J5oI5fak0ttQXB7sotBXQnn39VlMGRIVahtKVMIk0RFWbHrWCOHVIltFeVOD2ZpSaHnebV2dDrPbVCldTsQqMw0t+uPV1O92/Feut+XLjsctta3wthB5RA1DI5QXyvMhMg89NBDcNtttwlvi0RVVRVMnTpV/GCoCJUblcx8+umn8Pjjj8Mzzzyj3ffo0aMFwamurhby3JQpU4QKdPnll8MVV1wBBQV2dQp27NgNiYSb9eEF0L0WR3B7oo1cak8utQXB7ekbdLR2wPbtzsk707Z0tDuJhkRba7vrWB3NrWJbR1uH85hdXZ7n1amQsvq6JthuWTIH21OseIW6OnqO19zYnREsoZ5HmWZbrva1vOS+e4XMYIbRo48+KgiNJCrLli0T2U1oCpaYOHGi8MSoePHFF8V7v/CFL4i/MYyEmDlzJvziF78Qad01NTWOz+C+MAUcP4fqjw3wSzZ90V6vxRHcnmgjl9qTS21BcHt6F5iObHt+tm0xpmbnuY9VVlQgtukMwF7HUo+QD/bt0KVno5dHfl61zET5+kW1rwUmM3feeSc89thjcOuttwofi8Rrr70GTz75pKgZIzvWokWLYMKECa59fPvb34YTTjgh9feCBQuE6oKm4cGDB4t6Nf/93/8Nr7/+OpSVIScF+OSTTwTBsSUyDAaDwYgeslEB2JSarctyqkgzNRvnNTyO9PAGTS5SyQzXjQkXgS4Hho3uuusuOPfcc2HWrFmwbdu21A+qKfj/LbfcAqtXrxZ1aJ5++mk4//zzU4ZffB1VGCQl6KWRP8OHDxfvwd8rKyuFQoM1ZdAfg+ngWHwPU7i/+93vhtx8BoPBYPQmsjGFG5cz0Mxw6WYzieN4rIztB/V49Jyjom7EGYGUmVdeeUWQkbvvvlv8UCxduhTuv/9+uO6664RPBn0vd9xxhzD5ItAQfMYZZ4h9eBXRQyChkfs65ZRToKKiQhTlYzLDYDAY8UZrZ1fvpWZrCEdZsgKxSkZs1k/q3l8irSJ2ako6/TxzmV4mM1gLRq0HQzFjxgxh7NUBa9Ag4bF9DYvyPfjgg0FOj8FgMBgRR0cWyIwxzKQhHNIGoSolfssZiM/k54G06gYlMypZomSKyUzm4DI8DAaDwcgqZozuqd4+Lgspxl6rZpvgXmgyL9BxTMc0QSVLDm7DcaaMwWSGwWAwGFkFrkE0Z1wNfHPWaDhgTHWvLmeAuOnEqbD/qAHif4mgyxl07w/S9sy4lBkOM4WKjIrmMRgMBoPhh5EDSuHOr5qXtskUpswiSRiO3HuI+KEIms1E96f+bgO1zkxQMsTwBiszDAaDwYg1/JQZHVzZTBbKDCUwQTOrVfLkUGZYmskYTGYYDAaDEWuYVA4vwuHKZrJRZshngtaJmTC00vE3rrkkMZOE3r4+c1Sg/TK6wWEmBoPBYMQaNGupJ3naOxSUTjYTPY4pHdyEiz+/N5TnA2xvaINR1aXw5f1GpF4bXFEM93x9Oizb2ggn7NuznWEPJjMMBoPBiDUor0BvSmtHl3+YyZXNZBFmIrsLms1UXV4EZx401hhSOmBMjfhhpAcOMzEYDAYj1qDhH6qweJMZ1TNjbwAOav5lZB9MZhgMBoMRa9CFJmmlXS9PryubyboCsHf9GkbfgMkMg8FgMGINykMoSfFSZlR1xcbQu9eQCvH/xOT/jOiAPTMMBoPBiDUoaRleVQpbG9rE70Mri0M1AP/wqL1gzviBMGfcwIzOlxE+mMwwGAwGI2c8M4dNHAQHjqsRYYeDxw8yfsZdNM8/UFFdVgQncrZRJMFkhsFgMBixBuUh6Jk5e84evp9xZTOxESbWYM8Mg8FgMGINxwKQlplGrmwmzlCKNZjMMBgMBiNnyIytwFKQRjYTI7rgq8dgMBiMWCM/jWJ27tRsVmbiDCYzDAaDwYg1HAtA2oaZ1IUmOcwUazCZYTAYDEasQdWYQmtlxjn9cZgp3uCrx2AwGIwcMgDbfYYNwLkFJjMMBoPBiDVmjB4g/kc+Mn1UtdVn3Gsz8XQYZ3CdGQaDwWDEGpOGVcKT5xwovDOjqkvTy2ZiZSbWYDLDYDAYjNhj7MCyQO9PZ6FJRnTBV4/BYDAY/Q6czZRbYDLDYDAYjH4HdzYTk5k4g8kMg8FgMPod2ACcW+Crx2AwGIx+BzWqxGGmeIPJDIPBYDD6HfKU4nocZoo3mMwwGAwGo9+jyLbaHiOS4KvHYDAYjH4PNbuJES8wmWEwGAxGv4ftatuMaILJDIPBYDAYjFiDyQyDwWAwGIxYg8kMg8FgMBiMWIPJDIPBYDD6JW49aRrsP2oAXP+lKX19KowMwQtNMhgMBqNf4rCJg8UPI/5gZYbBYDAYDEaswWSGwWAwGAxGrMFkhsFgMBgMRqzBZIbBYDAYDEaswWSGwWAwGAxGrMFkhsFgMBgMRqzBZIbBYDAYDEaswWSGwWAwGAxGrMFkhsFgMBgMRqzBZIbBYDAYDEaswWSGwWAwGAxGrMFkhsFgMBgMRqzBZIbBYDAYDEaskdOrZuflmbfpXosjuD3RRi61J5faguD2RBe51BYEt8ce6e4zL5FIJNL7KIPBYDAYDEbfg8NMDAaDwWAwYg0mMwwGg8FgMGINJjMMBoPBYDBiDSYzDAaDwWAwYg0mMwwGg8FgMGINJjMMBoPBYDBiDSYzDAaDwWAwYg0mMwwGg8FgMGINJjMMBoPBYDBijUiRmS1btsDFF18MBx10EBx22GFw/fXXQ2tra+r1N998E0488USYPn26+P+NN96w2u/dd98NP/7xjx3b6urq4L//+79Tx/rVr34FXV1dvvt677334KijjnJtf/bZZ+Hoo4+G/fffHy644ALYuXNnpNvz+uuvw5e//GWYOXMmnHDCCfDKK6/Euj1PP/00HHvsseLYp512GixcuDDW7ZFYv369uEbvvvuuY/sf/vAHsR987corr4TVq1dHti3f//73YfLkyY6f1157zdiW5ubmXr02jY2NcNVVV8HBBx8Mn/vc5+D3v/+95z7WrVsHZ511FsyYMQO++MUvwltvveV4/V//+hd86UtfEn3tjDPOgPnz50e2LRJr1qwRx1ehtgXbHuVr8+GHH4r7H/sSjgd//vOfY90ev2PHrT0Su3fvFuf25JNPgt84bY1ERNDV1ZU49dRTE9/97ncTn376aeI///lP4gtf+ELihhtuEK+vXr06MX369MSDDz6YWLt2beKBBx5ITJs2LbFu3TrP/T7zzDOJKVOmJH70ox85tl9yySWJ008/XRzr3//+d+Kzn/2s2LcXlixZkjjkkEMSRx55pGP7ggULxLn99a9/TXzyySeJb3/724lzzz03su3Bc8RjPfTQQ+I8Hn74YfE3bo9je/Bc9t1338RTTz0ljo3ndNBBByUaGhpi2R6K73znO4lJkyYl3nnnndS2F154ITFr1qzEq6++Kto2d+5c0S+j2hY8l7/97W+JrVu3pn5aW1u1bfniF7+YuPrqq3v92hxzzDGJ9957TxwL72/cp2mcOuGEExKXXXZZYvny5Ynf/e53if333z+xYcMG8Tr+P2PGjMT9998vzv3iiy8W5xrFtkhs3Lgxceyxx4p+RqG25Qc/+EHi+OOPT3zta1+LZHuwX82ePTvxq1/9KrFq1arEs88+m9hvv/0Sr732Wizb43fsuLWH4qc//anob3/5y19S23Tj9HnnnZewRWTIDA4M2Lht27Y5vsBDDz1U/I6D+bXXXuv4zIEHHph47rnntPtrb29P/OxnPxOdGb9s9SIccMABYgCVuP766z2/uEcffVR0HBzIVDJz+eWXO/aPgwO2Jartufnmm8UkSXHOOeckbr311li25+9//3virrvuSv29e/duca54c8SxPRJIAE477TQXmfnmN7+Z+PWvf+14H76HDkhRaQuSFhwEV65cqX1dbYskpr11bXbs2CGOhaRMAveDBE2Hf/3rX2IcaGxsTG0788wzU224/fbbxSAssWjRIrH/f/zjH5FrC+Kll15KHHzwwWJcU8mM2pampiZB3KJ6bf70pz8ljjvuONekeemll8ayPX7Hjlt7JCTBwvdRMqMbpydPnixIlw0iE2YaOnQo3HfffTBkyBDH9oaGBvH/nDlz4Cc/+Yn4vb29XciHbW1tWmkU0dTUBEuXLoXHH39cSI4qampqRGhCStoovU2ZMiX1OkrhVAL75z//CTfeeKOQl1UsWLAAZs+enfp75MiR4ufcc8+NZHtOPvlkESbQSX9xbM/cuXNFKAPR0tIiwhaDBw+GiRMnxrI9iNraWrj55pvhf/7nfxz76ezshI8++sjRnkMPPRTy8/Nh27ZtkWvLypUrIS8vD8aOHevaj64tGLrp6OiAK664oleuDYbxEChr0/PH71K+9vnPfx5+85vfpPrS1KlToby8PPX+WbNmifCGfJ22Z8yYMTBp0iRYtWpV5Noiw80/+MEPUudAobalrKxMXOevfOUrkbw2MqSiQp5b3Nrjd+y4tQeBx/rpT38KP/vZz6C4uBgodOP0qFGjxHYbFEJEMGDAANEZJTAG//DDD4tYnBrbxckLB8LLLrtMDBam/T322GPG4/385z+HH/7wh3DAAQeIYx1yyCFw4YUXpl7HOHhVVVXq77vuukv8r8b4EFu3boVhw4a5yBkO+lFsj5zkJZYtWwb//ve/Raw5ju2RwDacc845qDbCLbfcAhUVFbFtzw033CBI59577+3YT319vYh/0/YMGjQIBg4cCJs3b45cW5DMVFZWivfPmzcPRowYARdddBEcfvjh2rYUFhaKtgwfPjy1LZvtQdKLQFI2fvx48fumTZtShBL3+cQTT0BJSYnYhgO12pdwH/K7V1/HY+P91hvXJmhbENdee634X/VkmdqK16W0tDT1d5Tag3/T4+zYsQOee+450d/i2B6/Y8exPb/73e/EwwA+gKnQjdP03vJDZJQZFfhUunjxYrjkkksc23Hgxi8ImR0yvn/84x9p7R+flPbdd1949NFH4c477xQT+r333uuY7Gin8AKqASrLxL+RhUa9PWiwwpsdJyZpbI5re3DiR7KJ5jc0qsmn5bi1B01977//PvzXf/2Xaz/YFnn+pvZEqS1IZvCccfBC5RVJDKpoqMjYtCXb7Rk9erRQg375y1/Crl27xASBbZJPrvI4khijGuV1vn6vR6ktfvBrS5Tbg30LxzVUKL7+9a/Huj2mY8etPcuXLxfECFVXHWzG6VgoMxR4AR566CG47bbbhERLgU98yOzwZ8WKFYJ1oms9CDDzA0NGKLFKJogd4+qrrxahB3w6DAJknuoXjn+j7Bfl9mzfvh3OPvtsoWT8+te/FqGKOLcHBy78QakVpUm8cfBmi1N78IbGAQbVDx35lE85pvZEqS0IJGSnn346VFdXi7/32WcfWLRokZCt5QDbl9cGcdNNNwkCjE+vuM9LL71UZCChoqT7/nHgVs9XXitTX8Mn3Ki1xQ9ebUFEtT2YYYP9Dvvqn/70p1Rfimt7TMeOU3sSiYTIesL3qiEwCb9xOnbKzDXXXAMPPviguBD0y8WnP0yLpkD5FuWsoECmilI2lbTwouJNgGmnQYHSHhIDCvwbn1Cj2h6UBr/1rW+JzvK///u/gkHHtT2Yho0TpOnYcWoPtgXTK/Gmxxi1jFMjUUCSg6ExvOlpe9BjghMspjVGqS0IJMiSyEhMmDBB9D+vtvTWtUGMGzcO/va3v8Hbb78tfg488EBx3hivV2HqS/L7ML2OSlTU2uKHvr5v0mkPekO+853viPPAiVyGP+LYHr9jx6k9GzduFCQHH4TkuIbb8KHtu9/9rm97YkdmUKLCp+lbb70Vjj/+eMdrWJcCmR0yPAmcwHBgDAocePDiYUxVAuVwNPXRSd0WaIDCsIAExg3xR6oDUWsPmrqwA2GnQ0ZO/QlxbA/KpXhOFPTYcWoPGvFefPFFeOqpp1I/0tuARk28Zvvtt5+jPTKchrWCotQWBIb7VFl5yZIl4timtqC6g8pPb1wb9BSgzwpNjhifR1kbj40ETfe0jH0JjyVDZAg8f2mCVPsaqlbYJiQzUWuLH3RtQTKL1zuK1wbfj94tNJ/+8Y9/dPnN4tYev2PHqT3Dhw93jWs4luBDG4apvMZpajCOBZlBqQtNtvgEitkBGH+TPwgs7oO/o7ET5cNHHnlEZFScf/75gY+FoQdko2hKRKaKxkSUy7797W+LzAsEHosOWF74xje+IdgpOsNxoMb9IkPFc4xie+655x5Yu3atYMnyNfyR2Uxxaw/GxN955x3xJIbHxpAZKhwy8yxO7cFwBT7t0B85GEjD3Te/+U24//774eWXXxbtxEJzOLBErS0ym+GZZ54RgxeaDvGBBQcsfL+uLRiuwidJ9OD0RnuQUOF3joX/cF94Hr/97W/he9/7nsNXhsoTAguRYZYFEjRsPxYJw/P+6le/Kl4/5ZRT4IMPPhDb8XX0baB/4LzzzotcW/ygtgXbjE/JeD2jeG3woQaNzEj8MdQiz0uGBePWHr9jx6k9hYWFrnENt+GYJh+mdeP0EUccoc2E1CIREdxzzz2p2h/qj8T8+fNFQSAsrIOFwl5++WWrfWPuulorY9OmTYkLL7xQ5NgffvjhosZKW1tb6nW1oI8EblPrzMjtuB+sQXHBBReIGgBRbY8skKX+0H3GqT0IrHvypS99SdRD+MpXvpJ4//33HfuLW3so1Doz8n75zGc+IwrOYXuj3JbHH39c1KjA+jEnn3xyYt68eca2XHHFFYnf/va3vdoeLLZ2/vnni75x1FFHJZ544gnH63i/01o4WHjsW9/6lmgPFil7++23He9//fXXRXvx3I4++uhIt0UC+5daZ0ZtC9bTufHGGyPbHqyVpTsvWoslTu2xOXbc2qO+po556ji9c+fOhC3y8J/AlIzBYDAYDAYjIohMmInBYDAYDAYjHTCZYTAYDAaDEWswmWEwGAwGgxFrMJlhMBgMBoMRazCZYTAYDAaDEWswmWEwGAwGgxFrMJlhMBgMBoMRazCZYTAYDAaDEWswmWEwGAwGgxFrMJlhMBgMBoMRazCZYTAYDAaDEWswmWEwGAwGgwFxxv8H06Kr40oGzBYAAAAASUVORK5CYII="
},
"metadata": {},
"output_type": "display_data"
@@ -919,7 +919,7 @@
"[[-2.31598881e-01 -6.57158630e-01 2.06947596e-01]\n",
" [-5.03325247e-02 1.00419656e+00 7.25101257e-04]\n",
" [-8.36276655e-01 2.82292796e-01 1.04725353e+00]]\n",
- "[ 9.18732571 11.00840123 91.40767015]\n"
+ "[ 6.27697777 9.18971239 69.07482423]\n"
]
},
{
@@ -927,13 +927,13 @@
"text/plain": [
""
],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQV0W9fShUeSZVtmDDMzt2nTtCmkzEwpM+NffH2F98rMr5Qypk3KTSGFNNCmYWbmmFm24F/76M7V0bXQli3ZPt9aXhZZunB0ffaZmT0mt9vtJoVCoVAoFAqFQqFQKBRRxxz9t1QoFAqFQqFQKBQKhUIBlOhWKBQKhUKhUCgUCoWiiVCiW6FQKBQKhUKhUCgUiiZCiW6FQqFQKBQKhUKhUCiaCCW6FQqFQqFQKBQKhUKhaCKU6FYoFAqFQqFQKBQKhaKJUKJboVAoFAqFQqFQKBSKJkKJboVCoVAoFAqFQqFQKJoIJboVCoVCERXcbje1VGK97bH+/KbYtnjeJ4VCoVAomhMluhUKhUKhc9ddd1H//v0D/kyfPl287oILLhA/zJQpU+jxxx+PyjY8+eSTtP/++9OIESPoyy+/9PuaYNuIn6eeeirsz5sxYwbdeeed+v2///5bvAd+NzW1tbX0yCOP0DfffBOV9zv88MPFOQyGw+Ggd955h0499VRxjEeOHCluT548WWxPY7etrKyM7rjjDpo/fz5FiwULFtDVV19NY8eOpSFDhtChhx5K99xzD23bto1aEtu3b9fH6Keffur3NeXl5TR06NCojUGMB4yLpv4bhUKhUAQmIchzCoVCoWiD5Ofn00svveT3uR49eojf999/v8/jr776qhDKjWXt2rX05ptv0llnnUUnn3wy9erVK+BrzzjjDDrzzDP9Pte+ffuwPxMCVGbw4MFCEPXp04eamr1799K7775Ljz76KDUX9913H/3000905ZVXCgHrcrmEQH7uueeEuH355ZcbtW2rVq2ir776ik4//fSobO/cuXPp8ssvpyOPPJIefvhhSk9Pp61bt4pFAowBLPh069aNWhJms1ksYJ199tn1nvv55599Fj8UCoVC0fJRoluhUCgUPiQmJooIaDCaSpCWlJSI38cffzyNGTMm6Gs7dOgQcjsbQlpaWpO8bzywc+dOmjZtGj300ENiYYM5+OCDKScnR0S2ly5dSsOGDaN44X//+5/YHiwKMIh4T5gwQQjxt99+u94iULwzatQoEcUuKioSx13mu+++o4EDB4rFC4VCoVC0DlR6uUKhUCgiRk4vRxrqjh07hJhDSixSaAPx/fff02mnnSZSmg866CD697//TaWlpeK5F198UX/Piy66KGrprd9++y2ddNJJQrgdcMABdPvtt9OePXv0/Zg3b5744XReY3o5tuuYY44REcgTTjhBpP4iCr9o0SJavHixiLbjvfEcorIyv/zyC5133nlifxFVxvt8+OGH4jkcpyOOOELcvvvuu332F5HnSZMm0fDhw0UGAdLfIdBkVq9eTZdccol478MOO4y+/vrrkMeioKBA1Fojum3kxBNPpFtvvZUyMjKCbhsiyziHWJjAfuNY/PDDD+I5HLMLL7xQ3MZvuQQBxwJ/h+OHc//f//6Xqqqqwt5mI+3ataN//etf4r0YbOezzz4rFg/2228/Ic6R6s6LOeHsA7Nx40a6/vrrxfHHe1111VW0YcMG/Xm73U5PPPGEEP84tzh+GN/hgMUCRLsxpmSKi4vpr7/+EotORjZv3kw33nij2F9sN44tMhNk8F3C+eJtRqmGv3Pd0HOhUCgUioahRLdCoVAo/Nb9Gn8CGWMhFR0p6RAfSMuGGPLHK6+8IkQdBMMLL7xA1113Hf34449CPNTU1AjxChEO8DtQijsDMeFvO/HDQJRAdB111FH0xhtvCEECUXPbbbeJ5xEhHTRokPjBtiO13B+7d++mxx57TNQVP//886JuGQII+4PtRko2js8tt9wi9gX8/vvvYh/xnth3iPeuXbuKKPOSJUvEceJ9vOaaa/Tb//zzD1188cWUnJwsoruoXcaiAEQsvzcWDSDKUf8LYXXTTTeJOnZeTAjEgAEDqGPHjiJl/MEHH6SZM2dSRUWFeA4RVwhLlBAE2jYsGODcTJw4kV577TXxmciMwEIGjhH2VT6HHIFGXTiOBcoFcKwgZrFIcO2114Y0XEP9NhY4ME4+//xznzpuHHtsi8xHH31ECxcuFPuI8/zHH3+I/eLPCbUPfHyR+g2h+8ADD4hjDPGPxSAIeLwX9ueTTz4RCx8or8DiB85/IB8CGSxsQOyyRwKD70OnTp3qZRqsX79eiGQshmChAdtsMpnE9mBs8PcBafjYXyzSYLziOBgXAhpzLhQKhULRMFR6uUKhUCh8QNTan/iEgEEdsBEIVogWiLZAadmIwEGYIKWZRRno168fnX/++fTFF1+I35y2jt9432BAyOLHH4g4Y3sguiFesd3YRpCVlUXLli0TAgOfg3RyECylvLq6WgjIQw45RBdBTz/9tKgxRl0xQKQQQnzTpk0iPRivgUHZvffeq78PhBmir4gII4qN1wHUJPP+4n179uwpBKHFYhGP4bWIfvJxQh260+mk119/XU9Pxt/IKeP+wDHA32AhAuIUP4i44nwfe+yx4r1xvPA6f9sGwXvZZZcJgcZ07txZCEIca2yjfA7xg+MMkYgUdtngDuIeiwsQiRDWgcCCAhYXILhZYKK0AIs8+Htj3T/2BynnqP0GOD4QmX/++ac4f+HsA44v6qrxPlhQ4gWLc889VyyYJCQkiPdDVP24444Tz2P/ME6wj8h6wGuCgeONBRU5xRyp5fx+Mlj0wDl577339PGKY4bPQbQdxwYLKCgNwOISj9MDDzzQJ0uhsedCoVAoFA1DiW6FQqFQ+ACRAYFsBEKnoSANGyIGIkEGddsQPBBTEHyRAIEZSGQikgiQYgthhM89+uijhVAbP368+N2QOlwmLy9PF8MMxDxAFBwg6ggqKyuFEIf5F8Q+CGSUBdEGUQdRCIHEUXtEyHv37k2zZ88WxwniEIsEcj0wtgVR0lBgoQPRWGzLrFmzxAIAIsm4D/GGSLCxzphhZ3TsI9Kvt2zZoqfhB9onvA4RZESb5SwEnBsISOwThJ78HMCCA6K5EJvIDrjhhhuEKESmAj4TmQlTp06lZ555RmQyMBCZLLj5PgQwMgggRsPZBz6+LLh5/P/222/iNkeaMY7k7cZnIWq8bt06fdEiEIi0w9QOKeaIqsO4DmUFWJQylhLg+4ESAhbcAPuEBQJEqzHG8LdWq1UIaiYlJUVsI/Y9knOhUCgUiuiiRLdCoVAofIDIQa1nNOG6bRarMngMkcxIQQp0qO1EZBmRXUQuEbXEbXwe0sTleuNwkAUPY7PZAr4ewgnRcdTPQqB1795dN4cLlMYLIYg0YUQr8WMkKSlJP55dunSp97wsEkOBY4cfpI9D7MMNHGn/+Fy5hZoMFg4gCpFJAIGHKDMiwMH2ieupkc6OHyMQm3INOYP0cESf5X1DVgFnFkB8/9///Z9I/4aARYTbn3M9Hs/OztbHYDj7gG32d3zlfcJr5YUY4z6FEt0YT1gEYBdz/EZmQN++feu1CsO2B/ruYDtQIoDXYOEHYy3QmAjnXCgUCoUi+ijRrVAoFIomJzMzU/xGXawxHXjfvn0ikttUIPLHqb8QakjRhXEUIsNN6dKNGmFEFiH4If6xmIFt+OyzzwL+TWpqqhBNSPX1Z6bFIh8iEsfSiNEwzAh6qSNaa6wlxvsiBRutxJAW7w8sBiBNH0IVEXGISkRb8Xq0CAsEZx0gpd1fWzmMDSyg4D1lIHoR9ceiAGqqZcM0AFM8ZARAnMOALDc3VzyO2zJIw8djiN6Huw+IlBujzQBCHduF5xFFxljyBxZYwgGp5Fg4wGeh9trfOedj5O9847vD4wE/2E/sL5clGMdEOOdCoVAoFNFHGakpFAqFotFwlDEQELgQnXASl0FKLNpYBYoYNhaITPSLRjQQwhIpuhzFxeeGs+0NBSnKSHtGDTfXk6PuFrCjtCyOOPqJ+mmIdY5E4wfRTxixcQQUghMp4bJxGoSjbDLmD9R9I9Xdn8s2UpQR6UT6ub9tg6DD3yLSjG3imuVQ+4RFFghiRLPlfUJEGvXrK1eu1LMr5B+ISNQaY6EC4tafCze2B5FcOR0e2yOnus+YMUOkUqO+Odx9QEYCBL8svAsLC3WjMghW1PBjXMnbjD7zSPc2psoHAuMR+/7BBx+IEoxAohvp31gsYdM7AHGNGnB8Lt4D+4fPRWYFg+OAlPFIzoVCoVAooo+KdCsUCoWi0SCChgk7ak8RPYYZlwzSXhFhhCBBlBFiAxN/OIEjpRaGY5GC2lQIFX9AYKPtF8Qp0spRx4u2YXV1dfTmm2+K7cFzvO0QsIhihjJviwQcBzhFw6QM9cBwkkZ6OyLZEJKAa4/x2ajZxuIEHNFxrGBch22GuELqN0Qgm3/BtRqRWkR6UeuM16B2Hcc2GKeccorYJkQ6IeBR74v9h0s3hC3O26WXXhpw21B/j5pv7A/+DmZiHO017hPc2xE5Reo2XL2R0g1BjnOPNHqY4GHRIJBjPMDfY5EEafpovYYafmRFoBwBtdBoU8f11cyuXbtEdBxu77iNmm9kOmDxA4SzD8g0QN07RDbqn3Fc4XOAv0FrMOwjhDDOB35wfGBihvR87nkeDlxzjXGB8RIo4wMO41gYwD5xpB5CHYssGM8Aoht+BXA3xwIB9hP7hYUDzgLA8W/ouVAoFApFw1GiW6FQKBSNBkINvZEhAiFyuXZZBuIQNagQCzDBgvBF3+qbb75ZiI9Igeg0piQzEHpIF4aggSiDaIVwgTgbPXq0ECNsfAZjsuXLl9MVV1whUpUDtTyLFLRs+s9//iN+AKK2qKOF0RYi/BzZRsspHA9EUBGVhHB66623hGM13NAhsCCGcFzZYR1R4I8//li4p2NBAWnpEIih+kQjIor3xv4jxRyRUrQhwz7DBAxilQWav22DOOPPxHthwQRiFOce+4Q6eUTlYVwHYQtBi+wGtPbCNkIg4v1wvpHdgHMTqrTgnHPOEena2GYIaKRL470gUt99911dTDOIFkNM87jCgg6EJhPOPqCtGpzdkdbOr8PnYGGDU7AhlLFoBJd5iFxEi3G8kKYfCUgxx7nw51rO4Jhie7D/aHuHcYz9xzGRv2sYMzimEP/oI473xEIFov1MY86FQqFQKBqGya2aMioUCoVCoWgFYOEAqd9Y8FAoFAqFIl5QNd0KhUKhUCgUCoVCoVA0EUp0KxQKhUKhUCgUCoVC0USo9HKFQqFQKBQKhUKhUCiaCBXpVigUCoVCoVAoFAqFoolQoluhUCgUCoVCoVAoFIomQoluhUKhUCgUCoVCoVAomggluhUKhUKhUCgUCoVCoWgilOhWKBQKhUKhUCgUCoWiiUigNkZhYTnFs1+7yUSUm5se99upiA/UeFFEghovikhQ40URCWq8KCJBjRdFaxkvvG2haHOiGycq3k5WS95ORXygxosiEtR4UUSCGi+KSFDjRREJarwo2sp4UenlCoVCoVAoFAqFQqFQNBFKdCsUCoVCoVAoFAqFQtFEKNGtUCgUCoVCoVAoFApFE9HmarqD4Xa7yeGoi3kxfk1NDdXV1bbYmgVFcCyWBDKb1XqXQqFQKBQKhULRFlCiWwNiu7BwN7ndrlhvChUVmcnliv12KJoOmy2NMjJyyIRVFoVCoVAoFAqFQtFqUaJbi3CXlhaJ6GNmZj6ZTLGNQlosJnI6VZi7tY612lo7VVQUi/uZmbmx3iSFQqFQKBQKhULR2kV3bW0tnXbaaXTffffR2LFj/b5m5cqVdP/999PatWupT58+9OCDD9KQIUOi8vkul5Pq6mooMzOPEhOTKdYkJJjJ4VCR7tZKYmKS+A3hnZ6erVLNFQqFQqFQKBSKVkzMZ/t2u51uvfVWWrduXcDXVFVV0ZVXXkljxoyhqVOn0siRI+mqq64Sj0cDTuVGra1C0ZzC2+l0xHpTFAqFQqFQKBQKRWsV3evXr6ezzjqLtm7dGvR133//PSUlJdEdd9xBvXv3pnvvvZdSU1Np+vTpUd0eVV+raC7UWFMoFAqFQqFQKNoGMRXd8+bNE+nkn376adDXLVmyhEaPHq0LFfweNWoULV68uJm2VKFQKBQKhUKhUCgUisiJaT71eeedF9br9u3bJ+q4ZXJzc4OmpAfCX4CxpQYdx48fI35//vm31KFDB5/nvvzyc3rqqcfokkuuoMsuu4paMm+99RotWrSAXnrp9YCv+eefv+i9996m1atXUkKClQYOHEQXXHAJjRw5OuzP2bFjO23duoUOPPCgRm9zVVUl/fHHb3TssScEfR3GXmPGH/9tSx3DiuZFjRdFJKjxoogENV4ah6m6iGyL/keW4vXkzB1AVQfcoT+XvPhNcmb3obou44gsidQaUOOlaaisddBzv2+kg3vn0iG9W49ZrymOx0u429Qiipirq6spMdH3IoP7MGCLlNzc9HqPoS822nTBNRwmZvFAuNuRkJBAc+fOpDPPPMfn8T///F1kBJjN8bNPDQX7gH0JtB/ffvsVPf74I3ThhZfQnXfeIxzCp0//nm655Tq6995/hxS+zOOP/5dGjhxFBx98cKO3+bPPPqIFC+bTiSee5Pd5lwvnxkzZ2amUnNx48z5/41qhCIQaL4pIUONFEQlqvERIXQ3RvNeIZj5NZC/1POaqpJQ86TgufImoqoAoKZNowHFERz1MlNo6BJUaL9HljwXbadrS3fTVst301JnD6bRRXag1kduCx0uLEN2o5zYKbNxviFgpLCwnt6EbV11drTBTQ5uueHANj8S9fPjwUTRz5h906qln6Y9VVlbQsmXLqG/f/uRyxcc+NQbsA4S0v/0oKNhHTz75GN1665104omn6I9fccW1lJ6eQU8++TiNGrU/5ebmhfE5rqgdL6fTFXCbPc+7xecVF1eS1VrXqNU1XID8jWuFwogaL4pIUONFEQlqvDSMjG8vpsTNv4jbjrxBVDPoPHKldaDagnL9Nam9jqWkjT+SuWov0ZKPyV5ZQeXHvEotGTVemobV2z0taV1uots+W0LFpdV08lDfbNiWiCmOxwtvW6sQ3e3bt6eCggKfx3C/Xbt2Eb8XTpTxZMXbyYuEgw8+hF5++XkhtFNT08Rjc+bMouHDR4gMAZkvv/yCPvzwXSopKab+/QfSLbfAmM6Ttr9v3156/vmnaP78f8hur6GePXvRzTf/Hw0bNkI8P2XKJ/TJJx9QcXER9ezZm2688TbxGQsXzqcbb7yaZs2ar3/Oww8/IH7fe+8DIjV8/fq1VFZWRhs3bqBHHnmSBg8eSq+88gL9/PMP4nVjx46jm2++nTIyMsX9TZs20hNPPExr164Wr+3Ro2fA/f/ppx8oLS2Njj++fkT5jDPOoXffnUwzZvxEZ511Hl1//ZUi3ZzT7Xft2klnnnkSTZnyNU2e/DotXrxQ/CCVHduO5/797//SK688TzU11XTMMSfQ9dffLLIL/KW8n3HGiXTppVeK22+//YZeAiAfm3DGY0OI1vso2gZqvCgiQY0XRSS0ifHiqCFKaHyWWsKu+UJwu81WKj/0cbL3P53IbPE8KR3DigmPUsUhD1Pi1t8p49uLKGn9N1S16wpydBhFLZ02MV6akV1ldvG7XVoi7a2opf/8uJaybNZWk2rubsHjpUXkHQ8fPpwWLVokIocAvxcuXCgebyrwGdV1zmb94f2LhF69+lBeXjv666+5+mMzZ/5OBx98qM/rZs2aSW+//boQ0pMnf0jDh4+kG2+8Sohh8NBD94no7GuvvS2ez89vR08//Zh4DuIXwvO22+6iDz/8XIjtf//7Tr3VWij+/PMPOvLIo+mFF16lQYMG02uvvSxqr5988nl64YXXqKKigu677y49g+GOO26mTp06i+049NAj6KuvpgZ879WrV1G/fgP89rqGOB40aAitXLki5DbedNPtNGTIMDrnnEliYYDBMXvwwUfpkUeeoj/++FWI7VAcccSR4n3wfl99FV2HfYVCoVAoFM2A203pv9xEWZ+fSCl/PUHW7bMpefl7lDX1NMp/rQ+lz7iVyNW4tp8pC14Uv2v6n072gWd5Bbc/TGaq7X441QzwZDamzflvy1UfiiZjV1mN+H3dwT3ppCHtxe2pS3bFeKsUcR3phnlaenq6SCE/5phj6Omnn6aHH36YzjnnHPrkk09EFPfYY49tks+G+L38kyW0dKdHkDYXwztl0BvnDG9QtHv27JlC7EG0wlTs1lvvEFFg5qOP3hPGYgcd5KlXvuKKa2ju3Nn000/f0+mnny1E+qGHHk7t2nm+oKeddhb93//dJG7v2rVL1FTDrK1jx04idXvcuIPDFt05Obl0yiln6PXzU6d+Rm+++b4eZb/vvofo+OOPoA0b1tOePbuptLSUbr/9brLZbNS9ew8RUUaE3R9lZaXi/QOBMYTXhALRcoh0fCYi7pWVleLxa6+9USwygMsvv5peffVFuvLKa4O+V1JSsngfvF84ae0KhUKhUCjiDJOJagaeQ5nfTCLrnkVEC17weTpx009kHnMjuTJ7+P5ZVQG5UXttsYr75vKdlLj5Z0rcMoOsO+dRzeDzqXLcvUJEV46/n1y2PKoadV3Ym1U19jZKXv8VJexZRJaiNcJ0TaFgdpV6RHfnzGTql9+Fvl6+h+ZvK6GaOiclW4Ms6ijarugeP348Pfroo3TaaacJQfTaa6/R/fffT5999hn179+fXn/9dUpJSWmyz49Dc7yAjB8/gf71rzvJ4XDQggXzRPQ7OzvH5zVbtmyiV155UUSZGQj0bdu2CkF96qln0C+//EjLly+lLVs205o1q3VRPXbsgeI9L7zwHOrXr7/4vJNOOlWIynDo0KGjfnvnzu1UV1dHV199ic9r8Fnbtm2hnTt3UJcuXYVoZeBEjpR5f0AgFxYWBvxs1Hzn5eVTQxk61CO4wYABg0RqfklJSYPfT6FQKBQKRcugrsMYKp/wCCVum0nWnX+RK6U92fueTC5bLjlz+tYT3Ig8Z/x0LZmrC6l84vPkyB9CKfOfJ9vKD/WXpCx+jUz2Uqo49HFyZvWiiiOejmibXGmdqPzwZ6iu3TDfz3fWUtL6byl57RfkSs6h6iEXkqPDmPi0e1Y0CQ6Xm/ZUeDywOmYkU35aIrVPT6I95XYhvMf3ah0p5i2VuBHda9asCXp/2LBhNG3atGbZFohQRJxrmtmALDnBrPcijwSuu166dLEwVTvkEN/UcuB0OunGG2+lMWP293k8NTVVCF44fZeXl4to+UEHHSKE8b33/p9nu5KT6fXX3xH1zoiof//9N6I+/K233ve7vfgsi8W7miY7z+M58Morb5LN5rtokpOTI97Xp5BJpIl7Vov9gXT1jz56X2yv1er7OrvdTps3b6SDD54g7hu3lbclGPLCgsvl9HFTNxLO+ykUCoVCoYgfTLUVlLjpR7LumEtmewmZq/ZR+aGPkTN3oIhW2weeLX6CkbB3KTmyelPi1t8occcccluSyIVot7OWEvYtpbp2I6i259HkttoodfZDZFv1CZkc1UKYkznyqbi9r+Rj43JS5pdnkaVsM1kq9+gPJ6+dRnV5g6ny4IeortNYv+9jLttGJqddtCNTtHwKKuzkdLkpwWyivLREMVcd3yuHvliyi2ZtLFKiO8bEjeiONzBQbS0kDQPCEL2lIYjnzJlJF1wwud5runbtLszSEEVmHnnkQSHQUT8NQf3NNz9Tdna2eG7q1Cl6qv2KFctowYJ/6KKLLqNRo8bQVVddTyeddJQQ+e3bd9D7UqekpIrbiFZ37drN77Z27txFCHKkkMNdHSB1/NFH/yMWBWDShug76ryR4QDWrfNdgJGZOPEYmjz5DZo2bYowS5P54ovPyG6vpSOOOFrchyivqqrSn8d2yvgT0vhs7vWN+nFEzTMzs+q9F27LKfANWTxRKBQKhULRfH2x0/68j5I2ThfCUyZr2hlUdO5v5E4NbdibsHshZX59rkjzNld4amerRl1LrgzPfKvkLG+pH3CmdqDMH68mc02JEL2urMBmseFg3TWPEnf97XnvlHZUM3gSmSt2CtFtKd9OztT2/v9uxxzK/PZCIoddbCOi8gKXg8zlO8iV3rlBCwKK2LFTq+fukJFEZm0eelBPj+ievbFIzOnV/DR2qG9TKwHR3EceeUgIaPwYOeec8+mxx/4rxPDQocOFOdmvv/4s6rzRkg1GZDNm/ChSx1etWkGTJ7+mp6Djebhxo3YakXIIdNTU9+7dl/Lz88XzcAk/+eTT6PffZ9DatWsCim4Ic7T2euqpx+iOO+4RafAvvvgs7dmzS9SLIxUdQv6xxx6iyy+/hlauXE4zZvwsItr+yMvLo9tuu1P02EYdNiL14JdffqIPPniH/u//7hGv4fTw6dO/o4kTjxL333zzfz7vhZT27du3+Yjn559/mu66618iCwCvP/30s/T3wv1ff/2F+vTpK9zPzZIBSnKyTTjswyEd+6VQKBQKhSJ+gOBOXveVuI0odW2vY8mZ3onc1jRy5vQLS3ALTGYhTq27F4i7zvQuQnQHorbPCVSS+CHZVnwQldRvR/5QKj36f+K9anscSWTxZBeibhz15HoKel0VWSp3i5R2RPUzv72ITI4aciVlkSPPM8dK3Pgjpf9yI5nrKsmRO4DKjnxJ1Yy3IHZrzuVILWf265ZFSQlm2l1upw2FVdQnzxMgUzQ/SnS3Evbf/0BR082p1EaOOOIoKioqEkIRv9ES7PHHn9XFMZzJ33nnTVHzjag43Lz/+9/7RaQXLtx33/1v8fyzzz4hRDHMz7iV1513/kv83eeff0ITJhwuhClqnwNx/fW30EsvPafXoY8YMVI4mXNK+hNPPCdE9KWXThJma6eddqZwOw/E0UcfJ9zW33//bfr004/EY3Atf/rpF/UoNS88bNy4nq677kqxWIB9hFM6c8IJp9Cjjz4k6t8fftjjYA4R/3//dzO53S5hBjdp0sXicSw+nH32eaK1mcViprPPPl/UjzMTJhxGX331BU2adCZ9/vk39WrsFQqFQqFQxAi3mxzthpNr6+9UdvT/qK7L+AYLYEf7EVRyyhTK+vpcUctdMf5+ogSvL40/6rpNED/RwJ2YJoR8vceTs8mZ7MleBEmbf6aMn64jR+5AspRuFunttd0OpdKjX9P33ZnZTQhukFC4mrKnHE+VB95N1cMuU7XhLYCdmolax4wk/TGYp43umklzNhWLaLcS3bHD5G5In6oWTEFB/abqdXW1VFi4i3JzO5LV6q0/jhUJCWZyNHM9ucIXuYd3U0SqozXm8D8wLy/d77hWKIyo8aKIBDVeFI0eL0hVrthJrgz/2W9NSeL6bylxx1yqHjLJU5/tj7oqImtK1NLVLRU7ROQ5Hkn55zlKmf8cmbQ2Z7XdJlDpsW/59ht3u8hSsIrcKXmU9tv/UdKWX8XD5Yf8l2qGeoIO0UJdX6LPf35cI9zKrxrXnS4/sLv++GeLdtKTv66nkZ0z6PVzvAbBoLzGQYkJZhENZ+ZtKaaHf1pL147vSUcPDDPjo4kxxfF44W1rFX26FQqFQqFQKBRNjLMuqm8H07Dc98eRbcFL1Kw4ayn17yfJtvxdyvnkSEqffjUl7PqHyFHt+7ooCW7gtuXEreAGVfvdTIWXLKLyw56kigPuqi+4gclMzvzB5EptT2XHv0uVYzytY1MWvyEEuSK+2aWll3fK9D2vMFMDaIVcVuP9juP2yW/Ooys+Wezz+j/WF9LOMjs9+OMaWrG7vFm2vS2gRLdCoVAoFApFG8ZUUyyEcc57B1CCVpvc6Pes3Eu25R+I26l/PU6Jm36mZsOSSCWnTSW3yVO2lrzhW8qeeirlvd6f8l/uQtYtv1FbBCnnNYPOperR19cX3EZMJtE/3OPCXkPmsq3NtZmKBrJLMlKTgQjvmZtCTjei2N62t8t2llO53UFr9laQSwofl9k92RB1Tjfd8dUKKqrytCFrKhxOFy3cXiJanrVmlOhWKPyAlPJZs+YrEzSFQqFQtGqxnfLXE0Jsp/31GFmq9lDyyo+j8t62ZW+TyVUr2meZyE3pP99AlqJ1ns+tLRetusKitpIS9izWncH9giisIefUbculgmu3UNE5P1ON1lvbpEVr02f+S0TDFSGwpoh69aIL/qrfk1wRV0A0s5FaJ8lIjRnVJVP8liPXq/d6bkPrVtq9bW85Gm42Ee2tqKV7vl3VpIL4iyW76KpPl9Kbc7dQa0YZqSkUCoVCoVC0Jdxusi19i1LmPU3mWs/EGwZbVSOvInufk3RBTmarMOqKFAhq2/L3xO2yic8LAY4WWW6LVTxm3TmP0n6/g4rP+lHUDwfEWUtZ004na8Fyqhx9A1UdcKf3OUe16KmdsvAVSl7zuXDiBhUw/hp5rdccLHcglR/1sthnc+UushSt1Xpwx97DpyXgzBsU601QhEFBRa0QxhbRo9s30g0GtU+nL2gXrZRF9x7vwldpTR2lJ3tkYVmNJ9J9zUE96O2/t9GCbaU0Y82+JqvvXrvPsx0/rPTUo7fWtmYq0q1QKBQKhULRSknc+ANlfX6SENgcXU77/S5Km/WAENwQ26XHvknFZ/9E9v5nCDGatOpTykEt9sKXxesRZU6d8zCl/3S975tzdNlZS4lrvyTa7klNR3S7YvyDZO95NNX2Po7Kjn2TSk7/So+WItJtqdxD6b/fWS9CbTT/guDG+7mTvV1ArDv/otx39qOcDw4WrbdYcIt9m/soWbfPrv9mJhO50jpRXbdDRc2yIkJcDrIUrhZ1/wm75utZC4r4Si1vn5ZICQhRGxjUMV0X2k4tai2Lbhba8u3hnTPprJGejM+ZGwqbbNv3VXiyTlBHvnavxz0fvDJrE9359Uqqc7YOPwEV6VYoFAqFQqFoJcC1G62r7L2Po9R/ntUjztY9C0UfZ0e7YeRoP5Lcqz6hyoP+TdXDLvH0mpZwJ2UKQZ6y5A1KKFpLiZt/IZPbk35aNeZG0cc6cfMMsi16lWoGnUOp854lS5knNTSj8ziqOPghsg84Q/yI95NaVwEH+mCbrZS06UdKWvM51XY/wtMzOt1b0oWU8hRN9CNaLrfFSl7+PpntntrU2q4TqGr0deTI7ksmV51HoNtym+jotk3MZdsoa9oZZK4uILc5QbQVcyfYqHDS7PD7mSuaxUSto8FEjemZk0I2q5mq6py0pbiKcmyJone3HOnWb1d7bmckJwgTtnfmbaO5m4tFJN2foG8sBZXeUo/f1hdQ//ZptL6gUkTZ8XF2h0s4rLd0lOhWKBQKhUKhaA243ZQ6/znRYzl95r36w9UDzxHCF4IbQCjXddqfnFm9/L5Nbc+jqa7DGLLuni+EsXis01iqHnkNObP7EtVVU9pvd4ga8MSdf4nnXck5ZK4tI+vOv8kdwhUcKcuV+98m6sjT/vw3uec9Q66kDCo5bZqoI8Z7IK1cbGvfk+v1oS4/4jmy9zpWtCLjfRK73+ADpwiGK70zuS2JZHLaxQ9An++kDd9RDRZtFHET6e7op54bIO18QLs0WrSjTKSY56f6pqCXVTv02nCYq4HM5ATqkZMifpfWOGjZzjIaqdWGRzs1nvltXQFdfVAP+njBdnH/sL55lJbUOuRq69gLhUKhUCgUijYI0nxNtWXk6DCayO2kmoHnUPKKDyiheD25bPlUduTzVNf1kHp/F0hwC0wmKj/0UUr/416qyx9KNYMnkTOnr/d5q43KTniXMr8+j8hpF2K8euSVlGerpYrlv4TVl7t65NWUtOknEYEn1JWbuosabURQWXC7bHlUcch//ey0tZ4QVzQhJjOVHTeZrDvmiHGG9P20Of+h5PXfKNEdJ+wsZdFdv56bGdghXRPdFdQuzddIEKIaVNU6hbEaSE+2CrF+YM8cmr5qL83aWBR10e1wuqhYi6wjhr6xsIoWbS+lH1btFY+dN7oLtRaU6FYoFAqFQqGIAXAORy9p1DzXdT4wrL8xQZim5IvbCXuXUuY3k0S9bcmpn4sIcvXwy6l62GVkKVhJrowuIlW8IcBsDG23AuHIH0JFF8whN6bKiake37Ks9p6U8nBCzuYEKp/4HGV8e5FIVy8//ClPGrqzjqqHXkxJ67+jsiOeqZearogNWHThhReXLYdS5z1NztQOYuzhXCpiCzuXB4p0g8EdPHXdiHQXa+IcX1u35FjOaebJCWZK0lK6x2uie/amQrrhkJ4B37+4qpa+XbGHjhvUnnJTEyNKLbeYTTS6SybN21pC//pulWhXNrRjOg3rlEGtBfUtacGcccaJtHt3/RYaQ4cOp1dffYuuv/5KGjlyNF122VVUV1dHP/zwLZ100qniNVVVlfTHH7/Rscc2bKX4rbdeo0WLFtBLL70e8DX//PMXvffe27R69UpKSLDSwIGD6IILLhHbFC47dmynrVu30IEHHkSNpbH7rFAoFApFg3C7hKGZM6s3OXMHiIeSl71DqQteELfTf72dis79hSjBFvRtzBU7KfuTo8je50Sy9zqaMqZfTea6CqprN5xcEECMyUTO/MFNv1sNcDY3RtuLJ/3p+6DFKqLbFQf/R3cgV8QXMKQruGxp6F7fimZjp5Zejp7cgRikiW64hRdqYndA+zRatadCN0/j36jnZg7okS1qqzcUVNHushrqEEDYfzB/O733z3YRNb/+4MDiXIa3Iy81kY7olydEN9qUtbYoN2j5VeltnBtvvI2++mq6z8/jjz8jnnvkkSfp3HMvELd/+eVHeu+9yfrfffLJh/Tdd1832Xbhve+44xYaMWIUvfnm+/TKK29S//4D6ZZbrqPp078L+30ee+w/tHLl8qhsU1Pvs0KhUCgUfuusZz1AmdOvIuuu+eIhmJChllk8bUkSJmQpC16q/7d1VZT2253it/i7rTPJZC8l24r3KeubSUJw13Y6gEpP/oTcNq+7d6tACe74JgzBbarcS0lrvmiWzWnLeHp0e0R3hyDp5Z0zk0V9NqLIbKK2X7dsnwg313ZnJHva+4FMm1WPOCPFPBDLd3nakfG2ROJcnp+WSIf0yRORd9ApI4kO7RuknWALRInuFk5aWhrl5ub5/GRkeFLJ8DslxWNm4ja05DDejyYFBfvomWcep1tvvVNE2bt370E9e/aiq666jq6++np65pknqLCwIKz3iuZ2NuU+KxQKhULhj5QFL1DKUs+id12XceK3pXgdmdwuqh54NpUd6Yl2o9+0uXSzz98ihde28kNKm/Nf3QCt9KQPRa02sPeYSKUnvk/uRE8ES6FobizF68lUXejt/77wVTLVlIg2cpnTr6CMX24SpnvWbTOFCA/WIk7RMIoqa6nW6RbR6PZ+enQz6H+Num4G9d/dspN9ItwsvuVINziop2dRb/amooDCf83eCp/odTjskyLd+OGa8bNHdW4Sp/RYokR3Kwbp5UgDX7hwPj3yyIMiFX38+DH0/fff0Ntvv0GLFy8U90FtbS0999xTdPzxR4ifhx66j8rKSvX32rRpI11zzWV0xBEH0Y03Xk2lpZ5WHf746acfxGLA8cefVO+5M844hywWC82Y8ZPPNjK7du0U24TfDz/8gNhGbCtex8/99NN0OuWUY+mYYw4V2+xweC4UeB+8zvfzThT762+fFQqFQqFoSpKXv0epfz8pbqNvNZuXwUSs5MQPqWLCY1Tb6ziq6X8GVUx41MeAzFK4hmxL3xK3a7sdpj8OU7Sic2dQ6fHvUtkxb4RMSVcomgqI6ZyPDqXklR8LMZ287G1Km/swZX1+oqgU5nFrW/kRZX19HuW9M0r0f0fPeLQhU0QHmI9xanmCJbi04xRzMKB9uh7RLtUi3OxcbhTd43t52vD9s7WEauo87QONRm6Vtc56LcBCUSCJbnD/Mf3pvqP70dkjO1NrQ9V0B0NL5/ILelrKqTVBX2vy/acY6LUhWmw0FNR4Iw39k08+oDfeeJdSUlJp48YNtHz5Unr44SfEa1577WVRe/3kk89TUlKyuH/ffXfR88+/KgT5HXfcTMOGjaC77rqPFiz4h55//inxvv5YvXoV9es3gMzm+l/8hIQEGjRoCK1cuSLkdt900+20bdtWGjJkGF144SVUWVkpHn/77dfpwQcfJafTQf/5z7/JZrOJKHowjjjiyHr7rFAoFApFU4Ga7fSZ/xK3K8fcRNXDL/N5vq7bBP02DMV8cLspbea9ZHI5yN7zaKrteaTv07Ycqu1xRFNuvkIREkc+2rV9JFq/oSc8uTxR0uphlxJZkqhqv5uF3wBEt6VoDVlKN5OlfJt4bULRGqJeHxvesIYSClaQo91wZc4WAWv3eebH/fJDeywMai+J7nZpurhmIzWOeGdK6eWgd14KpSclCFG+o7SGeuel+jy/eo8nyg0KK709v0NRUOFJc89LS9QXDk7KlPwpWhFqRAch//V+AZ+zdz+cyk54T7+fN3m46FnoD1Fvdern+v3c9w4gc0399Ix913l60kXCU089Ss8+6ysiv/76JyFEGavVKiLPEMFIPwd4HgIY92tqamjq1M9E7XXv3n3E8/fd95CIeG/YsJ727NlNpaWldPvtd4u/Q7o4TNSKi/2nmCBCnpPjWRHzR3p6uk8UPRDYZmwjPhOp8iy6r732Rho+fIS4ffnlV9Orr75IV155bdD3wkKCvM8KhUKhUDQVKfNfpNS/Hxe3q4ZdRlX73x7235rLtlPGT9eQdc8icickiwi5QhGP2PucQLYlb1BCyQa9f7e9x1FUM/Ri/TV13Q8TP547VaJNXPKqT6hm0LmkJ0I76yh59WeUMv85slTsEm3qyg9/WrjxK0Kzbp9H8PZr5yuE/TG4g1eY92+fpotrbhnGEW9jpBup6elJFiG60VbMyGottRzgNXaHS3c/DyfSnW/oG94aUaK7hYOa6QkTDvd5LDk5MjfJnTu3C3fzq6/27bXocrlo27YttHPnDurSpauPkIcT+Zw5s/y+HwRyYaFW3xOg5jsvz1OP1hCGDvUIbjBgwCAqKSmmkpLA6e4KhUKhUDQllqK1ZC7f4RUXTo+RUOWYm6lq/9vCNwVzuyl9xk1CcIOq0TeJtl8KRTziTs6i4vP/EGLaXF1IJnuZp61YoPFuTSF7v1PEj/ySjJ+vo6QN33tftm8ZZU85jqpGXUdV+91KZLY0w960XNbu9QSl+oYR6c5LS6IRnTNoW0kNDeuYQTUOpx7pRl02R7zTDaIbpCTiMbtf0c313ExRVW299mVut5umLd0ltuGQ3rk+Rmoc6W7NKNEdhH1Xrg2eXi5RcOmSIK/1vfgUXvgXRYvs7BwhiBuD0+n58sBh3GbzTXHPycmhL7+E86Sv8QVagAVi0KDB9NFH7wshjyi7jN1up82bN9LBB0/QV878bUswEK1mXC7P681mU733Cvf9FAqFQqFoKHAiz/jxGqrpe5IuuhHZrus8juq6RNju0mSiikOfoPSfrxfmaFUjfX1KFIq4xJpCrgaWSKKffOKGH8hly6Wq0TeIcoq02Q9R0sYfhKM/PAzqOo2N+ia3FmodLtpU5Clb7ZcfOtINXjlzGDldbkq2Wsha55k7u9wkxLQ3vdyf6PYsflQZarohptdI6eVspmYU3b+sLaBHf1kveoD/dv04UX8utwxr7SgjtWDgAhLox9gqIehrDSYngV7XhBgFqXy/c+cuwtwMKeQQ8PhJTU2lF154hoqKiqhnz96itrqiwvuFWrduTcDPmjjxGJGyPm3alHrPffHFZ2S319IRRxwt7kOUV1V5a9wRVQ+23cbPRv04ouaZmVn13gu35RR4f++lUCgUCkWDgHHU0smU8f0lZHJUCTdy3ZnZZIpccGs4s3tTyVk/UOnJn4q6WIWiNePMHUjFZ/9IhZPmUPXwy8mV0ZXKjn2Dyo54lkpOm6oEdwg2FVYJAQ2R3D49vOuF1WIWghvgN6eBw7m8TDdSqx9cS9H+xhjpRl/t4uo6spgQbU/162BeVeuk537fIG7XOFzC/M3hdFFRVZ3eMqy1o0R3GwEp5+XlZUI8w+07OdlGBQUFwhEcxmonnngKPfXUY8LpHE7l//nP/bRjxzbq2LET7bffWGrfvgM99thDtHnzJuEEPmPGzwE/Ky8vj2677U763/9eEo7hW7duFj+TJ79Ob775Kt166x3iNZwe/ttvv9CqVSvEz5tv/s/nvZDSvn37Nh/x/PzzTwvTt3/++Vu8/rTTztTfa8OGdfTrr7/Q1q1b6IknHiazlJIk77NCoVAoFA3BXLaVUuY/T9kfH07pf/5bb/1Vfuhj0e0trRaKFS0U9Gl+Y84WKq4Kw8XaZPLUbif6RmntA84kR4fRTbeRrYQ1Wj03xG5Dg0sc1UaUm9PLjTXdcqSbXcqNJmo9c1OpkxbdNjqYT/57qxDn8t/wayxmk+gF3tpRoruNMHr0ftS5c1e66KJzaP36tTRhwmHkdrto0qQzhaC9/vpbaMyY/elf/7qTrrrqEkpIsAgnc0TAkc79xBPPUXl5OV166SSaNu1zXegG4uijj6OnnnqBli5dTFdeeYn4Wb58GT399It07LEn6K8755zzqV+//nTddVfSAw/cSxdffLnP+5xwwin0119z6LbbbvBxIv+//7uZHnzwXrFYMGmSx7AD23/22ecJsX3NNZdSr169Rao7Y9xnhUKhUCgiwbptFuV8OEG0AUsoXkduSxJVHHgPVRz2FJGl9UdqFIpw+HDBDnp97hb6evmeqLyfpXA1pcx7Jirv1dpYx87l7ULXcwfC2zasLqB7uU96ea3nNcyaveW6MVuuliYuR7q3FFXRh/M9ZtEcCYfxmpxabm4Di4yqprsF8/nn3wR9/qWXXvcxN5s8+QOf5z/99Euf+7fffpf48UenTp1F+7BIGDVqjPgJBrbrscd8L6SzZs3Xbx9yyKHiB3CEeuLEo+mCC3xN3wBW+K699ibxw1x44aU+afTGfVYoFAqFIlwc7YZSbdeDhWlU9ZCLqLbXMeROyoj1ZikUcQVHuEuqw28dFQhTdSFlf36i6BBk7308OXP7R2ELWw9rNQOzcNqFBSLTJke6tfRy7TGZ1AA13Ws0Ize0IONIudw27Lk/NpLD5aZxPbPp2IHt6b7vV4tI9/7dstpMPTdQoluhUCgUCoXCgKmmhMyVu8mZ1UuPYruTMqnsuLeJUL9taf3pkApFQ+Ca32qDOGsIblsu1XYZT0mbf6akdV9RVe4dUdjC1gEMzNZK6eWNjXQj/RutvgB6cgeOdBvTy7VId7s02ljoEeAcxUbd9tzNxeL2DYf0ogSzJ6KN7d5Tbm8z9dxAiW6FQqFQKBQKDVPVPkpZ9D+yLX9PRNfc5kSq7X6YMHcSnUuEV4hqYaRQBIIjodEQ3QAtxiC6k9d9SVVj/6/N+x1AbCO7c3e5nSrsTiFke+Y23JCZ67e3l1SL3zBE46h2KCM1tAbjWm30CUeKOijUsh22l9YIozeb1Uy9tG3E+2CMzN9W0qYi3aqmW9FigKkbUs/xW6FQKNoSCXuXUvZHh1Hu6/0pYZe3BEcRPUzVRZQ19VTKff9ASln8mkdwJySTyVVLSZt+pLQ/7o31JioULSzS7YmaNhZ7jyPJnZBClrKtlLBnIbXltP07v15Jx732N83fWqKnlkPMwpG8obCR2rbiaj3y7c+UzV/LMN6Gbtk2Sk1MqFfTvaXI857dslNE3TZ+IM7BvC2a6FaRboVCoVAoFA3G5aTETdPJnZTlbR9VV00pC18iZ2YPsvc9KayWUOay7ZTx3cVkqdrreQCpzWGSuOknSp3zX3K0H0kV4/5F7pT8Bu9Oq6KuitLmPEyu1HZUNcbjA+JOTCXrrn88T7cbQVX73SIi3OaybZRQsJxcGd1jvNEKRcuA3a2rDWnIDcaaQvaeR4lIN1LM26Kr+eyNRfTQj2v0Flu3fbmC9u/uqYnu2wgTNTm9nCPd/pzLA7mXswN5p8xkHwGNxxGRh4ka6JHjbZ+MNPTFO8p08Z6f2jZaIyrRrVAoFApFE2Bb/DqlzX2Y6tqPopIzvhaPpc5/Xohu4Jz7KNUMvZiqh1xA7uRsv+9hspdR5ncXCcHtyB1AZUe9Ss6MLuI5c/kO8ePotH/9P3TUUOqchyll2dvibkLJRkrc/IsQmNXDrxDpmQn7lpN12x9UPeq6oPth3fIrpc56iNyWZHKn5JEzoztVHnBnizYQS5/5L0pe/Rk507tS1egbPemqliQqPfZNcqV1Ikf+UD2F1ZXZnWozleBWKCKNdBsNtxqDvd+pQnQnr/uGKg/6N5G57UiYr5ftpv/8tFaPaqO91qLtpfT7+kLxWL9G1HPLIhvp6p77/v0qUhIT6qWXl9s9tzO0GvCcFI/ornO6qdzuoM2a6O6e401/H9g+3ed9c9tIpFull0tgRUahaA7QukzRNCTsXkDZnxxFSas+C/1it5uSV3xA1p1/U2vHZC8l28JXifatifWmtFyctWQp2UimWk86HZO4eQZlfn0eJS+dTOSoFq1tktZMpZoBZ4iWUtY9C/WU8OqhFwrxDCCkU/9+gnLf3Y/S/riHLIXSuXG7KeP7yyjri1MooWgNOVPbU+nx75Ezpy9Rgs3TuuqD8ZQx42YiZx0lrZ5CloKV+p/blr6lC+7qwRdQXd4QMttLKXnFh0QuB5nLd1LWlOMpbe6jlLBnceB93r6AMn64khKK15O1YDklbv2dkld9EhffGVNNsfi+y9iWvEmWIs/kNBBJqz8XgtttMlPl2Nt9noMbuaPdsDZfM6pQxIuRGoOuAa4kRHbdIs28rVBhd9ALMzeK26cP70jvTRpFz546mAZ3SPeJHDcG7pHtcvu6mRtJ9VPTXaG5nadrwj0pwaybsMHBfIuWst49W4p0t/fd3vw2UtPddpaJgmCx4DCYqKKilNLSMhvcXD5auFwmcjrVAkBrXdhxOh1UXl5CJpOZEhKU+200QRpu1lfniFrM9D/uJnu/k4Om7yZu+I7Sf/e0ySu4bJlvtNHlJOu2mZS85nMy1xRT2cQXRJQv7G2p3CMm/yKtGOZLMQQtVyAKrQUriJa8TuYzvyNnquaNUFdNlood5MzuE9NtjFucdZQ672lK3PgDWUo3k8ntJFdiBpUdP5nqOh1AtoUvU+rcx8hEbkrcNpNS579IpuoCcb/4jG+opt+pZFv1iagRLus4RkRRi8/5RQj4pPXfiGg4zosw7aopofKjX/F8rslEiZt/JpPbJWoZy45/l1zpXj+Lug6jRdo6Jp/pv99BSWu+ILIkU/HZ04XbtnX3QnIl51D5Ec9SbY8jhNC2LX1bCGakSiPdXESO1nxOqXP+Q6WnfF5PaJpLNxN9cRaZHDVU220CVQ+9lBL2LSV735M9jt7NhaOaTHXVZHLVkaV4PSVu+VWIfyxGuBNsVHDFKk/UC9/ZnX9T0tppVHLGN36/d/j79D/uEber9ruV7P1Pb779UCjaAC63O+pGagJLIpWc/qUozWlLUe535m2j0hqHSM++/fA+wjQticz03GlD6MYvlom2bIMkAd6Ymm7Gn3N5oJpuRLNBmvQ3ualW8XhBpV2PdPeQIt24DXHOTunKvbwNYTabKTs7n4qL91GRVvAf6+1xuVQktDWTmJhMGRk5MV/gaU0g+pj5/cVCcIOic2cEr5d1uyllwYv6XdviN6jqAE8rEuvW3yn919vIUrlHfx4RyYrDntDvJ+z6R7Qy8Sc+MLHPmnYmmav3UW2Xg6n8iKeF2GoSkDURRNSbK3ZR5tfnikiloHIfpf9wFZWc+rk4PkkbvqWMGbeI/qcVBz9IrtQOvm9QV02Z30wie//TqGbw+dSWwGJFxvQrKVGK6rrNVnHcHLmDPPetaUJg23sdK8zOsIABagacKYRttTVViO6kjT8IEevChBFYEoXgs/c7jaw754rxZ6nc7fP5FRMeJTJZqLbLOHJldPPdOKuNqkZfR2mzHqDk1VM8n9nneHJm9tT+9hFyW1PInahNxswJVD3iCvHDVI69Qwh/7B8Efm3Po7zv73ZT+o/XEVUViFTr0qNfJ0pM9Qj4SNFS3ZM2fE+utA5UMf5BcnQcE/afp/79lFi08IczraNY4HKldxbZHAm7F5Klag8lrf/WUzMvYaotp4wfryaTo4pqOx9EVaNviHxfFApFUOQoqLG1VGORF4eRrYNOAq7U9tRa2V1WQ58s9PxPuf5gb7stkGWz0jvnj8SlmizS4w3BWMMdqKbb5qdlmC66JbdzmKltLqqmDQVVou+3STNaY7AfaHG2fFe52HaOtLd2lOjWSEqyUbt2XUQUMpZAg2Vnp1JxcaX4IilaH1hUMZstSnBHCKKA1u2zKHHLb1Tb53iq7X64eNxStI7SZj8gnk8oXE0uWz4Vn/mdT1QwEJXj7qWsr8/T03EhSCDeM368lsy1ZeRKzhafk7zmCxEhrB52KTlzB4j0VKT1QoBVjv0/qh5xldZGiET6ceaXZwvBDRK3/0nZH0+kqv1vo+rhl0X1mCBKmjr3ESo76hWq7X2c/jgi7M7svlrk0k0mh12IEywaZP58A1n3LKK0mfeJ+/Y+J5IT6dAbvhOR/coD7qKawZP0/YGor+t2iBB3MJUKtXiAdF9XSntyaXXH8QjGCqLDEMyVY24SNbv1cNZ5UrtLN5HLmkYVE/5LdZ3HkSulHVlKt+j1zDVDLiRnTj+q63ygiF5jrGBMVu13s+dtcvqRvdthlLT1N8r9YDwVXjCXXBldpY0xiffFj5FQixzVg88XJQMQmYh8lx/6mLcOOYyJKL4jVSOupNQFL1La73eRY83nVNt5nKgzx/tUHPEMZc/5N5Ue/qIQ3P7ONWrO67ofVu85mI+lLHyZagaeQ2l/3E3WfcvE49hWSqi/GIboNdLy0fsaNfDVgyeRK8uzgMBRLTeZyJWST3VdDxHfS/Tuddty9PfA7Zohk0RmQupfj5O91zF6f21y2oUZnecakUflR77gHeMKhSJqyIKsJkru5fXAouCvt4nMm8r9b/NcK8MwpWxp/G/OFhENHtklkw7p7b3WMXACF4q2kRhruDMD1HRzG7GqWodP+rucXg5ytbruhdtLxe8OGUmUrKWmMwPapQnRjXZhYj/aAEp01xNDsU1xwLhLTk4mq7VOiW6FQiNp1aeU/vudZHJ5Lu6IIDKWkg2UuPUPcRv1s6XHvekjuJPWfS3EkCNvkCcKaLV5xU7XQ2jftdso67NjRIpvyqLXqK7dMDI57R7zq1OniH/kblMCObN6kjOzO1n2rRDbIt7CVUdpcx+hxC0zqPTED4kSkoV4gbBA3W75hMeEWLXuXUzJqz71Ed2o3xX1uQ1MPUcdbtrsh8RtpMsWQmCYzCLqlz3leCqa9KeIWkMkl5z8iXjOndmV6Iy3yP3BGcJEi2orhZiCeRREqHXvEkqfea9IOS4/9HFy5g0SrrE4vsggQBq1ECv+qKvSzamwWFF07m8RpeM3F4h2InKPcwKQiowJG1IWkRVQOe5fmqmWVYhjB7mp7Li3PedKw5nd2yCaD/TctiRSzaBz630mFmUgugXaGI4KCTYqn/i8iFaL2uQGTDqrR11LtpWfiPpyCyLRVm+aojO3P9HF35G7sAKK14fETT9T5veXkDOlvUj5FAsJzjpx3EDa7AcpaeN0sq34QNzHmChH5N6cQA4pWoXvNhzDkQ3A4D6i9FioAljYQlQ+HJFcNfxKsi17jyxlW4RfQ82wSz1PmBPJ0WE/SihYSaUnftCqomNTFu+kBdtK6KFjB1BigrLqUcSP6EZ6OdLNoy2qTPYSMtWWCZ+K9D//TSmL/icWOrHIF+tyrmixsbCSvl/hyba76ZCeTRqoMaaXB3Qv14RzrdNNDqeLEixmr+iW0svZwXyh1odbNlFjBmh13e3aSGo5UKJboVA0udkRotMQwmjDA2Hqk+I97ymqGXg2udK7irRuTNLrOu5H1SOvFi+BEEqfeZ8Q3Jis13Y73CtyIMDzh1L5YU+RuWKHeFxuJYIocMpCrUZWE+XVQy6kqlHXeQWhySRqOzN/uIxsSydT1UV/i1pckZariZiKI57W9qWEMqdfKUQ5opeILqfOesCTYq7tF0QposiIOiL9HIIEtbQQe4y5cjdlf34iOXL7U/nhz/gIuno1tcI9WUtJZuqqKf2Xm7x3O4wWEUd3cpaoMYZATl7+PlWN/T/t7z2RXPEvu89EKjvhHRHRhGgDzvzBVHL615S8/D0RIUQkPOfTo6jk5E9FTXrF+AeE6Vby2qlUPfRicnQY5bM5tiVvCYOuhGKPgRVq4NNm3U/lR71McQdWM80JwpAHhlmow7Yte0d/umrkNfrYqBxzs4hU47g2BhxDLGIgSq5Hb6NEXdfx4idSSqvraM3eChrTLYuKT59G1p3zxLipVy4RYKJX2+0QcmT1Eq7o2Z+fIDwPsMCE73L1iCupasRVItqNxSwsYJUd/b962ScYo/Be4Cg2Mkkc+UPIunuBZ1GortqzSBZJ/WZiKlXuf6t439R/nhVZCZUHPyj2o/LAu4SRXZOVesSID/7ZRjvL7HTK0BI6oEf9aJhC0ZxUSvW+WKtDpNZmiHI2FvivlJz+FSWv/JhS5j9PloqdlP7bHeKaU3WAZ1G8pTN/a6k4fmO7Z9Hgjk3bKQJRaLnGOiOQkZqUQo62YZk2s+5e7lPTrUW6UYturOdmJvbPpwXbSumoAW2njaUS3QqFokkwl26hlCVviAgv11m7zYkiWlx89o8iKpi88iPRQgliF6I7odDjvpy06UdypeSRvf8ZoscwajDrOoyhktOm1lvFRi1nzaBz/G5D9aDzyFy5V9RYwwTLbC8R24Sfmv5nUMX4+8U/b9Sy1qC+ttexwpzKGaB9U9L6r0UEDW2GIK7F3yLl2OaN6CK6XHbsG9KB8NTSyiTsW0Fuk0mI28zvLhbHw53odfOE4EiZ/5yIFGKhoPjMb8mZO1B/Hm2oEko2eKKMp32hi3IsUNjgTg0x1umAgOemDnW5xkwas4Vqhl1Ctb2OprQ//y0+G+l7RefPFOLUPuBMEcXGY3UdRlHFYU8JIYMFBAhsgO2pGnMDpf15v8gwQHsqiFaffd+7lKw75lD1sEtCRmatO/+i1DmPiPMUrb6sSAsvOfFDspRvE6UCcAG3weXbbCFnmm9KvN9WXA3BZIq7evinfttA01ftpedPG0LjevYgu3FhJxTIKjn5E8r47hIhrLO+8ewfFpiwr46O+1HJmd9RQuEqcuQM0CPgMo72I8iZ1oncCcmi1IHHLMZaY0C0y7bkDbEggEW8yvH369eN1ia4QbWWwrupqJoOiPA0tjaKq2pp7uZiOrxvXr10VkXzIKcec7Q72qJbYE6gmiEXCP+MlMVvUOrfj1PKolfJ3vcUT5ZOC2dHqWfe1Duvce3AwgXR7X0VtUFbhiGynWgxiUg3zNRQi13uJ9KNmm4ZuUc3k5qYQA8d5+nk0VZQoluhUEQd1Gei3RHSrwEi1OaaUlHnnFC8Toht1I3Wdj1ERLWRTmouXCmciOvajyTrjrlkri4S4ix53VeitU/FIf+NOG0MYrR84nOeO2636Emc+veTIo0aacUwUhIC22QSabqhQP0uma0iGsdO537rgUMAM6ri82dS1hcnCxGfOvtBqjjsSf15tJuC6AWIqqfPuM3T59mcQIlI2dUis8KgTRJL6P8sUuM77k91XSKPfor9SetEZce+KdLXEZnlmtjKA2C69a04f/ip6ziW7APPIlNdFdX0PZnciRmitg5RYpPLSXUQVAbBbS7ZJEzdkBKIWnGkNutwPQ1HVl1OkaoPA7j0Gbd6HL/9CLdwMVUVeLMbElOF4G5MpLils1Vr47JH68vaEETpwqlTKeOXG8VCGaLV5Uc+72PeJvpdBwDPFV0w1/O9jmbqpMVKZce8RsmrP/cYA+I61ArrPZkahyfStLnQ4xLclnl9zhb6fMkuqnW46JRhHWO9OW0So3ka7vsJdEaPhGSx2JuwZxElbf6JUv95msqOeZ1aOttLasTvLln1BWtTi25jurmxV3dtdZ1+nv2ll8O9XKZ7dlMOgJaDEt0KhSLqIJ3UmdFNTHghbEXbLM1kDNHYOi2CiDrQklOmCBGJlkDVQyaROymTEvYuEXXbSN0GNYMvEEK3UaD2ttuhVNJ1ghDziK751OaGib+a3YaAmlK0c8r88iyyrfyYanscqbtHV4+8isw1RWIFH+7Z1n1Lybbof1Q9+npy5A4Ux9be8yixPwxaJdmWvStuQ/w2VsQgCum7vR2oYtw9lDbrQXEM2Bka6cjGNPJ6hnFOO5mcdZT5w+UewY3XINKtYSlcRZnfX06O7N5C8EPoI6uAHdcR1UdLrYYa0SHrIvvTo0QEteKg+1q1AAsXtJkBnE7IIOUcKYRhT/QSU0VmBzJakPERLMPCL01kZobMkEqc6zbQhpLP4abCSmrrbCvxLCbtq/SIB0Xzg7Rjmai2DQtCxcEPkTOjK1Xtfyu1BrZrY7lLllSS14TI0e1ALcNAitVM2DSIbtTrs+hOS44s0t0WUaJboVBEBUvBSiGiEeVCDSxSwUU0WIpOQ+TWE7pIvx5+uc9DbJRWOf4BEbFFzXLUgPjWFgFiDWrQUf+KdkiZ319KBZctF8dOCHItQo96arT0Sp33DNX2PFrUf4ua86Qsn9YpWdM8/Ybr2g1vsv1DdkLNoPMjijhjMSD9p+uEER36KouU+LO+1+vJ4bSO3urm6kJP1H/uI8LMLOWfZz37kz9M/B05Pav+RtAmCgsoAYW020Xpv95K5rpKshSuFpkKCk9Nt1F0Y/J06UeLKCclkb65cmz4b2YyR20xShEZdU43ubQkEaSXt3UKKz3jujrKraoUDY90c/lDU4OOGcK/oZUspu0o1SLdmc0jWOXodiD3co50E9nFefYIbwqaXo5FXKMIb6u0Dos/hUIRM+DmDTdoGG8lL/c4FQOYiEXDRbS2x0Q9lbs1grRtOJ2D5JWeemwZ1LXDtA1F2MgA0I+tFCGEQZW993GiZh6r/U1KhCneMHZD/+nEHXNFi7WyY1/XnaPh4J7z8eFCcDszPGn6KUvepNS/HhP1uHC8Lj35Y1FXXj3qOt83drvItuRNyn17FOV8cLCoFTdiLttOaTP/JfpQuxNSqPzwp1uNs21jqHO69GiUXUtNBoWVtaJWb3e5XUQwFPGPvGiC7IWSKo/obKsUVXki3Kg3VcSJ6I7FAojbTQm7F1JLpaCyVny3LSaijhnNk5klC205am0kRTNTg2EeR7mtFpMwYpN7iGPb2blctcj1oCLdCoWiwSBdPOurs0TKMOquzZW7Yr1JLQ8YUp3wnqjjtvc7tf7z6Jd82OMioiubqRkpO/JlMtVVxN0CBWpr0WoM/asRtWdDNFN1EWV+4+mR7sgdRCWnfCoM9dBfHKnzrtSOwkQO5Qb4YVL/vF9kSyRt+EH0QAdwroWhV9EFs0V9X9K6byh59adkRaszzTGu4qB/Naj+vjVHuY19dGUBh5pYm+RUq4hP5EUTsKmoikameL8vbQmHy03F2qJDc6U0K4K7l8dkAcRZS5nfXkiJ22dR8elfef7nuJxNVsrSFOzQ6rnbZyQL87LmgNuEpSVZKMFsCim6YZjnz0QNoEVcTmqiqBFXqeVelOhWKBQNAiIQQgeCW7QEOvKF+q2tFGEbUqFeO9jzFMp12WIltyW+BLcgwSZS/lAqINeZC+f3XseQuWI3lR/2pLjPfZmBv/ptOKWnLH3L+x4JyVR5wF1k3T5buNhy2zbr9pmUuPV3cbu280FUPexiqu15TBPvaMuhpNrhV2jXSLeF47AS3XGPfM64rntkl7YpukuqavWmDMZoq6Jh7C230/cr99BpwzsGdLQOnV7ezOfCkqh3KUj//W4qPfE9yvjuUqoadS3V9jmBWgLbNefyLpnNU88ti+5Q55nbhuE8s+iW24XJbcM8oluZqDFKdCsUishxOSnjp+s8bavSOlLpcW+RO6Xt9FpUNABjehki+Ic8HNFbuE0JVLn/7WTdMdvjlj7uXmHkVj3sMp/3R8sYTLrsfU+u33daoZuo1RPd0uTYKOYULUR0t+G6bq7nbgrRjfe78YtldECPbLr8wLaTMfPKrE303cq9tGJ3OT158uAGtwxrbirG3UuJm34UbUizPzyUzHUVlDb7QSpCu0zNTySeaW7ncpBhs4Z0Lgfc/g3fiQqtR7c/47V+7VJp9d4KGtapaXuMtyRiWtxmt9vpnnvuoTFjxtD48eNp8uTJAV/7888/07HHHksjR46kc889l1asWNGs26pQKLyg7RYiiYg0lh03WQluRbOAll9V+91MpadMobLj3vIKaoOgh5Fc1X63KMEdhujmdlNGAa7Sc1sGdsN5asttwwq0eu6mGL+LtpfSkp1lNG1p2ymhgpnXX1tKxO3f1xfSrI2FDW4Z1tzA96TywHvEbQhuZ3oXKj35U3E/Yec8ainO5Z2bMdLdU4tIowY7rEi3VNPtT3TfNbEvTblkDI3u6jV9bevENNL9xBNP0PLly+ndd9+lnTt30p133kmdOnWiY47xTQNct24d3XbbbfTQQw/RqFGj6J133qGrrrpKCHGbLf5XrBSK1kZdu2HkSsqkigmPBO3Dq1AoWlCk2yfqrSLdLTPS3XZFd5HUJizadcRbij3HtazGN4rbmtlYWCXMFZknZ6ynMV2zKFmLdAaCTRphrIXrS6yuJeioYN09n8yVe6j88KeEkWfeW8OJXLVUeMmiuPM/kdGdy5upXRgY0TmDPpg0irqFqMH21nQ7qbwmcHq51WJWqeXxEumuqqqiKVOm0L333kuDBw+mI488ki6//HL68MP67r2zZ8+mPn360CmnnELdunWjW2+9lfbt20fr13t6uCoUiualtvdxVDRptkjfVSgULYvSGv+iWzblkiPggaisddCecnsTbKEiUtHdSXM4xvnAeWmLyAIx2o7Z24qr9eNt7G3fWpm31RPlHt4pg9qnJ9HOMju9/ffWkH/HkW1uExUzJ3mTmcqPeJZKT/pIlBshI8+Z2Z1MLgclbfyRWkJ6eedmTC+Hw3j/9ml6+nggUrTnsbiiG6klK/+PuBbdq1evJofDIdLFmdGjR9OSJUvI5fK9oGVlZQmBvWDBAvHc1KlTKS0tTQhwhULRTLjdZKr2ppehn7RCoWjZRmqBotvh9Na9bsoyOu2teXqbJkXzwwIwPy2JclI8NZmb22hdd6HULq0qytHVrZroBmXSolVrZt6WYvH7kN65dNthvcXt9/7ZTju1KGwgWGTnaaI7nkpV7H1OFL+TNnxD8QpStjkbqTkj3eHi6dPta6TmL71cUZ+YHSVEqrOzsykx0dswPS8vT9R5l5SUUE5Ojv74cccdR7/++iudd955ZLFYyGw202uvvUaZmZE7dMZ7qzjevnjfTkUbGi9uFyVu+pls818gS9k2Kp/4LNXBjETR4lDXF4WxZRhEG48Hu9M36h1qvKwvqBR9vTcWVupRLUXzwtkJSVYz9cxNoaKqUtpcVEVDOqa3ueuLT6S7zjt+o8E2rcaWU8zbpTdP7+RY4XC6RB07GNsji/q3S6NBHdJp5e5yWrqzlDoHEYPGSHegcxGL8WLvcwKl/v0EWbfNInNNMblt2XGbWp5ts/pN2441qUn1a7qxnU19Hk1xPH8Jd5tidjarq6t9BDfg+7W1vqvmxcXFQqT/+9//puHDh9PHH39Md999N02bNo1yc3Mj+tzc3Ob/R9QQWsp2KlrReKksJCrZTNTZ00dZULaL6MMzifYs89y3JFGmpZIoT43Ploy6vrRtKp3cWIkIN/O077PF6p0SJCQl6uPE33hB+i5HWSvdZv09FM2LNdkTjcxISaIOmUm0YFsp7al2xPR8xOr6UiallGNsZmWnRqXHMVz9d8tlFEnWVj/eF2wpEunDWSlWGjewI5nNJhrUOVOI7pI6d9D9r9auC13zUonWFZDTZAr6+mYdL3nDiToMJdPuZZS79zei0RdRvFG2q0L87pGfGpfjrEOuZ/vq3ES1bo/a7JjbfNua24LnLzET3UlJSfXENd9PTvZdQXvqqaeoX79+dP7554v7//nPf4ST+RdffEFXXnllRJ9bWFiOLNm4BaslGFDxvp2K1jVezCWbKGvq6WSu2isMR+yDziGqq6bMqWeRdd8yciWmU83Qi0TvZOFUXlAezd1QNBPq+qIA+7QesKDSXkcF2ve5qMz7+L7iSjFOAo0XuZZ7/c4SKujeNntDx5oCzeDL5HJRBy29fOX2Ev2ctqXry25pXIPtu0ujEincUFDpsz/b9pRRn4zWndnx89Kd4vfoLplUVOQRWblahHPdrtKg46tCS79PtXgEWUmF3e/rYzVebD2Op9Tdy8jx1+tU0vVkInN81SOv3OpZSOuQmhiT73EoHNr5La2sJbN24kwOZ5NvqymO5y+8bXErutu3by8i2KjrTkjwbAai2RDcGRm+Pd3QHuyCCy7Q7yO9fMCAAcLxPFJwouLtZLXk7VS0/PFirthFmV+dJwQ3sPc6jtwuF2X8cjNZ9y0lV3I2FZ/xDbkye2gfFsUNV8QEdX1p2xjdy3ksGGu6+XFEtf/aXEL7dcvSnWvlFHUIcDWeYgP3Vk9O8DoFbyqsiun5iNX1pUjq0w0q7U5K1epPG8MWQ418SVVdqx/vf2utwvbvlqXvayetfRXSnwPtP9LSUXICcrVFIPlaEg/jpXrgOWRb+ApZitaRZe9ScrT3ekvFW7uweBxnbKSGfuwJZs/CSlpiQrNtq7sFz19iZqQ2cOBAIbYXL16sPwajtKFDhwpRLdOuXTvasGGDz2ObNm2iLl26NNv2KhStEVNNMWV+fT5ZyreRI7MHFV44j9xJGZS4eQYlbfhOtNgoO/ZNr+BWKBStq0+3JLRlx3IWc+CLJbvo9q9W0Afzt+mPlUpmbMrBPHawEV6SJLoxaXe4WuistIFg8YhNnbQAa9Rcs2UTtbbQNgw12Mt2lonb+3Xz1jxzz+hgRmrcLgzkpSbFhZEa+o373E/Jo/IjX6Dic36OqeDGwuXC7SX1tm+7dnyD1c3HEl54xbmu0DolpGlZEIo4Fd3or40WYA888AAtXbqUfvnlF5o8eTJdeOGFetS7psYz8M466yz67LPP6Msvv6QtW7aIdHNEuU899dRYbb5C0SpI+/N+SiheS87UDlR60sfkSu8kHq/tMZHKD/4PlR/2BNV1GhvrzVQoFFEUJ7IzudwmTG6FJL9md5k9qIMzP69ofvicoXdyZrInqgu9LS+atAXYQT/RYvIx8IpmuzB/LfdaIzBQw6JNx4wkH/dsjnRjkQ0RbX/wQgfOAwsxNlaLBddNWUpnvj2/3ljAHMeZ1Sui90KGwxMz1tNizWCusTzy8zq66tOlNH+bJ6uA2aFFurtkNl+7sEhI5T7ddd4+3enatUcRnJgeJZihQXRfdNFFogXYDTfcQEcddZR4bvz48fToo4/SaaedJtzLKysrhWP57t27RZT83XffjdhETaFQeDFX7qak9V+L22XHvE6ujK7eJ00mqhl2Sew2TqFQNAlyWjhAKqjL7SYzvvMBxDhPpOUIeYkU7VOR7tjB4hqRbvwgyOvWIuBprdtg269zOQQ3jkM0xd5WrW6+Z04KbSqqotJWHunmRYaB7dNF72YGxxZiGtcMGMt18dNDmiPdaCvFEdFYRbrxudxr/O/NxXRo3zy/r0vYvZDI5SBHp/0Dvhei0Q/+uIZmbSwSNf6vnT280duHLgNg+a5yPaOgzunSr6fx2C4McB/vOqebypyqZVgkxPQoIdr9+OOPix8ja9as8bl/5plnih+FQhEdrNvnELmcVNdxf3J0GBXrzVEoFM0AC2eb1axHs2sdLhEplSPdsgBn8VIs9UEukwS4SDO0O+KyvU2biXRDcJtMlKyd17YW6WbRnZOSKBaRoiq6SzxZl0M7pQvR3drTyzll2Bi9xMJcx4xk2lJcLVLM/YluPuYQ3CzOYiW690qLgbM2FfkV3Ulrp1H6zzeS25pCpSd9RI4OUvcWia+W7RaCmz0Tonktlt8PxxWZKvg+x2sbRo50A06MV6I7ztPLFQpFbLH3P42KJs2iioMfivWmKOIQY52ZonXAE732Up9hrguWa7rliXKlNgmXI93GaJ+Kdse4plsTOMkJlnqLJm2BQm1BCEIlmhFWLCaxoB/cMcNvtkhro8Lu1M2xjHCdMfeSNgJzLRZmXtHt0hdCmpN9Fd4OSbM3Fvn9n2bvdQzVdTmIzHWVlPnNJErYu6Tea+CR8OzvG/X7xdV1PtfChoDjweOII95gfUGl+N0zN8UnyyCeQBs+ZDwwFrNJzy5RBEcdJYWiDePK7E6O/CGx3gxFnIFoxalv/UP3fb861puiiDI8WUREkJ1nOVrqE+l2+Il0V9fpE1e5phso0R37SLf4bTXXW0BpW+nlVl3sRSPSzU7SOSlW3Uis1Ue67YHNsTplBDdT0yPdVou++GG8tjQXeyu816SCylpas9fT+syHBBuVHjeZajuOJXNtOWV+fR6Zy7b7ppVPXyNKbEZ2zqB2aZ7o8xZJKDcEjCHN5F1EunlRYu0+j+jul59G8QzKB0iKcsfrAkG8oUS3QtHWQP1mReTt9hRtB9SsIZLx+7oCFfFuZZRoruOZNqseneBUZN+WYc56E2nU8HHNpuxeDpTojg1ce8/nsqVEuh/9eR099su66IvulERvS6MoRLrZPLBrlk03qmvtRmp6pNtPyjCbqQUS3d6abovuMRArMzU5vRxweng9rClUdsK7VJc/jMz2UrIte1t/anNRNS3eUSYiu/cf219EoP21kYsUmLLJC5x8/VynLQz0zU+leEZeUElXzuVho0S3QtHGsO78i3LeO4DSf7y25TY7VDRLNBSTAbkFjKLlwymNWbYEUcftG+mWW4Z5RZs8BnhscKQ7y+bpxatEd2zg89SSIt0YQ1OX7hKt6DiqGozXZm+mSe8vDPpa2UjNFsX0chbd3bJtlJFsbRuR7iBtoPS2YWXBI91IL0cNOI/HWNR1c3o510bP3lQUOBaRmEZV+98mbiev+pTIUe1zvUQ5TudMm96WD7X9jQFZQzJc171Oi3T3bRffoluu61ZeHuGjRLdC0YYwl++k9J+uJ5PbRe7EVOFSrlAEmxDwZFbROiiVxDJHR1l0yynlsmiTo1RspsY13RyRgZuxovmxG2u6pTraeEU25AsVNUbrqg8XbBepwav2lAd8XWGlVjaRmuhtaVTril6kO9tGmbYE/Zi3ZqO6Sk4vT4w80s3ZBRwJjaWZGqeXnzSkvfi9Ylc5FWut5fxR2+1QcqZ1JrO9hBK3/m5YgPAcCxbdch12tEQ3FjL5OtonL75FN59XoEzUwkeJboWijWBCvdJ3F5Klag85cvpT5bj7Yr1JijhFNgpCLZyi9cCRar+iWxJqsqiQ03SLDKKbaw850o33v3bKUvpm+e5m2BsFL47okW5DyUA8IptQhYoaQ2zzAkKwuuBCTUzlplijKvS2aTXd3bNtIm0dplGgNbcNC5ZejmgvXwf8pYzLLcM8v2PXq3uvFuke1D6d+uWnCqftOZuKA/+B2UIVEx6m4tO/ptqex/gci1SD6JZruqev2ku3TFuu96wOhxKD+EfknE3UOqQn6VkVLSK9XPXoDhsluhWKVo516++U+c35lDntDEooXE3OlHZUesJ75E7yOLEqFMEmxSrS3XpFNws0f+nlLHQcTpeP2CmprhV1/pxe3k9Lg+T6SUxA/9laQlMWK9+I2BipaTXdMTCuakiUr8zgDWBk8fZS/TZa2/kD47FISi9vkprubJswi+K6bh7/+H6s21fRqrwvyoMYqUFgcWTTX4q53DIs1pHufVqku116Eo3vlRO8rlujtsdETwtVLQtQN5XT9qdHjmfRAZ4nGI847y/O3Cjed8bafWFvGy9e8jFGpHvd3soWUc8NVHp5w1CiW6Fo5SQUrqHErX+QtWAFuRNsVHb8O+RK7xzrzVK0ENGtIt2BKaiwi0l3izdSczjJ6XJTLdvpShFUY00/UoMhyGGqBvq180a6MQH9a7MnkqS8AJoHzk5I0gzU0H/d83j8Hn85ylcWoqZ7kSS6Ay0kQFzzcz413Y0cgxCQHInntOpMLQLJRoJvzN1C5723kKav3kutz73cv5gKlmKutwzTxLbcNqw5QVkCLxjDcXxcT4/o/mdrcdgLJCZ7KdmryiiZ7PqxwPiCUEYv7a0l1bShsEqPqHOkOpL/sSM6Z+rp6t567vh2Lge8sAVUenn4qCOlULQ2nHWUuG0m1fY4QtzF77LkLLJU7qXaLgeRo92wWG+hooUIs3iKdKNX9LbiahrQPp3igbV7K+j89xfS8YPb0wPH9KeWnl5ea1g8YDHH9Z1ylJKjfHD07ZZl098DCzQLtpWI+5GkWiqiEOm2xqd7ObZv/b4KGtghXRhrGa8vxtZzMmijtHiHV3QHSi/nem7uDR2tSDdvG1rr8XtmGCLdS3eWid8bCxpX4xsvYBGRFzD81XSz6Ebavz/RLbuXi98xinQj8wHCGO2ks1MglBOEkzrKAnANQ8vEgNRVUdqsB8m28kO6mYhuTiZatedAIucHZLIkiRTz5bvKRYq5fAzQ9SNc2NdgWKcMmrOpSCzu/L3Fs2CJVPh4R04v95cRofCPinQrFK0Ey74VlDL/Rcr64mTK/O4isi18VTzuzO5D9oFnU9WYGzxpUwpFBEZH8SK6H/5pHV3wwSJaIk3CYwlHNZBOXRTEnCd+RXeCV6D5MYZCpAgTcKPoxt9zlA91h4kJZtHDGPy0ep8+YWcDIkXTgYhdjbFlWJy5l78yaxNd/NFi+mXNPv/p5UEWZ5ByK9dOBxbdvi7V0Yp0c5o1hDb3IUaGCODt4vRzOTuoJVMhHbNAYipYr25jejmPx+au6ebUcowJ1OGj7KKjFqFnp/CAJNjIUrrZ56GBFXOFEAfdJTO1uVpmD0CkOtwoerGPK7pnu1qKiVr9lmEqfhsuSnQrFK2AlNn/pZzPjqbUvx8n676l5DYnCrGtaB52l9WIqExrQXYUjpf0cp7cIsISDzi09GqkZf+4OvxavlgCYc3CxRjp5sc1nyjP6x2uem2asCDD44PdnDFxBF8t85qnIf08mPGVovFgYQTRPMALKHpNd5xEujllVo4Cyg7SwUS3nFoerKabRTcv/qSw0Gt0pNtRT1RwpBtmk/g+cWpxc4nuhdtL6MpPl/gYeUUT/r7DIyDB4l8idM5K1uuajfAx55pfFmfNHeneo50X1HMzPcN1HjeZqPTkT2jfVevp+m7f0qW1t5ObTGRb/h4lrf5cf59Vuyt8MjGwEBPuIjWPl+wUq27Oxse9i5Y91FLSy1VNd/go0a1QtHTWz6CURf8TN+09jqLyCY9S0QWzqLbnkbHesjbBvC3FdOIb8+jFmZuotRCPNd0cddpdFh+tqepcXgHw/Yo9jX4/LNo09cSd35/TZXXRjZpYTaSlJiaIlEyeKFdq7r3ye3CUjx12WXQbe9eG04O5OcA2N7bFTzwiC2s90i3V6ccDHHGUryOcKREqvVwWNOFEujllmOuI5ejqb+sK6NcIjK7kEgkW2vJtCPLtJV7R2Vxu5u//s10sRkxb2jTdAfj7HkxIBavprowTI7V9WtS4XZpXdOs9tkNFugEyGxKSqcSRQL+6RtGibpeLh9Nm/ov6pnvG7KyNhWJxEccD7vaR1HVzNlm2zUo9c72R7T75qbpDfjzD7vRARbrDR4luhaIFY6opIfrqenG7eujFVHb8ZKoZcgG50jrFetPaDGu1SA4cbFtL9EyOPnG9ZKzhNOd46QfNRmJg9d6KiEx0/PHEjPV09KtzacXuwL2IGwuLHUS5kS7rL9KNdFA5WopaehbqPFlkocROzh20dFOGXxsvovumqcvpnHfm6w7rrQV2m8fhtmorJfHWp3ufFnHk3+GmlyNNlyPdXOMayEiN29VxVNMYXUVE+p5vV9E9362OaEyyyZvcEgnfHYBsDxhpMc0R6cYxWaldH5rq/423L3XgOt3OUnq5MZ3am16eYFgAad7xyBkI+Wne2u2euR5hHMkCHI+Xtf2uppoBZ1HZCe9Sp/YdxGP8L+DAHtlCLMuZHcHAMZO9NXi7WopzudG9XInu8FGiW6FowcBdk1JyyZHViyoOvDfWm9MmYQHSWtyajZEnTA7qYuzQjUkKT354gh1rjMekMdFu7B8icUgVXrHLY8zUFMgTPdnxWtR0S/2evcINkW7Pce+YkaQLJhbvmYZIN08aubZWrg+NFTi2MPLCBNlfZK4lwyIUiydccxxPfbqxYMPXRTnSHU56OdpRQThhAWdMt6x6Le1k+JqA/sb+It0Q/FhMRClIJJky5UHSy7HdMHZkkG7e1OB4cKupxi7yNdS5HHBtNFLJjYsNfMzZvZzTkJs780JvFyZFujmiHFakW8Pbp9tK5Uc8Q3WdxlKXzGSfaPSBPXKot1aHHY6ZGt4T4xHA5I3T1UHf/Ph3Lq9npKb6dIeNEt0KRQvGldmd6IpfqeykD4is8V8H1BphARIvUb3GwmlvmGjyxIInerEUFxxVQP18IHGF6E9ziQ2OdLPA/GHVXjGpbwjbSmr0Y8wRmqY2UQNJWu0rotxy6ylvirLXSK1zptelnEUOCxBZdCPqw1GyePhOoCyBW6HFy8IYROcnC3f4iM/GiG6u55YFZzz06Zaj2wXabXxP5VTsQKKbo9wD26fr4yxQejmPRx6HHIUT1w2X20fwR7JoxwuQXEbh0zLMj+iOxNcDovCjBdsjul5xlBvgehFJ6Q9E3qo95SG3kUVmIOdyXuRBGy6+djE4t9wyTE8v1343t5HaXk1056dLkW5N3OIaG+61iTN95EUI1Lpz1wbPolAm9dVE93rJxR6LfP4yIDjTg0t8euRKorsFmKgBZaTWMJToVihaOgmJ5MroFuutaLPwxIwnKy0d2eAlVzMminVdtzxBwrb46429cHup6Jf7+Iz1zRrpHt8rR6RZY7vmbfU62UaCXLvKEZrmiHSzuEYEURdwVrNPHSaP69y0RNEiDGwprvJxcpZF99ju2fqE3eh8Hgvk8gieQMeSXWU1dPknS+jp3zbQvd+tbtR7oRYfcJmAb6Q7HkS33Udo4HuLtHdZPAeq6WbRPbJLpp6RYWxrF0h08/jlCKu8HXvKayI3UvNT0w2RLaeXY10nkkWm12ZvoWd/30ivzdnSINENkMERLpP/2kIXfrCIvpTMDoNHuoO3geqm1TDLCw92aXHU2zLMHJuabjZSkyLdOI+8SBquEZ1xEcJStI7SfruD7jG/Le6P6JwhfDA4vXxTYaVY4EAK+1nvzKcbPl9W7z15sS1L+/+Kvz92YDvRPgyt9VoCqk93w1CiW6FogSRunC7ag1Ft06SYKcKHozbxENWLBpwmCYMXnqDEum2YvKCBYPI+P9uzak+Fj8t5U1OnRbUx+Ti8X564/fdmT4/qSJHboDVVpBuC8/f1BT5i2bemW04v9wo3Fs5IF2Wxvrmo2keAIOoDQY77wztn6lGheFiIKqj0Cq5YR7o3F1bR5R8v1sfoP1tLaLHBobuh6eVMPLUMkyPdAAtTxdW+jwWKdM/f5jkuo7pmUqLmou0v0o1INovqDloJBI4HZ/+ibVhDI916yzBJVHCk25hebuw/Hgr4QIDvVuwJu3yHRTdnIIVTP8zwd/b3dZ5rQKia7tQQQqqrJrrlhQfZLd7bMqz5jdQQcWf/Bll0g545Nr+mj4Hexxvp9uyHqbaMbCs/ognVv5CVHHTiEE99N8zUbFazyKrBuPh4wQ4xXtFtw3h+9YVt7XoKHjpuAL117gif73I8w+cX67DYb0V4qCOlULQ0XA5KnfuIaA9mW/ZOrLemzcOTRkyA/UVgWxpyNDRPE93xFOkGe/zUZfIkq7kWP3giBQMr7ltbEsSJORiLd3jruAuaINKNlPwrPlkihAzE8XGD2hsi3ajp9pdejki3N12U3aF5EYbFOyI2r5w5jP531jAxadTTy2vjLdLtjOn3Cq2esKjSI8dGh/f1LNS8MTf8SKcRr/mdN+qk916viz/RjXHDwlROATeK6R2l1SI1F+JyZOdMn3FqBNcmRFfxWh6fqG/X67rrXD6LhpGll9ePdHObPEQr+brIkb5wzdSwUICIqHif6jr6c0NhWAKQFxYP6Z0bsejmBQRkBAVqvRZuejnoqqVXywsPnEIOEWbWPAZSYmCkhn3g65lspObrYB56cRaLCFwxxAuJjvYjyWXLp0RnJf1+EunXUuxvL61mfP62Evpupcfjwy2lutdzLtci3S0R9BZHiQEyUdhPQhEaJboVihZG0tpplFCykVzJ2VQz9KJYb06bRzbQiXUkLRrwpDhLjnQ3YZ1xOBjFmz8Hc55MN9c54D7dqO9j8dkQMyUIAjk6bxQq4RBsEg1xcPFHi8UEHX2MXzt7uEhjrGekVlffvVw2UoPo5nRIht3LASLcbALkjXTHg+j2Hs9Yprsjog2BBbOv188eTjdN6CWE4rytJT6ZDo2NdMdXTbfv9xRju0QTHJi081S93LBYtWCr53gM6ZAuxh3vn7990p3L0xJ9zK10B3NDpFu+dmCR9JvluwPW1vuLdHN9N6dR4zvQRetbHa7o3l5SrfsMgFAp356/qRHbg0WzYwa2i1x0awsIWLhYFsSssTHp5d52Yd7jxTXdzZl5sUcbd8i8kRekfM3UwjM8AxhX+nfMZCZ7z4niZs6uGT6v5xTz12Zv9lkgMpr3FfuJdLc0cFy/vHx/evnMYbHelBaFEt0KRQvBXLmHEjf+QKnznhH3q0ZeQ+7EluF02ZqR0yPjIbLXWHhCkClFugsbafjUWIxpyv7M1PY0d6Rb69NtNZt08Sn3Hw6XJTvLfHrfYuIaSe3xq7M30+Evz6G1WrqqkdmbioTwxPu/e/5IGtLRI7iB3Keb08vxmDda6vK6ESda6k0SOdXWSGpiPKWX18ZNpJsn5nAsxvk4YbAnSvbm3K0Nek+5JIBhc7x4qOneGyS9HFFp3Qnc8J39Z5unTINdy73jtP4+8bVA9hUA3kg3arr9R7q/WbGHHvpxrWjXF26kG1FcbonH4pPLLsIV3Rs092y+vv61uTigQaQxtbxfuzQa2D5NT5EONzWdFxDA31uKQ0e6w0wv31ZSrbcNk68VjL+e6c212GOMckfaNkxfgEi0+ERza3seLX4nbvoZKQj64300EzQuOWMPDGN2RWuIdAOrxZvRoAgPJboVinjH5aTML8+k3HdGU+YPV5ClfJtIb0JfbkVswYRHrmOLB5ERTSO1PG3Sws7DscIopP1FujmFD5O7SFyEG+tebpUi3YFMoYLBUU64fvNkNVC0G/tm7IuLCTuiKks18W5kV6nnuOzXLateP205gig7YXONHlKU+dhj8mycJLJoMhJP7uU+ke4YLorxRJzHCrhkbFcRRftrS3GDWsV5HefrG6k1t3FVMPHDGTPwYtAzaVKsXtEtLVZhfKPWncesvJDgz0jNaKLG6GnNdb6RbpSh8HcIbt68MOUvdZ2jw/LiEsSXfA4hPvXe3eGKbq2t1Nge2TS6a6ZIQcYCQDBWatsKN3dkS+A75klTr4p4cXjelpJG9enmbgYmbSGLOy/oPbql6DLfbs7xuK+8voma0cF8R2lNQDf8UO3TarscRO4EG1kqdlLC7gX1RLfnsxPpMK2EpJ7oNhhaKtoOSnQrFPGOs5bqOh1AbksSOXIHUvWg86nklE+JrN42E4rYYDQBigeREc22Urkp0Y90v/33Vjrutb9EimW48HHlNXXjJAZponpLomaKqsg13XIboYbWc4/onKlHZvw5mG8srKSJr8wRrtcyXANeFOAcwS0bcN25DJtueYzUvAKOUzJ9jNSQXm4LV3Rrke44KLcojLNId5Yk4CBcDuqZI24v3eXrTN3gmm7tNhyUY+0xwYtHg7TILMpUOMqHsZTu53sDwy+cM4xDzsrwGqk5g4hu3/Ftk9LL5TGAtG4WPWwuBkf1hdt9hSiEOUfg5Ui3cdyjtjnSSPdGTXT3zk2hkzQjLqS5B1ssXKVFugd1SBPC39uiKnSaNPZFjnRjsSHQAiF/30PVdOP8sHEdp5jzopbcTsqWGP4iEMpsnvltA53/3gL6ec2+sMpq3py7pd7CAy/A+hPdWADCggJqtY1GeEb4+lUv6p9go9quh4ib8NbxJ7rPHtmZOmt178b/VyWtJNKtiBwluhWKeMdqo6r9b6OCK1ZT8Tk/U8Vhj5Mzp1+st0rhR3S3hpruUtlIrQki3X+sLxST8XAmVUbRzbWTxkkMImjuZj4PcqRbj9jVRNarF4sDa7QIFlrP5GuTRH+R7vX7KsVnwqSHwWcVahO4QL3Ud2nHiifIMlzT7enT7ZRahnknyrKRmpxeLovzeI50+6SXxzATxdgjnclNtTb4WPE581fTHeu6boxNPvbcBmlfpZ1KtPRyjCX+3pTbvWOXo9zwHeD9CmakFirSjePO12l+H/4buMkzszYU+fw9hDgiyf4Wl7Kk+3J6ebjlJZxe3isvVRjq4fuyq8xOywJkq2A72O0ckW7A/gnh1HXL+9IxI0kIzvnacW5oerlspsYO5nwNkltIedsPugJeGyHWb522nE6f/A99vHAHrd1XSfd8u4pe+GOjWDwKxPRVe0XLtft/WO2/R7ef9HIsWPTM0eq6Q6SY6wsQfqL+lWPvIGdGd6oeeon+GLI3xnbPoq5ZyXTKsA76mAwU6c621d8+RetGiW6FoqVgUaui8YYxnTAeREY03ct1I7Wq2nppzQ2FDXUWSOIxFDwR7K1FEozGNOxc3pznQY90mz2tsgDmh+EIO0RmMOn9evluYciEyRlSv3mSaNwfObVWFuQ4VzyZDii6Sz2R7o5+It1yyzDZlEuv6Xa4pOhVgk9kRjZRM8JRsnj4PsRbpFtOTQapjThWeqRbEt2oIzU1QnRDyP/ru1X0vea+3FAwHjE2sS3926Xpi3dyejmPIXnxkheVxnT1pJYbF4fCFd0s9lBzzMeFrx/ofoDzweIHzNpY6HON40gw6rfl4yubqXnTy8N3L0d0lo0TEenGwhVH9APVGeNxiFYshrH7Npt2rQujV7e8L+x8DgO/xqSX+9R1a/vD1/TBHb29puVU80A+A1MW7aQ/NxaJsTK+Vw6dPryjePz9+dvp5qnLAmZscJQfru7yseNrZL5hTNSr6w6Rmu+t6a5/rXPm9qei82fq9d3AZC+ll84YRp9fup8YIwFFt6FPt6LtoES3QhHHWApXU+KG74kczdN7WBEZxnTi1lDTLad/cno5IqyB+ulGCiaPYMmOsrBNgHgiyOl7SJWURYpxUtMskW6XN9KNiTML2NIQdd3Ld5XRWe/Mp2umLNVTxRHlBhzp9teijSPrOA8c4ZQFeJGfv0FkiY8NIlxGvDXdMFLz1nRz2rnHvZwdiX3Ty43iUYajZLHO/MD4kr+jMa3pDlDHyeKmIVF4uc2bHMnz9lmP/D3nbCqiH1fva1QrM7lEIic1UdQg60Zqcnq5Nk74HGG8LjCYqBkXh4zsCZDJwf4ILHBhWiaLIBZcWFjE++8ss9NGSYTpzuXJCfVaIjUmvRzbg8UIbB9vD5zcuc7YH1x7PqBdmu7Q3k8X3aEj3fK+7N89O6iZWqA65qAO5iXVIiLNCyb7G84dH71AKeaoqQe3Htabnj11CN01sS89esJAsdjx95YS4XngDzlSjag3b/+i7R6fjO7a9hnhhYtgLu6+Uf8ACxBmi+entpIyvruEct8ZQ6bqIt1cjMe9/P8JCzv++nQr2gZKdCsUcYxtxfuUOf1KSvvz37HeFIUfjHVxsZzURwNM0nkij4lkYoI3dTpavbpZCOBzVoRZx8qTH0QueKIuT2Tqi+7ongdE/d6Y4ytCHFJNN9AdzEMsTvAkGZPunrkpNKhDOp0zqrNuvuPP9VkW3fLz8jmRo3YMIouYDGOizoJexqdPt5ReLtd08yRcuJdrizDB6rkBn6NYR7rlKHesFwF4XNQT3RzpbsCY9dZ0+07l9LZhDXAwX6n1gsZ3qjGGhLwghDHNZSoQ3IWVdm96uXYs2LBs3d5KsaiE6CjXgQNch/yJbtznDI96kW6D6M5NTfIR3SzYIF45qj5rY1F953I/4pMXnNCCD+I0MwLRzSZqiLqzmNdFd4l/0c215xyp59R0/DX2n30dQolu7MuoLpmESxZakKEfugyuFbwoGqqm2ye9vLiaVu8pF9dpfMYALQXe2DPdn+jGYtRSzdfi4N4efwMwsX++vvASqLxpi0F0Q9BOXbJLfM9xbUUPaX8c2COHsHYxd3Mx/b6uIOD+eaP+IY6FNYXMlbvJ5Kim5NVT9Id5vGEssc8IjP24XZyq6W57KNGtUMQrLiclrf9e3KztdWyst0YRlpFay45086QRaYgcKdJTzKMkuuWJM7cGiqR1C0e0gonuaJ4HpIM+/NNaen3uFtopRaLqpD7dIFwHcz7GqOX87OIxPm288vSa7vqTaIfWokxOP5cn2/7OD5uotTf0MDZGELEvPCH2pJeb9Ukn9wCHEJIjM4HahcVTTTfXu8fDophctiHTmJ7m/mq6AZ+/hvRGZsMujIlAJQuRtW1KEvuM8YdvDCLKAI9508s9n7NQc/If0SVD/17J+wdRyOUU8vcAzxvLHVK0hQiOHkP4+0S6NcGGqCdSmsGfGwr1v+eFAH+LS/wYR3ojiXRv0PpD987zGqF20cTr9gCRbl446KZFaAGELH/++e8vFAaVvM1G+HEYwmG8Dergud4s3ObbH17uYx9pejlHziGUjdcaXgDxZ3A5e32BKLFBVBrGgjJ8XP0tKGLsow6eSwdwnhduLxU14eCCMV0CtrNCav6kMV3F7Ud/WRfwvPH/kdRQottkoprBk8TN5BUfELm1hYukBP3/KP+P4kwPjFnZf0HRNlCiW6GIN1wOSpt5LyWv+pjM1fvIlZRJtV3Gx3qrFH4obWWRbjYCwmSHozAsuqMR6UYkQo52+KvrhpC85rMlPkZrcsojT5x3B4t0R1HsrSuo1CMTcns4Pb1cm2CG26s7kPiSI93+jNRY/MpGQcYe1MZIIE9Kja3CGNkIzWs2hZZhFp8JIqeXYyLOPYqDRbpZSOK4ydsdTVzaWArmNcALEXxckcIdLW+CSIBY5OObaTBS8y5QRC6QZcd5maQGRrpxbNiwC+wJ0Ts6GJyNAZ8CiJ9cQ1Qv2096Obt6y5FSINdUy2NcTy1PT6qXAs5jmEW6Mb2cHa975HpFN9KN2Vk6kHM54D7Zo7QIOX+XcY7lRQF/bCzwfG7vXG/U2hvp9l9GxjXT3TRxztw4oZfYdyyOvDJrM5373gK/3zdj1J7LWZYYjNs4sovjLS96BALbjcsBspa+X+lJ74aRmBFeAPEX6f59jefvxmku/jLBFjO2aMcE190j+uWL2/f/sEZcE/F9P2Zgu6DbfuW47iIajmP31K/rQy72hqKm7ynksqZRQukmsm6foz/uXST2fJdUannbRoluhSLOSF7xIdmWvUvpv98l7tt7HkNkUS6X8QhPZng1O9aRvcbiTxBishqtSDeiZ/KcFG69RqE4c2MRzd9WSlMWeSIWxtYtep2cJAh48q2fhyimEcsp8PKEluvREw2R7lC9evl5fzXRck23MbWXRb4syo3inA16jJHujtqk3ogs1lj4eFzJzT7nHCn0qF2HsOGxEaymGwKdJVBD0qZDgWN/zrsL6JAXZtPYZ/6kQ1+cTe/8vbXe63hRgiOEOIKcPtucyNkPsglXoyPdflqGNaZXN6KFcvYOL9o0hH3ad5LNAeXyBgg1iFk+FhyJZSHcS4royunlxrZhgUzUjG2reDvkBTuOdKNvMxal+uanimvT3C1FvtFhP1HOA3rk0PSrD6Crx3X3WXDD+AoUbTZGuntJke5O2vcT30HjOMB1gM3gOLLNwBRt2mX70YPH9hfnHMeDo+KBarrBcE10c1p3Q5zLAa4JvO38uft389SMy/D4fPnPTfTVsl36NRCLPH+s9SyujutZ/++C9T/nmnxkKrDA5vFw3uguYtuCgevc/cf0F6n28DCYLZUWGMtRQka6QWIq2fufrpcFMvqY075LvJCpUsvbJkp0KxTxgmaWVtf1YLL3mKg/bO97Ugw3ShEMjmryxKOlp5dzGp/sqspmatGIdMvprqiHRCTU2CaHU6Z9Wz15HXWDRbp75aZEPdK9crd3+2TjN4eeXu4b+Q1lOKe7NxsinpxVgHdDtMyY2is7+HJarXEhxJhOrYvuAC6+iEByTTpPbD0tw3wj3bKA4cliMPdyvC//TVN8J1CPygLNrU2OP1ywo95CBR8fROS03YxJNgpfJzBGOFOgfk13QyLdWh1+QoCa7gizDOACLSN/xyIFbfxksc2LdwBiGynIcno5BBjXWSMCaRxPSCEG8iLdbi166E90G1N38d3i1yH1nRcUILoBap25NZ/YJl2o+hdH4ruqRdcRFWZxHizFHIsgXLct12dD5LLANJqp4buOfcbx8rd4hs8+blB73c3cnwO6cQEB7dgAjrcsaL0ZReGnPXNdN+iUkaS3dZQ5sIdHUC/aUUb//WkdnfH2fCGa4W8BJ3mM35Fd6kfIva7w9b+zenlAboowh8P/E95HtOsKh8Ed0unkoR19zNwaGukG1YPPF78TN/1I5nLPorHRwVz/H6si3W0SJboVijjAum0W5b43jpJXfkzOrF5Udvw7VHLyp1R21MtU121CrDdPESKC1UlL323p6eV6pFuaaLIJUqSRbqREnvLmPPp88U79MY4yQnjsp5nkyH2nZbFdWOmNhsitWzhVmicxEMIsUHtpKZvRjHSv3F1Rr22XfJsjKlzjHMq9PFh6OY4L3J791XX7GqnZ/Ua6jQ7mLCz8tQszRrs5qgMnbBZx/ImpkoDhRZhQk8bGRHBDwcemR46NvrtyrNheHFdO3WV4zELwoeVZrMzUgp3z1EbUv3P6uFF0N9S9nOu5md0RpJcXVdXSue8uoEe+X+Vzjji1n68jcmpths27UIUFI/zGmoQxohvITC2SSDfGAIQyxCsnjeB88AIj11Vv00SxXAcdDuG0DcNCkVvb/xzJlNDz+f5TzDmCjIUj44KNTHdt8WBLsR/RbUiVhyEiH2PZwTvSSDeQz9V+3bPrpfmDGw7pRVMuHkPXHNRD9LDGMbpp2nL6bsUevQ7cWCIBsrQ+1v6OKZvLIdKN43LCYI/QPnd0Z70NXzgM0EoFjKZykTq5A2feIKrtPI5MLgfZlrwlHuuQ7vv/issXVKS7baJEt0IRa9wuSp3zX1G/nVCwQn+4rstBZO97ckw3TREcjmp2zmodkW6vOPBOMjiCEKmpEiIHiNrMkNxhZYdsdgxGv2oZFpKon4bxDqJ1rDfl9HJO12MBikgYn4doRbox6ZIjR1zb7dOn2xDpDuVezqI8kGgNVNftL72cFyg4YijXYMuiqWOm/0i3sd0UCzhjujILVnDx2K500pD2NKGPp99vLMzUeP8httqlJ9GIzpl+F3BYdENscelBtEU3Sg5C1YnrPbr9CDie0ENMBupHHLqm23gOw4t049zI5oCrtHputKby55UQDLhHI3L5+syNtHZvhbdXsp9INwvdDG3fIQq5nhtZQ8bxJ++j35rujNCR7jxNcPP3C/TMsdUTvds10csLqryNoQjHwZz7SssmakygtmGBUsuNcHssFqMy/pzYh2vRbrRuDKcvdTiR7rFaOzJ/ICJ96QHd6K1zR4h9xbhDdkqgeu5QCxleIzzP519zUHd6/ezhdNkB3SgSvOe9/gKTXNYULpUH3EUV4x+gygPuEPeNmVk8ZrO1BQVF20KJboUixiSv+oysBcvJlZhOlfvdEuvNUURAqSHS3RprujmCG6pW0QinNsvRNr0GNcGit4NZvrvcp/ZUbg8DUcnHFNrWZjVTe8m9XO5DDfGlR1ejJKzQH1eWU3XShB/mWMBqjqymWxdgAUQ3i5T6kW5fIzXsO4vufppIKpRquiEEI4l0y/eNLajkqOHorll039H9A6bd1kubboLvBC+0sNv76K6Zfhdw5Eg3R5SjWXqAOtCDnp9F05btbvA5l1NXI120C9QyLNxI9/99tYJOn/wPrdhVJsYT2j6Bw/rm+SxscRbPwu0lARcY5NZLL87cpAs9b023JLq145CujSF8lZZr3gmc7m3EX69u3j6/kW6D6ObPl18LIchwpBvp39jHsogj3aFFN9y1AdoEhiu6defyUKKbI93+0ssNNd1yXbdsptag9HJtu7D0uJ+2kBoMRNmfO3WIzwKAv3ruYMcU5TdbtYg+99xGmj1ahAVyLA8En3csAhhN8OSypnBxdBhF1cMvJ0pIrpdejnE1S0tjH9Kx/hhQtH6U6FYoYgjqflJnPyhuV42+kdy24NEjRXzBEzO9pjvK6eVow/JbkD6i0abUj+jmSWeoVlhGWAzLbWJYBEA8Y5KJz8FEh915jbXcEE08YYSgRupifirckD2iF8J+b7k36qlHM6MkrOTUcmN6ubdlGLuXex2MA4FIJgurQJHu/AC9umXRjeOCVHKeJMIEyhjpRu0gBIopgChh6qcmI73cd5LJxzUSvOnl0c/+kHtAA17AgaiRJ86+ke7op5ejfzvwZ8IU6nvFQCzILdoa4pFgXDgJp083xsai7aXie/TyrM0i0odzhYyRAzURJNd0v/znZrrq06X05l/1DetwnBdrEVPuf8zbxeIqLzWpXnq53J5usdYurKfk6h1KdHvTy+svKnGbKiDqx7XP9BHdksDHwqlJy7BBVg9fd4J5F8joi24Bvv8QXP9obbX8mY1xuyxjr24W3XJE2R8c8d1SVF1vYcSfKdywTp6FqpW7y/VrC4+/sIzDNIZ2zBC13OirLXuBBN3W3BR64qRBYqyN6JqlC18j/H3Bd1Y2scR1H1lH+PtgC4rh0C4tSaSn43vAi3n+ypoahMtJnRKr9LGKzgAQ9xjLB2mO+Yq2hRLdCkWscLso/dfbyVxbTnXtR1H1iCtivUWKCICA4gk8G9ygJZHRzKmhQDzc8dVKuvPrlX7rzZoCNnmR6810g7AIhSxHWeUotl6DarUIAd1Ri1rzaz0GYsZIt6+DLEQKGwEhpVWu62ShFy1htcJQ4+orun3Ty/WWYUEWJ0q0ya8pgCuyLLrlHtyez/OOK+jKNXsrdQGDiSOQjx0fU9TSBnPy9dfj2Ziaa6yPDQc9vbwJfA7kHtDcYgoLAxBK6/ZV6JNmXsDJTbVK6eXR2R68PwvFUN9Pr3mef1Gij9uGRroNiyRJYfTp3lRYqZdt/LO1hN77Z5ueNdFFE4CIMPJCGafuox80O0czf2woFBkhiOCeMqKz/jgWRbjG1196uXx9WapFXNkM0UiSNoZ5nyGI+Hvub1FJXihCuzKOgAYS3agZ5+eQYh5xpDs5eKQbLa6wkAahyFFmGS6N2W4YS+FGunHOsOCBRQOj6aW/9mfdc2zimoXjuUYrK9BruiMQmXjPr64YS4+cMJAiAQtl3145lj6+4oCg781l7PJ1lVPLu2Wn1OsJHin4e14059ICYCxripSE3Qso+5OJ1G/Bv8R9HOepS3aJ22hRp3p0t02U6FYoYkTy8vcpcfuf5E5IpvKJzxGZG7iaqogJPJHBv3wWj56WRNERfJi8YQLl9pM221T4S4PlSTEmZJxSHQ5cT+wT6Ta4LbMpGr8WLa/kj5DTy+U03FOHeRxnv1y6W09jh/CMdus2pN3Kx8Cnpjtgerkj5PHF+wWaLLKQrB/p9j32iFCxqOZFEtm9fJeWphoqEmSMdEOwGYV4w0R3UxqpafXCmpBDpAqppQDt5jyf69TPF8zfUjnSHaXIO6LAfI44JTkQJSHq+Bu6QMGLWPUWTsKIdK/VFm2Yr7QU+YHt08X28HcJ+4lrGqctYxw+8ss6n8VFzsY5rG8u3XhEX90pXm4TJhupyceByxRYQBudy+tFurXFLo7C47vkb3zKoobLEIyi2/hZXTRhi6g/R4czkqxRMVKbt8VzDceCob+adU4vx2IZX2fxm9PNQ4luLBrweyDaLeNvX7AIMdRQ192Q9PLGANNIOSPBCLaRM4jk4+o1UQt+TBpT120sa4oUd1ImWUo2kG3zT3SwbbN47IdVnp7kh2vlG4q2hxLdCkWMsFR4XJ0rDrxHOJYrWhYsrrAaj/pBFlHRSqeVo5aIRDUH/iJyspFQRZh13YiOsfGabObE7uU86TRGurnNkFzf7c9BFpMWRGkw8f5lzb4miXQj0gxRhdPK9Xdc0w3BwWnM3KebhTmircbawHDSjOsbqflGuh0uXwG1Uqu/Fa7MmhOy3Kdbbxfmx2RKxmjCBXGDsSwLOWN9bDik6jXdTn1MrNlTEdJ0LKJItySgUGsOFmgRWU4th4DAeNNrukOMDU89b+hSCo5y8xiXjQY/XriD7vpmpZ4NofdmDxA1bcgCBbZTbxlmrOkOo0/3Wi0j4OgB+T7nemD7NBGd1mtRy+zCIA1DGtkZeG+kpX+zfLcu6HhRELXgPfJS6fjB7cV9ucUVFoZYjHN6ubHO2Bh99p9e7vRx6kfpgD9kIc6LM4D3C/thjJB3kSKe/qLDjanp/merlloewGwMCxTImsG1g1sCYuEM97Hv8KwIBdd1G9uGGd3L65mpaVkGDXEvb2r8HVeviZr/sRIpnNnhK7q9GVb+HNlD4czuQ/b+Z4jbt1g+06PdOJfje6kywraKEt0KRTNh3fYnZXx7IVm3/iHuVx54NxWf8S3VDL041pumaAC6u22y558yR2KjFdkr0lpmgQXbSkOKFYgaOT0uUhBV4YmNPClGOjdHvcJNMZddj4UrsyZCdfdyY6Rb67drdOyGMZg/B1mIKJ7Ycw0lJqXRjHSv0Oq5EQ3jiR+nl3OPbt+abu/2BTKdC0d0c1TOeCzk1HY50o109JxUa70xwyZTfIwDIQsu3OYJphwBb1R6uXYunpixniZ9sJD+0upaGwpECAtq2Yl6jGamxnXKemq5tiARbnr5/2ZvpokvzxWmYcGQXZ8Bf/fwPX19zmaasbZAN84K1jJM3rZIFuywjzwMA9Z0B3Evh5AGB/TIpnNGeVPCEemWMyTw3eT0Y6RFX3VQD3H7+T82iQ4FszYVim3B94RF0C2H9qYrD+xOl43t5hO1ZIEsd0eQRTc6EwQaa7ro1hbuePEkUCq0GMt+ouxIgUfk8sCeOfVMt7i2GMeGF86MiwKByApipIj34vT8/TX/ASOiD7d2zLlcYas2phCJDccgjKPhSGWXr7+ckm8saRmuuf4v2eH5/8KZFs0V6Q4HLkWQe3VzeUO0RDen9stlIpH26PYHjHHdZiuNciymA8wr9Z7lDbmeKloHSnQrFM2Ebdk7lLTlV0ra/LP+mKP9CCKT+hq2RFjscXok1xxHS3TLTtQQEPJEyh/3/7CGTn3rH9GupyEgxZujKvIkVZ6shWumJrsey2Jbdy/nSHe6b6TbWItYWFEb0EH21KGeFHNGjnTjcyJJhffHyt0eUTWofbpeE83CVxbA/Jy8OBGorjuU+JKFJGpKZfdpTi83tnBDpBuOwPz+LBZ2apFumBwFQxZsstCWU2AbZaSmiSOODK/XxB7ARP/f36+mF2duDPt9Ec3HoUAGgtzruG9+mhBIEGNr9pR7ncu14xluyzDU8eMILt/pW89vBOIecIYLpwEjO4LFM4uDUIstDYl0y4ZixppuPo+B3Mtx3Fl047hdMKaLGHfoocyO3tyGC99lZChwvTcE+uAO6SJ6evPU5fTkjA0+juccUb1iXHfd2Zo5bXhH8bec1mwUtYFSy/21DAuVCg2RyosPcjQcEeXpVx9Ij51YvwYZ+89dC7hswVh+0ZBIN1zhMSawrfAfCDfN2VvPHZ647OEn0s1RboxSzvaQFyBQY45rCRZWKhtrHNZSI91ZfiLdDTCVM+LK6Eo1g84Tt29PQLTbTUf0y2/09ipaLmq2r1A0A+aKnZSoie3qwRfEenMUUY50yyvi0TLxYtHAcNpsoEk0P89po5HCEzzUBRqjKrqZWpjp5ZzazHBdN6e7co2cHk3TXs/mYZwS7VvTbUhDzU2hUVodry66JXHYWAdzdi73TExZdLvrR7ql2myvmZqjQYZavMDBQlhehOAezmz6I0fG8X7YCrc0OQ030i2nJgcS4HKf7oZEunHeeUJbKEXj8RjqHN//Z3vYBoRcRw0hJdfF4zaPhy+X7dadiL2R7vBKD8o1wSwvehmBiN6oCepxPbJ9RPcGrRcz2KSJg5BGapyK7ycKD9fml//cRH9t9nVIZ0Ftksz86tV0B4h0oywDYgzHDC264Efw2SVj6KMLR+vjWe4vDNdl7t+N518+cyidP7qLSBdnUXdYiL7t4LIDutM754/UzwWQW88FF90mH9HN51F+LyNcLyybuAFEGv1Fjjtr4ovHGGcxRSYO65/DeVr6/ZiuWUGNv3QHc20sbQvTuVw2RwNbZdEtGcIZ9xnf9wl9PIsl3yzfE6fp5b618iVVdfr1tVuUarq5Fh7ZKpxRFq1jUTXmBnKYEmmMeS0dmbBEmKgp2i5KdCsUzUDyio/I5HZRbacDyJnbP9abo4gCLEBZaEXbOIojmTwJnr/VW0PqT6DzRETucx0JPMHzZ9iToU0owxbdUno5gCGcsU+3HE3DvkJEsMjsz32nJfdyfxGt04d31CePOA+INrNwbMziByZeLDQGdkCk2+RT012n1VfjYXkSzWZqgTICvEZ1gSdymOSn+DHCYuM27gnPQFBgjPCkH14Anh7d4RmpyTXdcnRbNqJqUHq51Kd7U2GV3u/cmMEB3AbDvUicy2WO7J+vi+7X52zxiXKG206Ov7/GRS8Zdtrunm3To7YslFiMA+w3Fkv09lMBzjtHIP2ll2Nf3pm3TWSyyNkb/F2SSwIYXtQKFOlmEzU4hcOAS2xDYoLP+efvJq4LvJAwoH2a/tqbD+1FH1wwmib0zqVTh3XQv7ORIke6AzmX+0S6ub1VGKZfKdpxMIruUJFmJlCHAX/w9w/nmhfIjKJ7vwCp5fV6deuR7ip9nIUDR36ROcTnnq9FgfblpCGeMp3pq/fq3SviKr3ckLa/RTsmKEWIlgM4H3f8z2CvlmiklwNXagfa3vt8cfu8nLVxtaChaH6U6FYomhpnHSWv/FjcrBlyYay3RhElvOZIVr/ptNEyUkMNGEAkO1Bd94YC70TfmKIdLttKAkdVMiJOL/eNdHOEW6/p1ibDwnlYmzghosZ1zDy5xySQhaq/yQoM1SC8rz+4py48olHXjUgXPheiuk9eqhTpdhl6dJv9CohADubhpJcDFkL++oJz/aGxxRg7mHOPYV50YPEUbk23vwh4Y9LLsR3rpeivLGZlszgWpkaQLo/olvdv6tdzM0cNaEf3H9NPROlZlLLg4jTRkJFubWFJdoI3wj2pR3TJlISS5/uzUY50F1bpi2GiTZwU1ZUJtGCH6P9ni3bo53WBZKhoLNWQ4UWtQJFubqvG/d390UHrfb18V5kQ+1jUgtCR6ZOfSk+dMpjuObJfg8ymjKI7WLqwsU93OJHuEwZ3EMZw7GwfCrwXl28Yty0UiCTzEZAzXXDNW6qVVvjrzy2jjyWttliPdIcpuuHFAXHtlq7nuolaALG3X7dskdWABdVg19pYwdfKYu37qP+fCvOYhAO+Q3wd5ZZt/gw8G0rahFtp/fiXqO85z9d/0hne/1RF60CJboWiiUnc9CNZqvaQy5ZP9l7HxHpzFFGv6U4IO5IG0fza7M16ix0GE9tbpi33qcVjU6yDe+cKEQEBusHQH5fZUCiLmrpGpZf7m8xEml5urOnmKKbep1sTBZioe2tHa/QofZ+8ND2CzJMsf7V1EL13TezrYwQVDQfz1VoNa8/cVDHZZxHMwtfYo5vhBZhQNd1ySzZ/oM6SU4sZFuA8MWdYVKL9Di/WsMkX6rlDRYN8U8otfm831khNTrk29mEPZT737O8b6KhX59JirYaahXqg6CWE1ruTRuqpyv3apYZd043vJ4sUdsf2B4ynwIjOGZJQqh/pxneWv9P4DsmlCP5Ft++2/b2l2MfLAdFIhsWn0URNXjAJFOmW67kDwd9LrqRAPXdDhXUwwk8vr9+nO1RU9tIDutF7k0ZFJJw4xTsS53KA6xVfJ+X6Yyw4oSwFYp7Tv0PVFuOaN2dTke51EapdGIPzw220uG1YIOdyebtP0EwpmXiu6d6mZQGEm3IfLl0MWQbeRZ3GR9PdydmUOfwUSpKuxaaaYsr85nzKnTyMrNtnN/ozFC2DmIpuu91O99xzD40ZM4bGjx9PkydPDvjaNWvW0LnnnkvDhg2jE088kf76669m3VaFokG43ZSy1DOuqwedS2QJL81NEf+wAOXU63Ai3UhLffOvrfTMbx7zITmFdNbGIlFXR4Y0XEQh4BoM5EiXjCxqCit9BW+4sLjtFhXR7Zm48BSdxbbep1uKonrruu26CGuXjjZYnuPKoiXcVM9oRLrZjK6/Jtg40s2prcYe3fUi3TWNi3QbjdsAp6wa08U5fZqPFyJCcJUGcGgOhU+k2xr9SLdRdMuLQnLU2189MzIrpi3dJSJ3v68v9Km3DdZCqVduKn14wSiaeul+dECPnIDu5RinvIBidNoPlF6O13C7thGdEem26RF4iFxEt+UFGTaQC7bQonc+MByDzxZ52koO1VrWYbFONyU0dAKIJNK9NoxIN9psyWsEqOduCrg8B+NYFuChWobpoijKUVk5xTyS9HL5HMuim68FKIcItWgBvwYccyy+3DR1uRj3GLdy9D0U3QxmanqP7iALCPVEdxyllxuP6XZtEcpYCtBYuJ6/KSLdMhDbqTPvo+wpx1Pi1j/IXFtOGT9dR+ZKTws+ResmpqL7iSeeoOXLl9O7775L999/P7300ks0ffr0eq8rLy+nSy+9lPr06UPffPMNHXnkkXT99ddTYaHnn7BCEbeYTFQ14ipyZnSnmsGTYr01iijCqdbemu7Qke5VWgTV6HDLE6OdWrRMnvTDCIp7EHPbmWDp5cHSYgMBQYeesAHTy7XJcDgtw5AOvEcTRjwx0mu6DX265YgaIoUcBcWEn8Uk9/YOdyIYbhpxMLhFEqJ7wFjT7QgU6Q7SNkg8rp3nUKI7yRBZl29j//jv8ZsFOjuYQ9RiAQeEY9oTjnt5Q2onOVqGKB9nDvDY5+PnG+muf76mr9qnm9et0NzkvTXdwRcwcVzkrI1UNlLTosmIQJ70xjzhns7ICzU4V7Igl52ocS4wPhHlRp02C3q0CMNYT5BM3djlPNg517MzpM9H5gmfx/uP6S9SuzGmEQENN9Ltr083Fh3Y1K5fENGNLBI5m4BLPqIN2lbB+fzKcd2Dvi5gpDvK7Zfk61+wRQB/8P8CeRwF6r7gD2SU3HZYb9FWrHdeihDbZ4zoFFGGAdd/c4YEL5QGW0BAhH201nIP1wBj2Uwsya4X6Y7MXC5cjM7x/lpVNhZTbQXlfHgIpSx7myxlW8W80JHTn0w1RWTdMTdqn6OIX2KWQ1JVVUVTpkyhN954gwYPHix+1q1bRx9++CEdc4xvCu60adMoJSWFHnjgAbJYLHTjjTfSH3/8IQT7hAkTYrULCkVY1PY6mop6TCQyx8/qsSJ84KiNCQwLX4brdvWabsk4KpSYEy2tnC59csMpgGx+JepYtUkGejDzBJ57MxvrPjdK6eUNMVKD4IW2wYTLn5jRI90BxKQMRBG2H2mLED1IB6w2uJfL4o4jt9g3BBkR6YGAlNv8RJLy6HWRb3ikW3dr1oRGoJpuFrzhZgSE06dbfl+OrPtG103iHGF8yOeKo2H/bC0WfdIhUuCWHApZXMsp5WzG1dBIt5ySzosNOLfYDdQnI1Itj1V/35uvlu3yWbDCd4Zruv0ZqQWDzcp4AQhZJziia6UWZuxczmA72cWb4VZsSIVmMQTxjff5c0Ohni2C1O2/t5TopmtyH/eAqfjSQtGUxZ4o97ie2dQ9J4WOGpBP7/2znaav3keH98sPXtPtx4iP4ZZtGDu8UBMION9zZkFDjdJCgXH6xEmDwnqdXHLRVJFu2TMhkvRyWaDJ/gShaqqNnDWys/hpKFwXv4Uj3WF+/klDOtCCbaUR1bE3q5FajUOUfzRFTTfows7x2vtHslgSLu7ENKoZcBalLH6NarscTGVHv0KmmhKyVO6mus4HRu1zFPFLzJazVq9eTQ6Hg0aOHKk/Nnr0aFqyZAm5NGdYZt68eXTEEUcIwc188cUXSnAr4hqT3TPZEijB3SKBoL3+i2V09WdLhZgJ1jIsmAOxUXQbX1dhEN2oCYY4MWkr/dz2CSLAaKaGv0E0mIOuEBXhOkEz8kTGX1QlkvRyCD7QPi1Rjy4a3cvlyCm3B0N/ZIDeyxDsxprdcCMO3n7p4R0DCLnJf23VxQjELO9DP63m1VjTXRsg0m102pWBWGChwG1wAqF/npQe7K0jN+tCUF6Y4NZYnE0Bwe1PkBlJDpRe3siabpxDWawjdZa3l0sn5Ei3UXQjogwhi2OM90GEE9Fpr+iOrFSHtwXvg2PJJlXyuTKaucn158b0eE7nl1NTZ2qiu3deql6fzJkakUS6MVa+We5JNz1bE2BHD2gnfs/eWCiOFadZ+410a48hVd7opO2t5w4c5WbYOA1mh9EWOZHC+1nTxJFurqsOtVDiDxa28uINX4eivTgQCIw9gJIOjHO5ZVgwJvbLpzOGd6RrxvegeIK/N/jewmyTj6fR2yJqkW4t4ytQq8rGUjnuX1R07m9UeuIHotbbldVTCe42RMxE9759+yg7O5sSE73/OPPy8kSdd0mJbwrltm3bKCcnh+677z466KCD6KyzzqIFCxbEYKsVivBI3PQz5bx/ICWt/jzWm6JoBIhccer2T6v3BTVS43/OgSKsmEjLJkvyBJ/FGEQ1osFsooZ0ZUTDOcUOk2ijmFy/z/OevfJS9ehksHZHQU3UAqTs6aI7jPRyNv/BQgE7kwdyL+fXyceAxVS9SHeYEYdII90/rt5Hr87eTHd9s1IsaPDCCCZhLIaMkW5HgEg3Zz34W5xgczVEe0MtIOhGaj7u5V6hz8cIafgMMiJkDgqzH2yg9HI50t2QPt1A3s/euSn6wgCPT3mcGgUvfA7AYX3yaGhHj6fB/G2l+uvaRRjplvcBYw09eflzuUe4cRv8fY/0sg/p2LMA4KgwWl8Z218FFd16loxTLzPBNuL7c4DWvQAiGUIe6fa/itpuNiX0l17u/a4Y67ph2uh5v9CRay79gBmdv77WzYneMqyJI91dG1HTzcK2oqbhke5obD8WCzBOcC3jzw8VwcZC350T+wojwngC1yG+Hi7TskbQuSCcBcVI4IUz9mZosp7lJhM5c/r6DcRYCldT2u93E7mi0wFFEX/ETHRXV1f7CG7A92tra+ulor/++uuUn58v0tH3228/uuyyy2jXLm/qWbjg/0a8/7SU7VQ//n/MNcWU/vudZLaXUkLR6ib/PDVemuq4ukU6J/PH+kIxOcdzTpcctbSKx9J4wlXr9Pt+m4oqRdo1A1HIz8nOzTB3Kqqu1VOG8TwikBypK6mp83lfTi1HaysWAojQRTJeWIAgLdbf3+g13TXebQ70s7uc+0Mn6RFSiG48x0IBkW5+fadMX/GECDceN0YyMWkN57ylSZHucF7PEXaUEKAml0U3jKP4NYkJXhGM+w4tGwup3vJ7cR9mCGzj57DohjBHFDjYNskinx/jKDsmxyh1wBaN6pqpP48MAZmDe+WEtf8+ddyi57P2uDaphSiH0G/Id0heKEF7KTnSjUUE2XAOkSX+O0Rxf9Scuk8e1oGGdvIaiXnGj1m8dyTbgn3gfa2qdegLTfhK8nfRGG3Hdhrfh0U3xic/ZjR1kiPdTJb2Xfb3k57sTX3HNWaX9h1CdgCPFbPZRMcM9ES7v16+W1+QwXkyvl9Sgkk3QcOx5McR/Zy+aq+eth7qmPE4m9AnN+zjDBoyVkL9yDXd8rlKj3AchPpB6z2+1mbYwrvm6OeRI93Stb2yibYz0A/GyTCtd/yyXWVew0+0NGuGz4/0J9R4wf7wgtXyXeVB/0815gfZR3y9QjcQNjVMS26e82Zy1lDWV2eTbcX7ZFv5gecxVy0lbv2dzPbimJ+nePkB8bxtoYhZ8UZSUlI9cc33k5N9/4EhrXzgwIGilhsMGjSIZs+eTV999RVdffXVEX1ubq7nn3e801K2U+GHKTcSVe0lyutHKcc9QCnWpk/LU+Ml+szbVCTqMSFykiyell1bKh20f88cKpT6C/fonCWi0V0qPKKq2uGivLz652PHJt/0dHNyongdoquy6VcFmahOWwXvkGXT3ys3LYkqi6rInZjg8/7byz3XzaHds6mguk4YwdjNFr/bEGi87NYi64O6Zvv9ux5aaQ8WB3Jz67cOmrFqD+0tt9M5+3Wl4lqPGOjdIUMIGuC2eLanVnugQ366/jk5OWlCZLKI6JKXJp7r2dHbWxfCo0tHCMzQ/9naazWNTpMp6DFgNkht2r5etZcsmiP5yJ65+t/nadkEbu09k3d7FjpsyVafz+ihrWMjvdT42WtLPGMmNz0p5Halp3oWIhKlMcKu2u3z02lSzzw6df/uPlG+Pgne2/3bp9PQ3vkUDu207QI5mdJ4y/Icx7SkhAZfX7KxH1qmyIieuVThcGP1iWrcJnIl+UZ+66Tz9eWiHWLRpEu2jY4d2ZVSUpPpjblbhYgAHTJtlJ/vERaRkG6zUk25nSy2JL3FFzAn45ykktvqMSlj7GSud67KtGyNHh0y9OcGdfPNKhjdN5965KdRx8xk3aCwS75nXPvdLi1VHCSn2ajM6blW9MhP9fmbSw7pTW/M2SJawnXP80SqM9P8jycsbOG6Yku3UV5uqhhD132xXHg3HDO4Ax09smvI43VyXjodMbxzxNG+pvh/lF+oLZJggSknTS9Z6doxk/K0nuLRYkS3LJq9vpBG9MoL6xrCtM/xpHbXkXcs12o9HPBcJO/VGA7om09/biyiNQXVVKVlBnRu5x2v8Uao8ZKb7vEWWMmlER2bZl965qXRsh2ldMlHi/XHurbPbKbjlk502N1E399OaX8/QWntuxL9+jBR5V6iiQ8Qjb64GbahZZDbgue7MRPd7du3p+LiYlHXnaBNFpByDsGdkeH7zxQR7l69evk81qNHjwZFugsLy9HFKW7BnBIDKt63U+GfxLVfUcaKqeQ2Waj0sGfJUYrV0vrmV9FCjZem44Wf14jfxw9qJ1LDv1u5l6bN30q90q16WyBENkqKPRMBhxadLq2qo4KC+ud8vlbvyezYW04FWUkilU1OI169rUQ3C8pINOvvlaGtwm/aVUrdpVTilVpLok62BMrQIjSbdpdSQae0sMfLBq0FUrbV5HfbndqqP7Zzx+5Sn9Q+iMHrPlwo0lgrK2tos/ZeGVYTlWhO6kVl1eJ9q7SoT01Fjc/noEUYu8amWUg8l+h0+qSMFxZ66+GDok3GC9D328++yGDbV2gpi+DH5bspS4sYd0uz6n9frbVhq6pxiMeKSjTzLZfL5zOcWn0wonC79pT6pJ9v3eP5nHTpnAbCrYmwYu24yS7a5SVVRDWesVYtv42URnxA96yQn8HUVNl9zjP/navWsy8Q9g29viRJPafaJ1koTcsY2LqvgtZu812EKij1nq8FGzwR7YN75lBRUQV1TfHMEXgbcmwJYe+fjE2Lli7eWKCnKYPNu0oojVy0xzDGtuI7avicXVqEPFE69+km78ERNehuz3Pdsryi2+J0Bt1mpNAiJXjLrhJat9Pznc5N9t1PbD2cvn9es4++W+oxWiOH//dFZBiie9fecrE9yBz4e1ORePy6cd0iOn415bH/f2TXvoOV1Q7auqtEf/9aXEvskXdsCMZDR/ejPePslGX2XIvCxeTwXN8KSj3fW1DI7RMDnKemoLeWPfTPpkK9LMBtr222zw+XcMdLulbqskL7X5dn+F5Ei8vGdqVXZzn1bCcs9lpq/f8/bxJ6nElZeW9TQsEKos8uFA/Z+55E5V1OIIqzcxcLTHE83+Vti7roRn11166hV0hDgcg1xPbixYtFn26AOu2hQ4eS2dD7dMSIEfTPP//4PLZx40Y64YQTIv5cnKh4O1kteTsVXsyVeyjtj3vE7aoxN1Jdu+HIUG4W1HiJLjBsQrseTFcmjelKmworhej+bW0B3TKhF320wJN2jrRSPu5yH2B/54L/keM93VrUGK8zOibvKKnRU0ORMszvxSl2xZV1+mMwSeJ+rKjpZvMxuEIHGw/yeKnVDGo8+2Pz+3e2BIswakOUrKTaQe0lky2kw3Pd6FMzNugp5R3Sk8mupZNX1brE+3JtNyb+8uegrptFd15aknhOrpmF8At3fIc6DzKbC6uE+EK6MmpckdnA6cNoF8Z/L6d74zHdvdzsux+ozeXzi+Mkm8Ghfzanl4faLjZow7bhtbJARDsqf3+PbcQYgRHcQT1zwj5eyOLQb0vnhdN5+dg35PrC6ZqYvCIllFPgcYzZEI1B7Sl/BrJKuLwCj8HbAN81HiNwLm/I9vDYWLXbV1zjXOH9yrS2ZTj+OMfYTuPnyK38+DkY27EzO9yjLSbPOeqZmyoczEFWiPOOaDI8HXBd4NaBcPY3/s2ZIzoJ0c3d5JCJ4+99van0TtEm7bnfN4r7F+/fVXzfmvL/RVP8P5L7dHO9LcYVxn20PwvlNPiJ9H29Rmrescw11Ti/zfU/elCHdHG9RnSY/5ekJ0W+P81FqPHC//s42yfQ/6nGgusmfmDwOG9LsfgfhGtPsx03k4XKD/kvZU09Tai4miEXUOX+/0duc1KzzSVbAu4WPN+NuKYb7bzOPPNMeuedd2jPnj0N/mCbzUannHKKaAO2dOlS+uWXX2jy5Ml04YUX6lHvmhrPP55zzjmH1qxZQy+++CJt2bKFnn/+eSH+Tz755AZ/vkIRbVIWvCjquOvyh1HVaE8phKLlAVfju79ZKW4f3i9PiIWx3bPFJBbiFHXe05Z6TJ5umuDNwOEUTEzWZZEEUMu9bl+FXtsKuGbMWEcKN3J2TZbrdHXRLbktby2pFhMRGC7BaZiFquwKHQqk2WIug/eQHZllkNbNdd1y/TlgIQQgviEcALaHXcohtpHe6s+9nF/LsDkYm25F6lAciXs5L4SgHRLEjL4NaYk+x143NtO2XzY1k4EIYDMldrdnSsJsF+b5PHZL921R5vnMwP+27z2yL908oReN6Bx+6nUgI7V8LcWdzbQaAn8n0DsY263XdFfW6u3C+PPl7wEfK9TXMkM0MzU2UmoILLrX7PWNGrGDOW8DO1gbjdRw/rkOXV4Ukh3lZQM1ua6be7iHOla4LrDoRk23EZxb+DcwgQyl9LZhDqeoAcciBwzfLtiv8UGTWLuXs0kirguR9LBuavgcytfIpnJZDwaur1g0BFzig5rylorxmtktyj26jWCx9LhB7cX//ebG0XE/KjnzOyo+91eqOORhcidnCYWZsOsfInf9FoCKVi66//zzTzrttNPo119/FW28Jk2aRB999BEVFfnWQoXD3XffLfpzX3TRRfTggw/SDTfcQEcddZR4bvz48fT999+L2507d6Y333yTfvvtNxHdxm8YqyFFXaGIG5x15DYnUOW4e4ksoSfWivhjwbYSuuSjRbS5qFpM7K8b31OfwI7r6anbfOnPTeI3RJrcu1tuq2QU0mjJhdZBmDgO7pDu8xp/ortQE67cexmwgzkLEsBtrnrneXoGy6ImYufyAO3CGHa/ZUMwhk3YBrZP83HIRTSNxTXqL+WFCNm9XG4bBvI0QYUInu4MH0FNaSTu5dxeC6L78L55+jE29iS2htmnW24zxH3cGT5vocSXT2QdNdBaRgNA1ArCPhCH9s2j88d0iUiI+IhuScDBpO2xEwfSf04ZQg0lVXPlZpGYq5VFYHwWaunCEOTG7wFnBciT7SHa94azIRqzPdyHnWEhzVFJ7nXM30OGF8OQbWBsJ8Xux71yvYK4l/Y+Yl+0RavA2+ZtOcitAztpzv4yOLdnjvQuEPlzLzf26mbXZ/Ri9tdirCXA3wlcR5q7DVekkW55LOuGb83c/5od/43b1hpEt9xLvTXiaDeMnNl9PHfcbsqachxlTz2VrDv/jvWmKRpJxFdftO4699xz6b333qM//viDjj/+eJo5cyZNnDhROIpPmzZNOJOHG+1+/PHHadGiRULMX3yx1ygAkW2Ie7mH99SpU2nZsmX05ZdfCgdzhSKeqDjscSq68C+q6zwu1puiaABwsb7+82ViAo70vHfPH+nTmxa1lAwiUNcf7BHkDGrnvBNnX8G1Vpvko+0Piy5OK+fXctQUUa4iTTTnSNE0jvqxIAEbCr2p5UBPL49AdOs9ukNEDwL16uZI9/DOmXTvUf3EbWQHYHJvY/fyWqfuXG7sAS23DTO2weJFhEgmjDwRR0ptKNZo9ecD2qcJkX+WJmaMEQ5v5Dl4n27A57cxkW5rgkHka+GqYFHuhiKfC1nAYTxP7J9PXbJ9XbgjAZkiWIw5eWgHn+wFZEPwGGWBK5dZ+DtWQzqmNz7SrUX75PRkUKZ9HotuXggwLl7J7cKMCxunDeso9hXHTHYxR5YExm8o0cULSzgunC3S0eDszxw7sJ2euh9IRCdLkeFV2jgf1CF0m7B4JUn6TsiR7rgU3bIxJreeinK/51CwgzlAFhPMPlsq8kIlspCMmVKtGpOJHPlDxc3k1VNivTWKRtKobyFSwPGze/ducrlclJqaSp999hkdeuih9NNPPzV22xSKFocrtUP4vQMUccW3y3eLVO2x3bPotbOG1Yumje+Vo0/8/n10P5/INqOLbmnSZUxj5okii20WGz018QHRz87KeSHSy3dogplFQkMi3UinB92yg0cPAqeXe/6+S2ayiBa/fvZweuaUweKxFCnSjTRXABFijNZypBsPZ0v7zPsTbo9u8Vr9HPiPdCPNHaA105q9nkyBAe09gu6yA7rRhxeM8kk1B1apZZjcp9vfRDYjQKSb76M1Tbh11sbIOiKs0Qbt6PTbhsWQxoKsjvcmjaL9tUUMPp+ePtmeMd5DS8H21MG6A4pupMtymj9quhtCqkH49NNKPTjSzd/J7jk2fTu5tzwo0Fz+jT3kwZH988W+YsGJgdD+31nD6ZUzhwbNUJBFN2ev4FoSaLEJouPyA7oLL4JRXbwu/zKcTbKvwk7btGPN47wlwotD+C7wNSjeIt1620it9zv+n7DLenNHmodKoru5o+zRRr5mhlocbo3UDDhL/E5a/y1RrWbiqWiRRPxNXLVqFU2fPl387Nixg8aNG0eXXHKJiHRDdINXXnmF7rvvPj1VXKFozSTsXkjuxHRy5vSN9aYoGggm+3M2e9yUzxrZ2W+dJCbFr545TIhHOa3c+BqY13BvVqPo9phzuf2ml6MmdE+5XQgAbiGWI7mUc6SbHcEBXs9/K0e6EQ3HhC8ckbZWqzWXo/r+SA+YXq61RNImQyMlEcCiG8KFI93+ji3Sj7GgIUyopG3m/YkovVyqrUcNLiLYzC3Tlot0+jfPGS4i9pgQ8+cCRC+5FtKfCEaNNc5fndSn2wiM0vwdp4gi3Zq45Jpub2Q9+tEq3/Typo2GQUji85AizOOOF5vge4DHEWHn8S/XdGPfLz2gm+jVi4hyQzAulKFOHCUGxppuGJixmziizp0yPX/HKfGBvA9CiZ9wFovY+wHZNMHKBFBGcO7ozro7tRGOBi7e4Ukt75SRFNbYi1fkxSFO+4/XSDcSU2BghzHNRLJwGA2wkInrJzInWnJqOZDHbVsU3Y4Oo8mR2ZMSSjdR8popVDNUtQ9rqUT8TUTKN9zGkQoOU7Xs7PpGA0gFh9GZQtHqcbso7c/7yLp3CZVNfIHs/b0lEYqWAyJBSOuGSB0TQFCHM4H2miF5o2MQaWu1iCoi3du1yLJRdONvMdEurfHWm3KNsXxbjnQbRTcmJ+yiXFxVWy8iyLXBcg07RAz2O9BCApPpJ70c+7ajtDpgnR2nl0PcVmuRbn81qIhuf37JmHriGpHI6asQhQ8/xdmntr7WQTkJibrLOhzpwSuzNuvnGSn/oRYnWOziuGIiHaym21v7boh010RupMbGbXzeONIbTSDaWGA2db0v+w7gu8Zpt1jsYWd82fUZjxnFwmUHdG/U53Mminh/s4kGaAssPKY56wSfi+3cVWYXWSNsaFaoRbrZdyCa8Nhfp0W6/dVzGwkkuOXv2eLtnjZLA6Wa+JYIfycAl9/EW6Qb3x/+LuG6zm7bOBfNnd6N7xpSzH9dV9AKIt3eaya6GLQ5hJP5hZQ2+0FKm/0fkW4OIa5oeUT8TYSJWYcOnvqsQIwdO1b8KBStFUvROkpe+TElbfiGLBW7yG1Jotpuh1JbB6mMmGewCGwpzN3kEWMjumT6TRsPF3813YjKQChjetw7N0WPeBprujHRR4SNzb0gcuWJWhZHurW/h/hDVB3w8YaQgOs2ohsQC7LoRrT9so8X02mjutCtB3cX4ubVWZvFc6cM7SA+OxgsJssN+waDOGhWfyIhRYtOoaab24UFcluW67qZc0d3oTHdsqhffviRTa6tR7QUdd3sZTV/m6d1E/hq2W7arqXws/AKhhwtx4TaK7oD13Rz9LRB7uV6/arbN728iSbuOCe1Tke9WvumAHXd7M4NEI2D4MQiBcYW7yuOY7SdqVOl9HI4eXMknRdEZNMrWXQzhZqRmuysHy04EspR/o5+nMsjgb9nvEg3sAWnlvO1DYtjELJ8TuIt0u3T+g0p5toaZySZOtFkeGeP6I4kMyPuI90hMrJaK9XDLiXrzr8oadOPlPn9pVR8xrfkymiZnQjaMhFfCUIJboWitWMpWEnZn59IJqcnyuiyplHlQf8it83jbt1WQSrsBR8sEtG5zy8d49NyKd6Zq6WWj+vRuBYheqRbEqYbCyr1yQImwsaabt1oJ8lCiQneibaxbjTb5rmPFFwIWPw9hDcEr1x/jr+D6DaaqS3ZUSr+9uN5Wyk9wUSD2qfTkp1lIjqDtN1QpHPatFSrzFF7iH5ZmBoj3SKKqUUTA7kt+wOT7IaIBRbdcl33/G2eiB+nN8/fWqKbqIVCjmgj1dvB6eVB3MvljACk12NxIuJIt26kFjidPRqcM7KzcPSWW1w1FexgDrBmAeGri+4ah95WTk4tjxZyii8iZvICCcYEO+xjAUzvKa4JbcBtzvzVdDd+2xICOvo3BOMCSjjjPN7Bd9dR69SN5uIt0s1jp77ojs3iwClDO4rv1VGSuV9LpK2nlwvMFio78kXRw9uV2o7cyc3fzkzReOLviqVQxDGm2grKmH6VENx1HUZT1chrPBFuSSy1VTYVVukRiM8X76Qrx/WgloAQYFoU9MAejVs4YcElR8d0h3FN0HCqn9dIzZteLhtZyc7lAKZJnLqImm1uX4RIoZwejftr/JipyWL59Tlb9HZkZ43oFJYxFe9bud0bwd2up5bbQk78uQ4zUKQ7mojJuKitd+pp8As0kX33xL705K/r9YjigHahRT2OL6dAY3FJj3SHWdPNqeaI1skpzoGwGvuCa63DmqKmG1wxrnFp25EgC1aMcWQmyK7PFdqxaor6Y/nYY/Kut3ercejfRxx5ZLvw4kCRllIuC3D2GogmRndrROIbg7E+v6F18PEmuvG95WtfPEa6+fpeXuPU/TtiVVONcXzNQS3j/3AwsKB7QPds2lth1/032iTWFCo9+WPhIURmJd9aIuqsKRQRYC7bSqa6SnKmdaLS499Rq40SXIsIPlu0ky7cr2uzCKzGgppHCG+0IkG/68aA+mDANdxypJtFN0+uMcnHpEyu6W4nR6wNkT6k2kKIIKUcKaPeem7fyTmLBWOkm0Ug6lERsUM0BiLkwv3DS1HjiaMcwWUTta4B6uwgMjmyjBpzXjxoaozZBHCD311uF+IZbayQ6v3cHxuFuO0V5jmH4HU6XCL6zAZnfiPdtvrHic3vIPLCSZnm2uo6Y6S7CWq6mxtZdOtGebwQVePQ06FlP4NokSoJW4/o9nwGhByn/6OtGBYCcv1EuuWWYdHGGA0NVe4RCjmjBFF97j7QkuF94vMQj5FuOdvJTe643c6WxgunDxFHM5iPQVug3pzT7SIytdx2cG2NiM8UemTX1tZvR1NVVSV6dysUrRln3iAqPvtHKj3ubSW4g4huRI6+XbGn3muQxjlt6S49jTMemLPZU899YI/sRteQ9tdSodEXl6McG7VIN3r2ypEQBEuRcuxT0y315fWXns/ttCDijCZqRiHDpk8Mi4orD+klWnuBi/bvGnZE0Z9BmLddWOCUP3Yw5/7izVE3rPfq1qLZnEqOFlZwdT57ZCc6b3Rnuv2w3mFHj/U6awdqugOLYBY3ck13UXVkYo23yVjT3VSR7uZEPgZ6SzhtkQRZH5HUvje0TzeXe+C7yGeQ2/Tx4pKx/R6+zwVNKLqNwqzRolta8Awnm6MlwN9BTi+PVdp2MHj8YCzLxnyKxoH/zW1dcMuYy7ZT+s83Utrvd4v7luL1lDXleP2+Ij4J60pQVFRENTWef0h333039e3bt55rOVqJPfXUU3ThhRc2zZYqFHGCOyWfnCktu0aqKeBWNzCmQn3ohwu206nDOvq0gHrox7U0c0OhEBFnjfTthRzreu7GppZz6yvsL4QpIqsd0pNogx7pTtWjNZyqDMHNTueYQMoTbU7/lvE6mNcGFN25qUkBIt0esZyTmkSPnjhQGKuFYyLGZPrp0+1tFxZYIKCuG9FLnig3dVsqf5FuLh+AKRsbkt1yaO+I3tMrhF1Bjc040i0vTvCCQ7jRW6N7eTCR39KQTch4gUhPL29i0c0LQBzpxncVwhtZCSy6OVKZY1i8kk3emrqmG8ejsY7TckbJoA4tP7UccPkNu4KnGlLy4wFeCJANJ+NxcUDRsjFX7qLktVPJbTJTXccxlDb7ITLVVVHFwf+p/2IEANSCRVwQ1hVr3rx5dPPNN+tRoDPOOMPneY7onHTSSU2xjQpFVMCErqEuogm75pOlYifZex6l6rcDsF4TlzdN6EV3fbNSCLI/1hfQ4f08CxS7ymrozw2F4vbWYk/0N9agjRRq0aFlxnZvfOYC0oLhUL52X6VwIeeew5jcd8/xRINxHZXdmuVIN6KwENsQqP4m9uxgDhGni26D4VKell5urOnmdGeIGUsDDMr0WkXNwA3voUe6s8KJdNc2b023tq2inlszUQvWDi4U3K5L1HS7Qtd0I5sDBmrYX15wCNcczOterrUM0z+v5Ue6eXz6iG59bHnTvJvCSA3vidMI8cZGZRksurWxrEe6tc/n9HJexMLzTdFaTa435xZljUHOKGnpzuWM8bjHo5iVF5CMjykU0cLRcT+y9zxauJlnzLhFPFbXbgQ5M6UafpeDUv9+gpKXvUvlRzxDtb2Pj90GKwRhXQnQj/vXX38ll8tFEydOpClTplBOjjcqhEmkzWbz27NboYgH3vprizCPeuXMYSH7EfsjZfH/KGnjdKoadR1VHqjSd4xA4EFYQIIM6ZhOp4/oRJP/2kpv/72NJvTJEwINaeVaC15dMMaaJTvK9LTwaPUyxQQXonvNnnI92tQty+aTGsyiGxMzjoiwUEQaetHWEurmpzUKR0ohTAJHuhP9R7pZzEiiJxI4vRxgu7GgwNFcfz26GSwkAD3S3cS9oAELqo8X7qAOGUniWEA0h+qzHq6jeLDIM8QTZzLg+EB084JDuI7+ssCXI94JrSHSLS0mwUfB6HPAWQFNEelG6v9TpwwWBlOcpYBFku1Uo2dt+Esvx8KNt567aWqj5QXhxjqXGzNKWoNzuT/RnRqXke76ojtWLcMUrZvKA+6kxM0/k8ntotpuE6j06NeJEj0ZdYkbviPbsncoccdccd+28mMluuOAsK8EnTp5UkFXr17dlNujUDQJK3dXiP7RK3aVRyy6TTXFlLh5hrhd0+/UJtrC1pFazm2xUDP76cIdIs0cTuanDe8oeiNTnInuZbs8ontYI8SYkf6Y4C5HXXeF3mbLaNAmm5KxwzZPzO4/pr84nv62KdtfpDuA6GaxwBlKbKSWJYQfL3+EDxYNELWuqnOK7eZ2XIjMpwaZ/KYk+tZhNkek++yRnWnOpmJaurOMHpy+VjwGwd2YCCVHn+Ek7ghSY43jDXGHlPqymjpxfiKNdPP7svcBR9ZZ+Ldk5IUHLoXQjdQgupswvRyM75Xrtxxgh+bEz9FT/h7hHCBbhdPMm8K5XHxulCPd7C3QI8fWakRfS4p0cz03aC3HXxFfOHP6UdlRr5ClfIfo400Wz3c+ddZDlLLkdXHbbUkS3XbQ45scNSpTM8ZEfCUIVbOtzNQU8Yjd4azXxidcktZ9RSZXHdXlDSFn7oAm2LrWY6LWT3PvxsT6+oN70uMz1tMrszaL6CCEB9yjkSobP6K7XPwe2jF66Zfcmmf1ngp94s713MbJIlqguA2TNYg0o5BmWIiIPtxaz+BARmosFjDhwzHnfuAwY3NVN+z4IxvAI7rraGeZPWRquRzp5kh7s7iXJyXQS2cMpTu+Wkl/bfHU7Dckw8WvEBbp5YHdy1nIQTxymzZOmfZXpx/cvdzd6mq6sXgBF3dkAXCkO12qgy1twvRyf3A5wE5DTTfGLS8yyX3vm6Kem885Xx8ba6IGsGh3w8E9aXjn6C0oxpqWEOmWjdRMcbw4oGgd1PY5od5jjvwhnt9ZvajsmDcofcYtQqCbasvJrUR3TIn4irX//vv73Hc4HLRt2zb6448/6JprronmtikUUYPTM+VexeGSvPpz8ds+wNfLQFFfdPfRRDdAdPv7lXtFNPmFmZvEY6cM7UCfL9klBDjOCUcPYwHqbWEmBhqTduzXTM0Es7M6mqcJPmNbKp7Y79KEK8RUOFFYTi/H8YYcwyTdKOQQSUaKMwQ3hDk+q1xabEKaeEkDRTf+FgsmZXaHVM+dHJbo5sWF5nAv5899+pTB9N+f1tKcTUV0ZP/GmR/61HQH6dPtFXLVYnECeCPdkbqXazXdQYzbWiJXH9RDZMH014z8OL0cGRSlTRzpDlQ2wU7xcv1tz9wUWrG7nH5bV6B7IjSV6GavByzQRCPSjZKecNsBtthIdxz26Zbb37F3larpVjQn9v6nUWGH0eRK60BkSaKSs76P9SYpNCK+Elx//fV+H586dSr99NNPdNlll0X6lgpFk1PDojvCSDfaMFj3Lia3yUI1fU9poq1rPSZqffO9tYOo+b3nqL406f2FHuMtE9HFY7vR18t3iwnuvko7dQ7SaqqpgeDGdmESDZfxaAHR2zM3VRwT9NQGvetFuhN0I7dIJmUc/eOoW7v0JL9tVBDtrqytFiZQPXJT9MUmfE5jhBsLlLJqSXSHOIeon5VpDvdyBos6Dx03wCfNvqH4upcHj3TzcSrRhBrXdIfvXu7ZVkQ9XW63N7IeQOS3NM4Y4du5gP0UYLaoad9mE92Zhs+RvR3OHNGJVkxfQ58u2kkjtYhxU6WXg775qbR4R2lEXQXaErLoFpkBcbgIJUe6+evKi0oKRXPhyuwe601Q+CFqV6z99tuP5s71FOwrFPEGR4zk3rkhcbuF86P4++6HkTvF09tY4QsECBzAedJojPpeuF8XcfuwvnkiFRpCEcQ6xRz1vpxa3lhBZkQ2LkIUu4vBFI0nZru1SHe4NX9GgRAoDV03U9NEPy82cf1qY+tE3/prq8hiAF2yw4t0B7rfHETj/Oop36JPN0eeTUHPU1l1nRD8DXUvB8gIqW1Ffbr9weOfjxMyNZprXzm93Lgt4KgB+dQuLVH4I/y+vrBJI93g2VOH0DdXjNWvkQr/LcPiuU5adi/num6OfisUMcPtooR9y8lk93TyUMSGiK8EO3furPdYZWUlvfXWW9S5c+dobZdCEVXYkIgjT2FhMpEjux8l0fdUPfSSptu4Fs7moioRkUPdmr+IMVJJh3fK1GsLIRThFLy33Nddu7lZ/v/t3Qd4W+X1P/CjZUve23Hi7EX2BAIJhDBC2CGQ/gu0jJZVZn+0QAmUQFs2tIXSAgVSoKw2hFJIIUCgQICEEZqQvRMnceJ4b9nW+D/n1X2vrmTJkhKNK/n7eR6wLcvWtXOj6Nyz1H7u6Pc8cl/30g1V4v1BBRmiDFxL9vhxZs/zcZiZ7jCDbpmNk+uOGpRMt3+AESmZwd1V57nIMqk8l44Psd9cuxs5XtPLYyFwptvQ4++J+5bbu1zq80/408u9vyMO8B0p1NMdiH/Pa7z6uRn3l2tpq074z/yHk/uJ9hi5tk27Zzza+MJOujl23z/Zaf9eaFes6Yl2PoGsQtJjGTz0LrlvX0xp+z6nplMfp46RFyT6cHqtiIPuk08+WWQN5G5uqaysjO6///5oHhtA1MgXvRFluomo7ej/o87+J5Kjr+8sg96IA43Pd9bR5PJcn4yr7OceXpQZMKPILzymD/EGZiVZic908/OXnFw+tm/0d9gepdmLO6TQt59bG2RXK5nocF+UcemrXEfVY9Cd5Zvplr3F/gFGpE4cWkgrd9XRtEH5ovRW+3MGY/P72dITkOmOBlnyLYLuEHuzZWk0/97rlAsfHFCFO0ROe5FGDG5L8Uy3f3tFuGX40eBf/eF/AeD88WWisoNnJLBC5e8WxJ/2gp1eM93yuPgpgltDWLTWUQIcLkfJeBF0p+39DEF3AkX8TPDRR57VSRK/yLZYLFRUVBT1Ek2AqA9SsztC9nem7Xyfusqnkzsti8hoiknAzcdz34db6bhBBTRnVAklgw+3VNPC97bQhRPK6PZThwcYohZeH6IMFA8lMOjmgJ8DXo6jRocROEaKp7hz3MQvvHjvdrAXZurk8jBflPEFDL7gIctwg5aXZ/hmuuU+bf/y9MMJuvm/SGT4BZrxmF4e00y3wxUy8ywvbnAvvdw7zQPvwv03ku/HQTpfLPQMbkutnm5/mX49r0d6nh5RT7dfMMd/VznwfvnbfeLjohhmuiH8nm69Zrr5GPl5QV4o47+y/tU+APHW2X8mZXz3F0qr+Ey0TqpT/iCuIn71wyXkJSUltH37dnr//ffF8DR+3z/zDaDHQWo8OEtmLAIxNeyknPeupIKXjiWDvSFmx/Pt3gbRE/vsyj2kJz39PZb9xwf9guXtMtPt188djB56uuWqMB78Fou90fw9uZ+djQgwFKnbC/sIBu1oS2/DzXTLCo8j7ek+HP6Z7nhNL49VaSu/mPb2dAcbpGZRe+kjnVwuyYCeg/xUz3TzpG1tEBXPTLdsBegpg8ol5hw48d+3nAT8HYLuQbdeM918wUz7/M7HiYQUJFpX2VRym21kbK+m7A9vJNva58hUuynRh9XrRPystXPnTrr66quprq6OBg0aRC6Xi/bs2UPl5eX07LPPUp8+fWJzpABHEEjKTDfjlSzB/sG2rX2eDOSmzrKjyW09sr2+PZGBqyw91YOHP9pOn2yvoUUXTaQ+AfbEyosV7V2+Fy0qlb7kAX7DwkJmulsSF3SvV0rLo7kqzN/dc0aKYW3HD8rv9jn/EtbMCPa4agOSUJluOeVcHaR2hD3dh8NmTtz08miSw8085eWubj2mWvLiBlcYyMnl4e7oVh9PfG+nz+Olak834+dk+RwTr8nlgf5OBNokwH/PXr1ssmgnCLQtAOIjGTLd8lyWF9vQzw26YEqnjoGnkHXHUrJue4to21vUVTyeGi58R1R0QnxE/Orn7rvvpvHjx9OKFSvEmrC33nqLPvvsMxo8eLD4HIDecJZIm7+Vpbb+DPZ6sm7+p3i/fcJVMT0mWVrd0uFUS0cT7aOt1aLk+s3vDwT8fFun5/fW5lcpIF8oh5utLe2hp5u/930fbKWlGw5SLK1TJpePLYt+abnEO4i57zlQlsP/hX0ke1zzbGmhg24l081Tl5lcGRbPst3Uy3RrerrVzLOh50x3e5fY13442VsZ0PPk8lTPdPv/HYjnIDUO3jjTrn4c5O8irzfEVPHESkuCTLf/sen5OKF3aT7lD9R4xrPUevT/kX3o2dR49ksIuOMs4n/B169fL3Z1Z2Z6S0mzs7Pp5ptvpm+++SbaxwcQtXVhUrBhataNr5LB0U6OwlHU1e/4mB6TNuCUPZ+JxL2j8so8T93mMnx/Mrj2D7plMO6/jzkYGSjy42krENhj/91Ob607SI9+vEPtm43FxYWNBz3l5eNjmOnuif8LsUhemMmAhLM+wQajyb5TvsDEF3XkIDX/Utp48O9nTKme7iA91vLPpcnuOOzychlgdCl93Z5jSN0sq5z6HO+LQ3xRTP558bnqv2kA9DlITc+Zbu25jKAbdMNio84hZ1DbMb+g5jlP+6zBtexfSeRM/GvRVBfxq5/Ro0fTF1980e32devW0VFHHRWt4wKIej+3JEttfTi7yPb938S7bROvjvmQCZ+gO8KJ6rGgHWrG2e5Ve+q73UcG222a8nKezsorkSIJurn0VpYJakvMORh+e32VGuDLlV7R9O91B2jB0k1i+veZo0uoPC+8kvhoyzqCTLfMmPLFi2C9gtx3KoMHznbL6o48PfR0J+lQIZl55ucTOT0+WE+3DBp5zdT+hvYjKC/3TC93hJiWngq0GeZ49nRrS8z92z5AX5JhT7f/83kkz+0AiWDd+BrlvTWf8pacS6aajYk+nJQW8bPB8ccfT48++ih9/fXXNHnyZDKbzbRp0yZaunQpnXPOOfTkk0+q9+WMOECidTh8M7Oy1FbLuuUNMrUeJJetmDqGnxvXIFf2fCbSwWZPX7a0dP1Bmj7Yd/9ya1f3TLf2/XAzDxwolmSl0d4Gu7j4wIHvwSY73ffBNjXbxIE9B/4Ty3MpmgH375THmDuuD/1KM4E93vz7/CJ5sS8z3cFKyxn3nXKQd6il0xN0tyeup9s/063ty0wmMvOsPeeDZZ45I8fl6Fwavqe+/bBKpuX35iy3rAgxp3SmOzHl5doefKx20rdk6un2vq/f4wRgPGDNlZ5Llup1lL/4TGqZ+SDZR/8w0YeVkiJ+9fPVV1+Jnu6Ghgb6+OOPxfTyvXv30oQJE6iiokJ8nv/joBxADzod7pDl5abGPeQ2GKlt8nVi4ESsB7vpLdMtJ5PLQO6T7bXU4Ff2rma6O53qlHN5GydVIwmmtMPU+Hv95v2t1NzhoFGlWXTzSUPE51bt7p5tPxKvfLtfvL1ocj9acNpwnz7OeOMM6eHunJ05rJCOH5wvfo6eFCm98zWtXVFbGXakQTefI8k6iEr2dPsE3UEyz6JkWfld71My3ZEGkj493UqmO9jgtlQLuuM5SE17MQpZSX1Llp5u/+nlAHrWMWIu1V30X+oYMocMLgdlrbibjK2eqkOIroifDR566CExodzo92LD6XTS5s2bacyYMdE8PoDoZ7oDDFJrPe5XZB85j5w5A2J+PBxcakve9dDTLaepTxuUT1uqWmjzoRZatvmQWJXj37vNL//5+G2ckVYCEC4tj2Qtiro2rKlDPNY3FQ0iqPndWaPU4J37rvkCSTQCRQ7sDyhT1oMNN4s3zqrZlZVekbwwK85Kp8fnjQt5v6JMTw/x/sZ20bOfqJ5ubXm59kJDsvZ0typ/D0Jlnvl3za0acjxCgWYAXkTT0sPYC54KtBnBeAfd8u8FAiR9S5ZMt7ZiAucUJAN3Zgk1zXmW8pacR5aq7yjj60epZdYjyiddYtCw21aY6MNMehG/AjrllFNEltvfvn376OKLL47WcQFEjQw4Qg1ScxaMIDJ3X5UVbf5Tu+MddHN/6HubqnzK2jn4ZX2y0+mcsZ61f2+v950grs3wyaFqsuTcv4Q4/Ex3Jy1V+rhnDS8Sa8f4c0MKM0Rwz8F4NPBAK3mhQy8TiLXT3mORYSvM9AQuO2vbAu5Cjhe+mCKLCpK1n1ubZZbnPvfM95S19y/lP/xMt3daerAe8lQggxNzAs5TeWEPmW59S4Y93f7HhnMKkobBQC3TPVuorJv+IfZ4c8Y7741zqPCFKZS2491EH2HSC+vZYPHixfT000+rGaMLLrigW6a7qamJhg4dGpujBIhm0K0ZpJa24z/kLDiKnPnxO3cPNXcmNOh+fuUeem5VBZ03tg/ddfoIn57uPjnpNGNIIT3y8XbaVt1KLR0O9QWEDDZYO7+f6c1+Z4a5LkwqUUqf9za00yZlkvjZY0rVz3PGnYNF7us+dWRx1C508IAmvfQUx7rvT2a6d9a0irc8oTkRGX5+TK6K4PMnWSeXa7PM8uJTqKyzf1XBkfR0q3u6U3iytgxO+PcU7/OU1/ux4cXerSygP8kzvRw93ZCcHGVTqWPoWZS25yMy12wic+1GshxaKz6X/cntVNdnqsiKw+EJ65Xy3LlzyWKxkMvlogULFtAVV1wh1oT5vKiy2WjatGmHeRgA8VsZ1qAMUjO011L2R7eQwWGnhgvfJkfJhLgcT5Xf0LJ49nS3dzlp8ZpK8f4GJdhlB5RMd1mOVZR2cmDKFys4Q8zBIV9sCzRATVtefjiZ7q/31IvyWx6sdvSAfPXzxw7Mp1dX7xd93fzY+xvt4r5njC4VAdzhls/zRQW90L4Yy4zwokU4CmXQrWS6E9HPLfH5wUF3su7oZvJijZzeH2pntvb3zS/CI92xLR+P/x7KTHdK93QrFyniXVrO5owqoQn9ckSlD+hXsmS6Mb0cklnL9IVEMxaSK6svdTjPJkNHI1mq/kfm2s2U/clt1HTm33w3/Lic2PcdprCeDTjg5sCblZeXq1PLAZIp0y2nCcvy8ozVT5Kxq5W6iseRozh0j2y0VCl9vBwU8WTpeE4vf2f9QbWnfXddm+gV5bJjmQmWwTC/oOlwdIr+c8ZrwbTj6Fq7HD7Z70izDrLEW/a7njm61Gew2eTyXJHp4+N6+ss99NrqfeIYVu9tpPvOHtXt+/HP8et3t9C4vtl08ZTybp/3//n0QL4Y499dLIa6yUy3/DMKttM7HuSFEmtSZ7q7l5f3RPv7Ppxp3PLxOODuDXu6+e/8USVZdJam4iWe+IIj6Bs/jxiSIIPsc0EVQTckGVd2X+8HpjTR282l5vn/PIvSdy+njK8fo7Zjf0nkaKesz+8lg7OTmk/5fSIPOWlE/GzAU8l7mkyONWGg16CbB1BxxpTLy43NlWRb/5K4vXXa7USG+AUDMgDkF5hf7KqLW6bb6XLTK6s9E7xlb3dFQ7souebfkUFT9p2dbqLaVhLl5UyWkUvtna6oZLol/xfa3Ps7sV+u6OletKpCvf2DLdV0yshiOnl4kc/911Y20fKt1fTpjho6b1yfbpljPQbdMlMTqzJJmemWErEuTJI9/6nQ081/j8LKdGt+35Hu6O6NPd35GWn09x9PTvRhgI7x88fNMz3bLTJjUB0Ui0FqyHRDKnAWjqLWY39BWSsfoMxv/0htU24gc81Gsm58lQxuF3WWz6COkfMSfZi6F/GzAa8D859azkPUuKf79NNPj+axAUQ16ObsKgfdnDG1fv17Mjg7qLPvNOrqPzOuxyN3dI8sVYLuOPV0/3dbDVU22kUGjn8X3LO9o6aNyvOsapAmJybLFwoy6Nb2c3s+lsH44WW6+RhkCfu4shwaVJDR7T7HDy4QQTdnFK+bMUiUur/w9V568MNtNKlfjniRLsnfIQcnX+yso9lH+fYc8R5wvQbdsdoNLDPd/ruIE0FOME/u6eW+WeZQWWft71t7rh7O9PLekOkGCMclU7tXMukNVoZBKmqfeK3o7zbV7yBT835y9JlCbVN/Tpnf/J6yPr2DHKUTyZnnuSgGgUX8bPD3v/894O3333+/LtbwAAQLugszLMSvWQdSJWVs+ae4rfW4O3x7U+Kc6RbH0OkUL6y1O0ijjfui//7tPnVlVnVrpwi6t9e0qmWy2n5n+UJBlpfLPlZtb7jP9PIIsw78XFGWk06769rp7LGBy0kvmFAm3k4bmE/DijPF72jFzlpxoeDhj3bQA+d4y8zrNBcueMe4f9AtL3ToK+g2dZtiHk0FfoEeMt1Hxv/vZ7Ad3VLOEWe6DWqmm6tSwnlMANBbT3fyPucB+DCaqGnOX31uapt6M1n2f0lplaso741zxWtq++iL4lo9mkyi9lv58Y9/TG+++Wa0vh1A1HCwxtItJvFC+BbzG6IcpmPQaeJKXTxx8CsDwKFFmWrAG+sScw6uee81Z5fnT+orHltOtlaHjGkCUvmiobnDd2CaJDPfh1tezm46cQhdMqWczh5dGrR/70dTy0XALYOehXNGigsnXEq+qco7CK6h3dsXz5lu/4n1eiwvlz2/sdqdzb8vbV9xInZ0S3JqeTJPL/cfYtbTju5umW7bkfV0y2GQyHQD6B9fXPzh5H40d1yfw6pyAUgaRhM1n/YnchSOImNHg5hwzivGjC2egb3gK2qvgD799FNKT9fPC1oASQZg6SYOQky0w92XOtILqfXYW+N+LD77orPS1Em9sR6mdlCZTs77rzkDOqzIU869g4NutfTaO0hIljy32AOXl3unl8uVYZEH3ScMLaSfnzQkogz/qNJsmtAvV7y/t749YKabs/I86VziHlzeB663oHvmsCI6dUQxXTSlX8weQ9vXncjp5eogtSSeXu4fdIeaJK7NdB/OILV0n/Ly8PrIAUAffjFrKN0527OSEyCVubLKqP4H71HLjHvIbbaRsfUgWSp9W5HBI+LUx8knn9ytjLy1tZUaGxvp9ttvj/TbAcRch5Il4hexubY0+kP9hVQ24w6aVeQpX46nQy2e4JeDbb4azi/Ga3iCeYwz3bJMXGY7ZaZ7X4Od9tS1hywvlz3c/uXlaqY7jmXDsleZf29Sg5xIbzGJoPuT7TUiqGd1bZ2iPJeThEXKoDg94IBYWyIfq8fQw8oweXEpkdn2ePd05/lML4882yUDbG1rBzLdAACgO0YztU+4kuzDziV3RhHKy4OI+BUQTyfXBt38Pq8UGzt2LA0cODDSbwcQv0y3CLqVzHL8tnT1WOYsy05jPUyNM+wsO93zeJzt5sfmYH/13oYeyst9B6ZJMvPdegTl5Ueava1t7eqW6T5jdAktWXuAPt1eS3ec5hbl+/J3zgF3qDVPqUY7TC2RK8N+MKmvWBc2d3z8L3RFi39FRqhJ4tHq6db+3UOmGwAA9Mqd6TtPR8r8/DdkqVwlVos5C4+i3iriV2Hz5s2jrq4ukdnOzc0VATdAMvR0D2tfS6XOJvqcBqi7uuNN9nNzabm27DTWQXezDLqt3uB4aFEGfbu3US1312a65fAX78qwYOXlhze9PDpBt+d3qS3PnzWsiJZvqRa7yNfsa6SpA/J02c8dL3opL++TY6Wrjx9Eycy/nNwS4gIOB+k8LK+lw9ltfVskj6etMgn1mAAAAAnncogp587CkeJD+5hLKG3fZ5T35vnUdMZz1FU+nXqjiC6bv/rqq3T++efT+PHj6YQTThBv586dK24H0KsOhycwPOngc/Szgwvop6Z3qbHdt1w6YZlupexU25McC00dvplubYm51EfT0929vNzzOzQpL/rV8nJ1enk8g25Lt0y3vGhRlJVGM4cVqivStP3s2kx+b6GXTHcq6BZ0h5F1/uWsYfTTaQNoYL7tsDPr8u+eQfP3DwAAQI+MzZVU+MJUyn/jHKIuT/uiy1ZArrRcMnY2U+47P6L0rf+i3iisoJt3cV999dX06KOP0pQpU+ixxx6j5557TqwJmzx5Mj300EN0zTXXkMvlOzEYQC/l5SMNFVTevIZcZKJ/O6dTgz0xme4qZaAX78nWlp1qp2/HQrPy82p7aodogm5P6b1mzYlyP5khlxltGcR1Ly83xz/TrWS3uV+bM9uycuDEoUXifd6BztPikelO/MqwVBBpTzc7a0wpXTt90GGt05RBvfw7xo+HtZwAAKD3wWpuSwYZHG1k3fxPIreL3NZ8ajz3FbIPO4cMri7KXv5zsuz7gnqbsILuF198kbZv307/+c9/6K677qIzzzyTpk+fLrLed999Ny1btox27dpFL730UuyPGOAwgu5rzEvF+7uLTqJDlJ+w8nL/AFAOmIp5plstL/cGx8M0QTdngbUv6GVPt395ebFSFu9fXh7PTLcM/GuVQWpyiJpBCSyPHpAnApT9jXbaU9/eq4Nu+bviVV2x3APfG4j5JZpAO9bzAdTycuXvIPq5AQBA9wwG6hh2tng3+7M7Kf8fs8lcvZ7IbKXm2X8m+4jzyeB2Us77PyNj0z7qTcL6V/xf//oX3XrrrVRWFngIDt/On1+yZEm0jw/giI1t/ZLmmT4nNxlo55DLxW2yvJwzoYno6S7tlumObdAtg+ccJZiW68OkshxvablveblvRlsGcbKs/EhWhh1p9pZLyjnL3aBcsOCeZS6/5QsAE5W1Yl/uqlP3kPfGoHtIUYaoYhhenJXoQ0m5EvNYB8FpZoPP37XeNgQQAACSU8ewc9X3TQ27yMUTzZnBSM2zHqau4nFktNdRzrKriVy+M4NSWVivGioqKkT/dk94evnevXujdVwAUWFor6Vrmp4Q728Z+GNylk0S7zfau8SAostfXUM3LVkXl+A7UKlzpJlul9tNz6/aQ1/t9u6hjqinW5Pp5sBa9jmXaoao+We6+THlMKdiZeUWZ7gdThd1KvuD47kyjLPZnHB0KwPUeCWY/y7k4wcXiLcrd9Wrv3PtoLjegqfUv/XTo+nPF45L9KGkXNAdak93tB5L7uhGpQIAACQDR9EYcuQOFu+3j7mEXJl9vJ8026hpzrPkzBlAbVOuJzLG7/VjooX1r3h2djZVVVX1eJ/KykoqKPC80A1XR0cHLViwgKZOnUozZsygRYsWhfyaffv20aRJk+irr7B4HULL+uwuynM30BZXOW0ZeYPa18rl5U9/sYc2Hmymlbvr1UxuLFW3dIpSd05YyeCVgyIms7WhrNnfKI77/95aT1sOtYT92LI3239Pshym5p8FlplutxJg+/d08yA17e8snpluzmbLAXRcYi6HqGnXMk1Xgu7v9jVQnVKG3hsz3XJVGu+EhyOnLS+P9c7sSKelAwAA6ILBQC0zH6D20RdT29H/1+3Trpxyqrv4U+ocelZCDk/XQfesWbPoz3/+c9BsIN/+l7/8hU4++eSIHvzhhx+m9evXi57xhQsX0pNPPin6w3tyzz33UFtbW0SPA71X+6RraYdxEN3SdR1Z0m3q2iQevPXP/+1X7xfrnmq2trJJvOVSXy751WZnuYTUrpSR9qSy0a5mvxYs3dRtlVfoPd2+Qff/m9yXJpfn0mkji31u5+OTx8gTzGWJK08HZxxwy9t4n3ConcWx6+vuErvGtTvP2aACG5XlpItMPD9r8c8iqwoADpc222w2xifTrT4eeroBACBJdPWfQS2zHhZD1AIyaV6TuRKzUSjewvpX/KabbqIdO3bQpZdeSitWrKD6+noxqZyz3x9//DHNnz9flKBfd911YT8wB86LFy+mO++8k8aMGUOnnXYaXXnllfTKK68E/Zq3336bWltbw34MAEfJBLrM/ChtcA+idLPJZ22SS3MNSWZDY2nt/kbxdmK/HJ8MscyYhdPXzdlyqaK+nR5avi3k13Q5Xeoubv9M93GDCuiZ/zeBBhV4+7u79XXbHWpWWw5Sc3IvtXK88Zxc7t/XXdPaoe7oltlvOfRKlpjLLDcmP8OR0vZxxzrTbVF6uuP1eAAAAPFm3fAyFfz9eDLVbKRUF1bQXVxcTK+//rooM+fVYccff7wIlE866SS68cYbqV+/fiJYjqS8fPPmzeRwOESpuMTryNauXRtw9RgH+o888gj95je/CfsxAJhdSQanm4ziRbMsheYAVO7PrYvDNPO1+z2Z7vF9vUE3B4IyQxtOtl32J/OEbq42/c/GQ/TvNd6MfU9ZboMmkA5HdrrJm+lWgu5CTWArLwDEc3J5oF3daqZbU14uLyhIckUbQPQGqcW7vByZbgAASC2WfV+SqaWSMr96lFJd2K/A+/TpI0rIa2tracOGDdTY2Ei5ubligFqkvdysurqa8vPzKS3N+yK+qKhI9Hk3NDR0+54PPvigWFE2fPhwOhJ6T3bJ49P7ceqdsbmS0jf9Q5S3dDo9F3GsFqP4vfJArR01bXTTzMG0YkedWCvF2dJY/s55ENnWak8P9sTyXJ/Hysuw0KGWTpE5DnUMMtA9ZUQRjeubTYtW7aXXvq6gGf3HhpxcnpluEv3Q4VKHqXVy0O35HrzLm0u1uTddruziixjxPl+1u7q1Pd3a4zhmoGd1GJfie1aixfcY9QjPL0dGtlwwvoAXy9+j9rFkaXu8/9xwvkAkcL5AJHC+AGs/9heUvmMppe/+gCxVq8nRZwol2/kS7jFFXBdaWFhIJ554Ih2p9vZ2n4CbyY87O31Lfb/88ktavXo1LV3q2bV8JAoLsykZJMtx6tbeb4i+fozowOfU4fAMcSgtzqaiggx64uLJtKO6lc4ZX0Y76tdx6EYdZKSiotj9zjdvqxHl7P3ybDRmsLI6QVGaa6Oth1rJYTKFPIY6uyfAHN4vj04ryhRB93cVDZSZkxF0WNaeVk/AnJeRFtHPWJBtJTrQTF1GkzqlvH+fPDEBvaOlk1qVgpTcCL9vNAws8Txei8NFzV2eAxlYmtPtOI4ZXEBfbK+lIaXZcT9GPcPzy+HJ0LRn5OVYY3pOGW2+1Rm2dHPCzmGcLxAJnC8QCZwvvVzRRKIJFxGteYXy3v8Z0U+WEeUPTMnzJf7NmIr09PRuwbX82Gr17gy22+109913i0Fr2tsPV21tM8V5NXPEV0v4hNL7cepd1ub/Ep8tbcVTqWObJyhra26nGpeTStOMVNqPf8ctlKFkfvfVtFBNTXPMjufTjQfE2/Fl2d0eJ0vJaFUcagp5DAfq28Vbq9tFOeQSA8VqWjvpk/WVNLV/XsCv2VvlKWvPtJgi+hnTlUTbjkpPLzprb2knqzzeas/3SjNQTH93gVjFeDSi/XVtaqbb7HR2O44rj+lPbqeLTh1aEPdj1CM8vxwZg2YQRKe9K6bnVLchiS5X3M9hnC8QCZwvEAmcLyAZpvyKciu+IXPdVnK+cC41zHuT3JklSXO+yGPTbdBdWloq+rS5r9tsNqsl5xxY5+R4e16///57sf+bh7lpXXXVVTR37tyIe7z5D0pvf1jJfJx6ZalcJd629jnOp0fS/3cq+6m5vDyWv29tP3e3Y1B6kTl47OkYeCBarRJgFovyagNNHZBLyzZV07d7GmhKeeCgu0nJjnOGOpKfUZaXH1T6yLnc1WQwkE3JqGt7uuN9rsreci5xlwPd8qyWbscxtiyHHp/n2VGNv09eeH6JwiA1oyGmv0P/FWH82In6M8P5ApHA+QKRwPkCbms+NZ7zCuW9OY9Mjbsp9+1LqOH8JeROz0mp8yVhQfeoUaNEsL1mzRqxp5txCfm4cePIqBkYM378ePrggw98vnb27Nn0u9/9jqZPnx734wb9MzbtJVPzPnIbTNRSxIP61gbskdQGvDKYjQWHy03rDniC7on9crt9Pi/MQWqc0Wbcpyy/hrPbIuje20DXBPm6ZmWSXE4EQ9RYpjKVXA5vy1CCbTmIriahg9Q8Qfeh5g619N1/kBpAtPF6vHit8OL5Cxx3y+S6NuAHAABIJa6sMmo47zXKfedH1DHoNCJD6v2bl7Cg22aziUw1792+//776dChQ7Ro0SJ64IEH1Kw3T0vnzPfAgQMDZsq5vxzAn2X/SnVdmN3gaUngl8rmAEPECpSMqVw7FQvbqluovctFWekmGlKUETSjLNdyBcMBJivO8q6/mjrAk91ef6CZ2rucahZaq7nDm+mOhJxergbdSnAt31YrFwESuTJMBtwcoET68wEcyZ7uWE8v57/jHGjz0ELxeBEMQQQAAEg2rtxBVH/JZykZcLOE/lR33HGHWD122WWX0b333ivWj3EWm82YMYPefffdRB4eJKk0pbS8q99x1KFMLucsd6A9zdrS7niUlhsDHIMMYuWE8GB4wjkrVXZls365VjGcjbPpcg94sJVhkWa6ZRDbLehWAnt5oSIRmW5+TJvF+/TFmf9Av1uA2JWXG1NqRRkAAEDCGVIz4GYJTQ1xtvuhhx4S//nbsmVL0K/r6XMA5urvxdvOvtPULFGg0nJtb3Cj3UEOpysmJaMyGA5UWq4t144k0y3xhYRpQwppyXf76Nu9jTRNs5taalaC7sgz3Z77y99hll+mW5a98oC2ROAhcnsb7Oq6MIBUC4JFZr0jPuXsAAAAeprNlLHqEWqZ9RA584dRKsC/4pBy6n+wjOrn/4e6wgi6c2xm0TfJ5ECuaNta3SrejukTeLJhplKeHTLobvG8+i7J9l0ldPxQT5vF6r0NAb+uWdnTnRNh0J3llxmXZeT+JeyJyHRrS8yZ7HEHiCVtoB2PIFjbQ47ycgAA6C1s//srpR34ijK/eoRSBYJuSD1Gs+jnJouNOkME3VySHO4gs8MlM82yf9yfDFpbleA4mEPNnnLuYk15OTtOCbo3HWymlgDfQ5aXy8x1uPzvL49TZub9b09k0I1MN8SD9nkkHkGwtpxd208OAACQylqn3Uau9FxyFI1N3nHlfvCvOKSMtF0fkLH1oM9tdiXo7ukFqwyG62I0TK2ty5PBtqUFPga1p1u5X6hMd6lfprtvno3K86zEM8XWBOjrlpnuwy0v9z9O/8Fp/kF4vMjWAJYf5IIGQMyC4DhkurVBvjkOPeQAAAB64Cw8imov+5bapt7oWYSdAvCvOCStN9dW0t3vbha92KbazZTz/s8o//XTyNi4W72PN9MdPDCUw9RikenmAWeyxD3TEjjolb3SbZ1OcvdwNa+6pXtPtzSuzLPLcEdNW9QGqWVZAwfXeikvL9Jk/OW+dYBU6un2GdyGQWoAANCbWGyUShB0Q8Q4OHx73UFqiEGQ+tb3B+iDzYfCuu+ir/bSe5sO0eqKOsr58AYyODuoq2QiuXK8K+bUnu4eXrAWxHCCuV2TvbYFCU5l5pgHk8nMvD+X261OLy/xKy/XXjhosnf1MEjNcmSZbr893f7Hn9hMN4JuSPGebgTdAAAASQtBN0TsrXUH6LcfbKW/f7s3qt+3sb2L7v9wGy18b4tPsBqM7F927PiYzLWbRe9H8ym/9ylD6VRXhpnCKC+PftAth6PxHmntC2gtXn0lPxNsmBpfEHC63OJ+PLXbX66S6W1sd3TLtMuy9Ugz3Vzaqj1m/z3dUqKml6OnG1J+enmcV5QBAABAbOBfcYhYbWtXTIJULoN2K4Hinvr2Hu/LmV/OuLOB+94Sb+0jL6B2SwHduXQTLdt0KOyebu+u7sh7uvfWt9Pjn+6klbvrAn5eHiNniQPtCWd8e6hharKfmwPNQBm2XKUUvNEv092iZLkDlYtHOsE8U3lfZrwTP0jNG2hjejnEg/Z5JC57urWPh0FqAAAASSuhe7ohOcksdJeSRY4WGaCyXbVtNLIkK+h927ucIkDPpyYa2/ql57hG/ZA+2V5LH2yppm01rTRnVEnIlWE+5eURrAw72GSn51ZV0NL1B8UAs6/21NNxAXZkyyxzqMCUS7Y5yx1smFqwyeVSrlI6ztUCWk1KEM/f33wY05a5xFxeXJEZ7QxdTi/HIDVI8Z5urAwDAABIWgi6IWIc8LJOjjajqLXLm5XdVdva8307PMdwnulLspCDuorHkbNoNG1Yt0PcXtfqCVJDrQzTTr6uVb4mnIsOV72+lg42e7LPPe34but0hBl081/FTp8LD+FMLpdybTLT7Zspb1Yy35GuC5O0E8+DlZcnKujmPzfO8Hc53UEvRgBEk7bdAj3dAAAAEC4E3RCx9i6XT0AbLdqAc2dt9yncWrL3OZPs1OpOp7qB55OViDYcaFKDT55q3uFwhgy6CyMcpLapqkUE3Bzw3TJrqOhBD7Qf2/MzuQKWZPuTgWuLcjEhksnlPj3dfkF302GuCwtUXh4o6OZ+dN51ngicuV908SRyuFxkTVBfOfQu8c48+2bWUV4OAACQrPCvOETMrgSyckhZrMrLe9KqZJD/7JxLR3c8Rd/knCHK3bccalHvw2XRHQ532JluLi/vaWWX9H2lJ7Cf0j+PjldKyvlCBPeid/uZlOx9OOXl2vv7O6Rk1QNNLvfp6fb7GeTk8pzDDLq1GXJ5jNoLCImaXC4NyLfRkMLMhB4D9B7aILinOREx6elG0A0AAJC08K846KanWzu5e19De4+ZdFleztrISlsbXbS1utWn5L2urVPNdGtfLAcbpMb938F6qrXWKUH3uL45lJXuDUADZbvbNYPUeuIdpBasvFxZFxasvFzp6ebAX1YiaHd0H3Z5uU+m29ztAoL/+jCA3jNILd7Ty1FeDgAAkKwQdMPhl5dHuadbm+nmb13REHyCuaO5imYa16ofb69uow0Hmn3uw5lu78qw4Ke6zWISZdLhlJhzFllmusf3zRF9nVblewcKuuWFhLAz3cF6utVMd+Cg22rxrvfSTjBv7jiyoDtQeTln3GR/aaiLCQCpRNtjzWsA41rOjkw3AABA0sK/4nDYg9RiOb2c7e6hxPyobX+mF9MeorstL4uPd9S20oaDnmDYN9MdOujWlpj7r0Hj1WTaIWn7GuyiDJ2DzqOU6eoyMA2UpVZXhoU1SI2HyTkDBvpykFqwTDevHcsJMMFczXQfdnm597izND+DDLYTNUQNIBFk4Mt//4OtAIzd4DZkugEAAJIVgm6dWn+gif7wyY6gA7r0UF4uA9poaVH6tEP1dZtqN9OIA/8W72/NmyneVtS10Zr9TT4rwOpau8IOuuUwNTn1XHp+ZQWd/tRK+nR7rfh4nTKobVRptlpqKrPIMqsccGVY2OXl3b9HY7tDrS4I1tMdbIL5Efd0K1/HST3t71Dt70bQDb2I/Dsfjx3d2scTj4mgGwAAIGkh6NapZ7+soFdX76dPtteQ3sgAMFaZbtknHWyCedaXvyUjuehd5zFk73O0uD+Xo1c22sXnjx/sGW5Wq8l099TT7ZPp9lv99U1FPfF8tOdX7fEpLR9XluM9HuV4A10gaYtCefm2Gs9wuH651h6ndAfa1e0tL/d8LlLyggIfvzazZ1OOFz3d0Jv0z7PR9MEFdMGEsvgPbkN5OQAAQNLCv+I6JVdEVSsDtPQ5vTw2Pd1j+mSLt7vqPLu6q5o76MHl22hnbStZKj6htIpPyWEw04OOi0RZ9lDN9OryPCsNKcxQ+7PVTLfSsx1qmFp9m+/vu7KpQ10TxgG32s/dzxt0ZyqBqX+mXluKHyrolkPKtMPkpK2HPL+HEUo5ezAym63NdMuVYYeb6Zal8/6Z+gxL96FqAKmO+7j/OG8s3TRzSAJWlOGfawAAgGSFf8V1SvYWh7s7Ol4422uPVaZbCVDHKFnkPXXtYho3B9xL1h4Qmf+Mtc+Jz32eO5cq3KWUmW6iYcXeoJsD9gK1P7tTnYCebu45OJQl6drfN/98coAZe25VBe2o8QTA48s8FwZ8y8udwQepWQ4/07212pPpHqH5OXva1d2kHaR2hD3dgwoyRGn5YOVChv/xyuAbAKIv3YyebgAAgFSAV8w65HK5xbAuGTjqCWeOZX472j3dMkAdWpghJoLbHS5auv4gfb6zTtze1NpGlkNfifc/yzhNDf7ybN5gdGxZDhVkKv3ZbV1kUkqi08MtL9cE3Zxh55+VX+tyUn/V7npxe9+cdCrSTBGPZnl5oEz3tmpPoD+8uOdMt7e8XNvT7fl5cg5zennfXCu9+dOj1QsZEsrLAWIP08sBAABSA/4V1yHOVDq5kViHmW5ZLh3Lnm4u15aZ1d9/skP9vKX1IDkz+5DLWkDb3P3FbVlcXl6UETDTXdvaSR1hrAxjBbbu5eWyR7x/vo2OHpCn3s77ubX4GILu6Q67vFwG3b7fgzP1srd9ZEmITLdaXq6ZXt5xZJlu1i/XJtaq+d5m9bzN87wFgBjv6UamGwAAIGkh061DNUo/N5MZb70NUWN8XYDLv81R2lfbpgScmRaTKGvmPmrt423rKqL6K1aQwd5ALf/e47lvuomGF2WJ8m1+Ucp9z7K8mld9yWBbOwU4kCJlKvhBTTm5DLrLcqw0f2Jf+qaiQXw8vm+uz9fKgPaI9nQrmWj/8nKe4M4XYLgnuzTIurBu08uVTDd/XYtS8n64e7qDueb4gTRjSAFN6Of7uwCAWE0vxzVyAACAZIWgW4dqNMPT/PdG62WImjbbbTZGp8RYG6Bqe4g5uOMSc5nBdVvzqLVjh3pfDnqfv2iiCP45yM5XstZ8UUAOoguV6eYgn+1vsIuVaDwl/ECTXS2xnj6kgIYVZdKuujY6ZqA3680y1Uy3M3imO1RPtyVwebns5x5enBlyL7AsL5cXHWRrAifIZBY8Wvj3M6W/7+8BAGK3p9sSpYubAAAAEH8IunWoVhN0N7R1ksvtJmOIgCtetJln2dftX3p85OXlJhFkMs7wXn/CYFq5s5pa7U4xyI2DTxmcZioBr3aYmtlkFEEmT/HmTHw4Pd08SE1+DQ9wG1maRfuVTHffHKv4/T81f7yoPJABemQ93T3/VZOZcM72y5+RbVX6uUeE6OfWDlKT08v3NXiOvzTHKn4nAJBc0NMNAACQGvCvuA7VtnpLnHmAV5NmBVSicRZYK1hft8PpUvvSw8HBMQ9OY5kWMx03qIB+Nn0QPXbeGCrPtdKxxk202nIV2Zb/UtzHG3QHDvgLMn0Hf4VaGcZB7pAiT+C+o9YT6B5Q1oVxppvlZVi6TfH2nV7u++fEwXPYg9SUwJ3/vLUD6rYeUiaXh+jn9lkZprQk7G1oF2/59wcAyUdboYOebgAAgOSFoFuHajR9xXobpqYdpMY6AwTdHIjPf+FbuuLV/4nAM6zvqymr5gCV9+H+ZNoAmlieK0qZTzBvpCyDnbocnT4Dx4IF3YXKCjApVHk5k/u95eAyWV5eFiJolbus/UvD+SKC/OlDlZdrqwXk9+HfXbiTy31XhjlEdcR+GXTn2UJ+LQDojza7Ha3ZGQAAABB/CLp1qKbVd02YntaG+ZeXdzm6B9WcYeXSZh6E5v+zBCODaH5hGWjo2QzjBvG2uuAYMdG7i1PCmoDXn/+KK+0U4GCGFHqyyTtrWkW2WfaD98sJFXQHLi+XwTO/VLaGyLRz+br/rm4e6sbZc/6dyAsCPZF9225lP7csLy/HhHGApCSftzjLHWqmAwAAAOgXgm4dqtVML9dbptseRqb7oFKWLadvh6NN+b6BMteGjiYaTZ7BaXtzpvis1QrWT57vl+nmvd+hyNVjO2rb6KCS5bZZjOpU8GCClZfL7D0fYzg9+f5rw2RpOZe0h9PPyfeRGXXu696n9KQj0w2QnHgoJFeVF/pdRAQAAIDkgqBbx4PUZDmhniaY+2e6AwfdnmCP7a4LHHSv2FFLN7zxvXrfnnqfLZWryEQu2uUqpSpDkZpB5oCYy9ADKdT0dPNdgt1PS2aTeVWYLDHndWGhMkwy287Zd20/drj93JIMmOXP5x2iFrqfW5IXCHiCube8HJlugGTEcySe+sEE+uO8sYk+FAAAADgCCLp1vKd7YIEnQ1mvo/LysDLdzaEz3a9/t5++2tNAn2yv7XGfNe/kzvzit+L9Fa7xIoPrP7k82DRybT93OKWZ+Rlp6td9savOZ4haT/iY5XfXlpjL7H24Qbf/rm7vELXQ/dz+a8O4tFxOMe+Xi0w3QLKaVJ5LQ5UhjwAAAJCcEHTrONM9VOkx5jVVeh2kFqinW079ZrzXOhA5pEz2q6tZYYtvIG3d8DKZG3dRnbmEHnfME5O5Qw1R8+/pDqef2z/b/aUMukP0c6v92Epft7bE3PszhZnpVsvLPV+3o8aT6eb94OGSE8w3HmwWb/kiQrhBPwAAAAAARB+Cbp3h8mQZuMnd08lcXh4o082TtWU2XP5s6o5uvwCxffJ11HrsrfT6oAeplnLFZO7WDrnPu4dMt6a8PJzJ5f7D1OQQtXAy3SxLybq3aoJueXEg3KA3S7Orm1eoVSoXLwbkh5+plhPMNyhBN/q5AQAAAAASC0G3zshScu7n7p+nw/JyR2SD1Dio5v5irdrWTnX6uBwSp5aMKxljlcFIbVNvpvb8UeLDRntXyB3d/ivDIgq6lWFqUqh1Yf593S3KBQFtVUDYPd2aTHdVs13sOU8zGagkOz3s45cTzLcopeno5wYAAAAASCwE3TojM79cFlyQadFdpjtUTzdnaKuVnnQ5Mdw/282DyiRZXq5mhZVSbFPtJqJOT3m174AwR1jl5dyfLaWbTRFnuqVQ68Kk7ADl5a2RlpdrBqnJdV+caQ9n8rmUo2S65UA3ZLoBAAAAABILQbdeg+7MNCqwpeluZVioPd08BI6T2JypH983J+AEc23Pt395ucj2ut2U++6VVLRoPJkrvxa35ygDwrinO1gpuhZnt+XnIysv9890h5dllqXu2kFq7UcwSG2/cmEi0iFoMtMtIdMNAAAAAJBYCLp1RpaSF9gs6q5pzp52BSjj1sMgNf9MtwyoS7PTaYgyAEyu3/LeR5PpbvUdpMaBsqluK5ma9oiPHUVjfDLdPJG7JYzp5dq1YWkRBN3cEy2/LivdpAb7YZeXK8em/ZnCDro1e7oPd91XnpLplsoxuRwAAAAAIKEQdOtMbasn88sBd7bVrO6XDjfbvWRtJZ337Fe0O8iqrmiVl8sd4t2Dbk9AXZaTToOVlWf+mW5tebnd4RKBfKuaFTZT+q4PPN+7fDpRWma3TLccVtat/9uPXP8VSaabDVWy3byjO1zZStAdjfLyNk15eb8Iy8Pl9HIJmW4AAAAAgMRC0K3XTHdGmujlzVcyl+EG3e9vrhZTr7/aUx+T4+MgWRvcdSofS1XKVPI+OVYapASvu3vIdMvBatqscNqu9z3fe/Bs9T55Vm9QK0u4M0NkuuXasPQIVoYxmaEPZ12YxFlx/+nlkZeXm9Rsube8PLKgWe7pFt8vzdQt8w0AAAAAAPGFoFtn6pSd3HKImiwxr1WCcV631RM5xEwOKIs2GUjK4E5OIfcPqPtkc6Y7Qy051w5g0/Z0ywsKvCaLFbnryHJojXi/c9Cp6n1kptvlJqpS1nn11NN9JJnuWcMLxUWFk4YXhv01cmWYtqc70vJyzvLLr9t3mOXlcmWYDNgNEQxhAwAAAACA6EPQrTMyoy2nb8vA0ROYOmn+376la/+5NuDXut08ObzTp0w9VoPU1Ey3X3m5XBfGpdn8M/BgLw7L99S1e3d0K4G5zOLzMDUZoA5p+Fy87SqZSK7MPur35b5sm8XoU54eKpgtzvIMQbOFGfRKk8vzaPl1x9HZY7yPH0qWmonv3tNtC7O8XF5E4J9PlqZHkm33Ly/H5HIAAAAAgMRD0K0zcrCYDLZl8M2Z65W766iivp1W722khgDl5lx6LVdFycx4tMmMdaigu0+OJ+AdrJSY76xrVX++TqebuCV8ZGmW+rPJIHNAzaee7zv49G6PLbPrsoQ9M0R5+ZmjS+is0SU0f2LfiH/OSDPEWUrA7JPpVn5XoTLykrxfjXIOFGelkTXMgF3bWy6PHEE3AAAAAEDi9Ry1QEL3dPtnurdWe/dW83CyiRm5Pl8rs9za7xOr8nK5D1rb082ZdrW8XMnQDirIoDX7m9S+bu43ZyVZ6VSS5V2JJrPCOyf9mjJav6SOgad0e2wO9A82d5CTa8w1fdTB8DHcc5kNJIcAACdeSURBVMZRFA/q9PJAg9TCLi/3vV95hP3cjAfv8e+Jp7xjiBoAAAAAQOIh6NYRLr2ulz3dSoZblmAfaumgL3fV+wbd5f5Bd4fPcLJo42CXs9TafdDanm4O9OSgNV4Zps1071LKyw8opeFluVb1Z9Rmuk35g6h92OiQ/cqRZJDjITvQnu4Ip5dn+mXuI51cLvHKM/6zGKhMjwcAAAAAgMRB0K0jzXaHmsWVA9RkYMoBt3Yd1W4liNU65JPp7hSZ52gO0rI7vP3KgcrLZa82Z+fl8LJhyiTw7yubxEWFSuU+fXPSvUPiuP+8s4VHnvWYFZaBvpQZorw8ngLu6dasQQuH/0WESCeXS7edMozWVTbRxH6+F2UAAAAAACD+9BO1gFoSzgGtxWQkHlQuA1MZcPMwMR5m5r/7mtVogm7OQLd0OMWu72gPUTNopnV3+QTd3iFq0qTyXFEGzpn3tfubND3fVipULihUNdvpAfNfqZ+hhvKaHyfKnhBepjtEeXk8aVeGyYsd3kFq4Y1O8B+4drg92VP654n/AAAAAACglw9S6+jooAULFtDUqVNpxowZtGjRoqD3/eSTT+i8886jSZMm0TnnnEMfffQRpRq55qtIKc3W9nRL548vE28DBd1cgq4V7WFqcogaB4c8TZzJwW3sgDLgrEwZosb44sHMYUXi/eVbqjWZbp5u7vnZ8urX0dmmVTTBsIOsFktYk7kjKduOZ3k5V9vzxQnudXcoVQuZYWa6uR9bG6CjJxsAAAAAIPklNOh++OGHaf369fTiiy/SwoUL6cknn6Rly5Z1u9/mzZvphhtuoAsuuIDeeust+uEPf0g333yzuD0V14UVZXqDVjm9nHHJ9v+b1E9dK6UNeP0z3bHo65ZD1KwWI6WZjN16umV5eWm2b7B42ohi8fbjbTXquq+y3HQqyPT8bNc5XxZv33KfSK7iwP3c2unlMkCNdP92LPGx8DHJqgRZWh7pyjJtKfrhlpcDAAAAAIB+JKy8vK2tjRYvXkzPPvssjRkzRvy3bds2euWVV2jOnDk+9126dClNmzaNLr30UvHxwIED6eOPP6b33nuPjjoqPtOp41leXqhM9WYyG8yOG5Qvssic8W2yO6iivo2GF3vWbgXKdEd7grldKS/nNVYWkyFAT3f3TDc7ZmCeyASLVVjKAHYuQef+7QmG7XScaSN1uk30nPkiOqGHx9dmunlFVzT71Y8UHwsfEw8w42FqTpdJDcbNSjAebl93bavnbZ5fOT0AAAAAACSfhKUKOUvtcDhEubg0ZcoUWrt2Lblcvhnc888/n375y192+x7Nzc2USjqUQWWlmp5oLuWWJcczhxWK4G5gfkbAYWpyZVhfJUMqd34HU9PSQX//Zq94G0mm2+aT6daUl/utC/MtMS9UP+YYlKebc+b6SvO74rZ3XMdTS3ppj4+v7enW0+RySfbPc9At+7kjLYGXPxdnufV0UQEAAAAAAJIs011dXU35+fmUlubN6hYVFYk+74aGBiooKFBvHzp0qM/XckZ85cqVosw8UnqOY84cXUJNHQ766YzBZHB7y5PnjCqhDQebadbwInH8gwpttO5AE+2pa1N/Hu4flj3hR5VkiTJu7ukO9vOu2d9It7+9SZSgH2jqoNtPHRby+OQ6ML4QkK5cCOAVYvIxRCZblJendXvcU0cW09INVeL94qw00RNubNpHZ5i+Frc95zhTBJw9/fnk2ryna2a6WXd/ltoJ5kYlu83Z/EiOUw2682xhfZ28j95+F6BPOF8gEjhfIBI4XyASOF8gVc6XcI8pYUF3e3u7T8DN5MedncEztHV1dXTjjTfS5MmT6ZRTTon4cQsLs0mvioqy6Z5BnqFjWn+4eIrPx2P659M766voQGuX+Bp2sNFOPLeL+4onDCwQ/dNtTs/39Pfyqj107zsb1H7sPQ32gPfzZ97XJN7mZKRRUYFnFRhfGpBfK6eb9++TS0XKqjDpzLxMuvvdzaIsfkBhpudr1r/N28npc+cY2uQeSNMy03o8jkEu71mdy8cQxjHHU77oxW8hQ5qZzFbPuZxts0R0nHlZXCXQSCPKciL6Oj2f16A/OF8gEjhfIBI4XyASOF+gt5wvCQu609PTuwXX8mOrNfAAqZqaGrriiivESqYnnniCjMbIq+Nra5vFKi694qslfEL1dJzFynqqzQcaqabGU2K/5YDnbVGmhTKMni+srGtVPy/xvuy73lov3h/fN0d8vK2qudv9Aqmu8zRkm8hN7S2eUvL2Dof4Wv4z4XVZrKPVTjXk2yLAZg4tpHc2VFFxhsXzeKOvoRe/I/qy2lM2bjFQj8fhaveeL2nGnu+bCFalkvxATQt1KAPw0k2GiI6zPNvzdcPyrWF9XTjnC4CE8wUigfMFIoHzBSKB8wVS5XyRx6bboLu0tJTq6+tFX7fZbFZLzjngzsnJ6Xb/qqoqdZDaSy+95FN+Hgn+g9LbH1akxzmowNPTvaeunZwuNxkNBjqkrOviyecFSsBX29bV7Xt8W9Eg3p4wpIB+d9YomvmnL6i+vUtMTg81uEtmsq1mHqTm7enmx2jrdJF8KO5jDnTsVx0/UJSoXzyl3PN5g4m2Fsyi1Yeqe/w6KVszvTwzzay7P8dMZfJ4s92hTlbnUvxIjvPa6YPo7DGlNCDfFtHXJct5DfqA8wUigfMFIoHzBSKB8wV6y/mSsEFqo0aNEsH2mjVr1NtWr15N48aN65bB5knnV155pbj95ZdfFgF7b8aD0ngiNq8Mq1KC7UPKEDXuly5UJp4HWhm28aAnezp1QJ7oN+6j7ATfXdt973c4g9S4p5vJFVncyhxslRdPLL//7FE0ssQ7cV1eIGCZIfZZ888se571OEhN29MtB6lFepzcHjCwIAND1AAAAAAAUkTCgm6bzUZz586le+65h77//ntavnw5LVq0SM1mc9bbbveUMD/zzDNUUVFBDz30kPo5/i/VppeHi4PP/vk28f4uJViuafUE38VZ3v3XPFiNy74DBd2jSj1lEIMK5ST00EG3XQ26Td6gWxmuJoNM/lyogNHYWkX5r8ykzC9+SwU2b1DKFwFCkRPMM0ME6ImQrZT989R47e8DAAAAAAB6r4QF3eyOO+4Q+7kvu+wyuvfee8WAtNmzZ4vPzZgxg95917NO6v333xcB+Pz588Xt8r/77ruPeitZYi6DZW2mW2aPeVBaS4d3CjpPF+f7cUgss83y++wKI+hu72FPd1unI+zMbtqej8ncsIMslauoINMaWdCtrOXKVAJcPRmm7Ez/z8YqWrGzTrcZeQAAAAAAiJ+Epgs5283Za5nB1tqyZYv6/rJly+J8ZPo3uMBG/1X6upnctV2SlS7Ku7PSTSLg5rVhcn/05qpmNbstA1z+PqT5PuGUl1vNRrHyS64qc/EQNbmXOpyge/dy8bZz0KlUkBnZ7m3e7R3ufeNt1rBC0Y/Nq9F4QF24vw8AAAAAAEhdCc10w+Hjvl+2SQmkZaa7KMuT5VaHqWn6ujcdbBFvR5dmdfs+4WS6tXu6ZXm5zKh7+71DBJnODkrbu0INuvM1Pd08SC2U8f1yiJPssjxeT7isfsFpw2lq/1z1NpSXAwAAAAD0bgi6k9QxA/JEb/emqhZaf6CJapSgmzPdTA5Tq2vrUr9moxKgawPWwUpP94FGu9qzHbqn2ztITfZ1hzs4zLJ/FRkcbeTMKCVH0Vj1OMXXKoPIenLVcQPpoxuOp0nl3sBWT3iq+0PnjqaBSs99qTKoDgAAAAAAeicE3UmqKCudTh9VIt5ftKqCmpUd2dzTzQrlMDUl080D1ThAZ6P6eIPufJuFcqxmse6ror49vPJyTU+37Ov2lpf3HDin7fnI8zWDThaL7bRrysItxc7U4RA1rRyrhZ774US676yj6LSRxYk+HAAAAAAASCAE3Uns4sn9xFs5tIsz0DLT7N3V7Qm6q1s6Rak5x8ojijN9SqL9h7JpfVNRLzLp2kFqckK5DLx5V7d2nVhQbjel71aC7oGnqgG8ugYshUqx8zIsNPuoEnWfOQAAAAAA9E6ICJLYiJIsOnpAnvoxrwuT67rkgLK61i6fVWFDijJFoKs1SBmm5h90c5B+05L1dP3idaK03Jvp9pw22l3dMtOd2VMW2tlBneUzyJkzULyVRvfJFsPf5Bo0AAAAAACAVKHvOl0I6ZIp5fRNRYNPaTkr9Mt0y4FrowMMIFPXhtX6lpdvr24V08kdLietO9BEHXKQmtmkBt2t5BTl5bKnu8cScbOVWmY9JDLeXFouPT5vLLV2OEV2GAAAAAAAIJUg053kjhucr2aqOdMtFciebmWQ2ka1n9s7udx/mNqeet9M947aVvX97/Y2dptQru7q1gxSC2cCuTbg9nwfIwJuAAAAAABISQi6k5zRYKDrZgwW5dkzBheot8up4Fwiznu0Nynl5aN6yHTvqWsjp4tHqnnsrPEG4d/ta+xeXq7s6uae7raunjPdGd8+Tpa9n0XhJwYAAAAAAEgeKC9PAbOGF9FnN00XAbikTi9v66QFSzdRo91BVrORhhV5h6hJZTlWSjMZRG/2gSY7led5Muc7NZluHqYmA3LZEy6HhIUqLzdXr6eMrx4lA7mp7qL/krNgeJR/AwAAAAAAAPqETHeK0AbcLF/p6e5yuumjrTVip/dds0eo2Wktk9FAA/J9J5jzirGdtW3q5zkgdypJcDmhPF0zSK2t0xG4vNztpswv7hUBt334eQi4AQAAAACgV0HQnaK43Dw73VPIwLuwn5o/Xt3rHcjQIk/QveGApwy9qrlDTCTngFtbtu7b02309nQr68T8M91pO9+jtP0ryW1Kp9Zpd0T1ZwQAAAAAANA7BN06YmrYSRkrHyT67NGofL+LpvSjYwfm0d8unkgTy3N7vO+U/p7VY6v3eiahyyz3gDwbHTMw33uMRt7PLXu6vXu61Uy3NujuaqOsz+8R77ZNvIZcOeVR+bkAAAAAAACSBXq6dcTYtJcyVj9JlNOPaNTVPOb7iL7fVccNDPu+U5Wge92BZrGTWwbdQ4oyaHJ/b8AuS8uD9XRnaoLuzG8fJ1NLJTmzy6ltyo1H9LMAAAAAAAAkI2S6daSr7zGiDJua9ousdzyV51mpJCtN7OVeW9lEO2s8Q9SGFmbSkMIMyrV6rs9YlR3d/j3dXIquLT03Nu0j25q/ivdbTvgNkcUznA0AAAAAAKA3QdCtJ2YbdZVNFe/Ge72WwWCgqQM82e5vKxp8Mt08pG2SUp4eMNPtcKnrxGSm25Xdj5pmP0ntoy+hzsGz4/qzAAAAAAAA6AWCbp3pKj9BvLXs/Tzujy37ur/d20C7ZNBd6FkxNln5nFwXpu3pbu5wkFzvnZGmdCwYDNQ59CxqmfVQXH8GAAAAAAAAPUHQrTNd/ZWge/+XRC7PcLJ4OVrJdK8/0ExtXU6xZqx/nlXcdsrwIuqXa6VTRhR1y3Q3tnept1mNDjJ0NMX1uAEAAAAAAPQKQbfOOIrHElnzyNjZTOZDa+P62GU5Vuqb6wmy2cACG5mVwLokO53euvIY+uk073C2NOVzDUrQzTu6Mzf8nQpenkHpW96I67EDAAAAAADoEYJuvTGaiAafSC5rARlbDsT94adqJpXL0vJg/IPuPpY2yvjmD2S015HBYY/xkQIAAAAAAOgfVobp0blPUF2LkdwJuCbCfd1vr68S7/PU8p7Inu6Gdk8Z/DWGN8nY0UiOgpFkH/XDOBwtAAAAAACAviHTrUe2fCJDYv5o5L5uNrSo50y3RZPpzqUWmut8X3zcMv3XREZczwEAAAAAAEDQrWedrWSq3RLXh+TebV4Pxqu/xvXNCau8nAepXWj6lNKpkxyFo6mr/8w4HS0AAAAAAIC+IR2pU6aajZSz9HKRMa774UdEFlvcHvvxeWPF7u1cm6XH+6WZPUF3h8NBP0pbLt5vH3eZWBcGAAAAAAAAyHTrljOHp4S7ydRUQZnfPh7Xx7ZZTCEDbpZm8gTX4w07abCxitoNGWQfcX4cjhAAAAAAACA5IOjWq7RMajnht+Jd25qn415mHg7Z073WPYxO6XiEXiu9jcjS8/A1AAAAAACA3gRBt451DplDHYNmk8HloOxP7yByu0lPZE832+HuR9sLZyX0eAAAAAAAAPQGQbfOtZz4W3KbbWQ58DVZ9n1BesI93UZyqR9nWEwJPR4AAAAAAAC9QdCtc67sfmQfeYF437plMelJmtFNH6TdRn+2/JFKqJ4y0hB0AwAAAAAAaCHoTgL2o+aT22AkQ1ebrkrMS5rW0zBjJZ1oXEeNlCnWjAEAAAAAAIAXVoYlAUfpZKq77BtyZZaSnpQffF+8/cA1hToojWwIugEAAAAAAHwg050MDAbdBdzkclKfymXi3aXO48TbDAuu4QAAAAAAAGgh6E4yxpZKMrTVJPowyFK5itLtNdTgzqTPXePEbSgvBwAAAAAA8IWgO4lkfPUIFbx4LNnW/S3Rh0Lp294Wb99zHkNdSpcCBqkBAAAAAAD4QtCdRJwFI8hAbrJuep0MHY0JPJAuSt/xH/HuOy5PaTnDyjAAAAAAAABfCLqTSMfg2eTMLidTaxVlf3QLkdu7IzsezIfWet5xdVHb5OuppWwGfeUapX4emW4AAAAAAABfCLqTidlGTXOeIbcpndJ3vU+27/4St4e27Pkv5S05XwxQI0sGtU/+GVWd+XdykjfQRtANAAAAAADgC0F3knGUTKCWE38n3s/86mERDMdDxv+eJoOrk9J3vKvelmbyPX1sKC8HAAAAAADwgaA7CdlHX0Ttoy8ig9tFOR9cF/P+blP1Bkrb/wW5DSbq6jNZvd2iCbqtZiOZjIaYHgcAAAAAAECywWLlJNVywm/J0NFMnYNPJXd6bkwfK+P758TbjqFnkSu7n3o7B9kmA5HTjdJyAAAAAACAQBB0JyuzlZpPf4rI4M0uG+z15E7LITJGLwA2tlZR+ta3xPvtE67s9vk0s5Hau1wIugEAAAAAAAJAeXky0wTcprptlP/PMynr84VEbnfUHsK6/iUyuLqoq88UcmhKy/37urEuDAAAAAAAoDsE3SnCVL+VTM17ybbuBbJ9/3x0vqnbTVYly9024aqAd5F93ZnIdAMAAAAAAHSDoDtFdA49i1qOu1O8n/n5vWSpXHXk39RgoLaJV1NX8TjqHDIn4F3SuKlbrAtDpwIAAAAAAICugu6Ojg5asGABTZ06lWbMmEGLFi0Ket+NGzfS/PnzacKECXTBBRfQ+vXr43qsyaB90rVkH3khGchNGV8/Fv4XOtrJ0Nks3jUf/E5MK5fso39IDfP+RWQMHFRzTzfDujAAAAAAAACdBd0PP/ywCJ5ffPFFWrhwIT355JO0bNmybvdra2ujq6++WgTnb775Jk2aNImuueYacTtoGAzUeuxt5DZaKG3/SjIf+Fb9lLF5P5lqNooA29Swk7I+/iWRw06m2k2Uv/hsyvrkV2L1WM77P6P8N87x7v82pYuhbcGgvBwAAAAAACC4hNUEc8C8ePFievbZZ2nMmDHiv23bttErr7xCc+b4ljK/++67lJ6eTrfddhsZDAa688476bPPPhMB+rx58xL1I+iSK7sv2Y+6kGwbX6OM1U9Q09kvkWX/Ssp950dkcHaQmwxEpjTxPgfT9hHzyFS/ncx1W8hcu5lMLfvJmTOQHGVHh/V46iA1BN0AAAAAAAD6yXRv3ryZHA6HyFpLU6ZMobVr15LL5fK5L9/Gn+OAm/HbyZMn05o1a+J+3MmgbdJ15DaYiAxmke3O+c8VnoDblC5Kz/l9R/4wap36czGRvO3on4uv48Cbv67ptD+ROy0rrMeSPd02BN0AAAAAAAD6yXRXV1dTfn4+paWlqbcVFRWJPu+GhgYqKCjwue+wYcN8vr6wsFBkxqE7V95gqvvxSpH1zvj692TsaqHOfsdT49kvkaGzhUxNe8hZMILcadni/m1TbqS0ik/JcvBbajvmloCrwYKRPd2Z6OkGAAAAAADQT9Dd3t7uE3Az+XFnZ2dY9/W/X4SrrXVJHt+RHqc7py8XklP7Mf9Hruwy6hx2NhksViKLlZyZRZ7HkHc2manp3L+T+dA66up3XESPnW72BNuZ6Sbd/25TUbTOF+gdcL5AJHC+QCRwvkAkcL5Aqpwv4R5TwoJu7tH2D5rlx1arNaz7+t8vHIWFnuyu3kX1OIuvDuNO2UR9+0b8rS+dPphcBgOdO3UAFeXZDuvw4Mgly3kN+oDzBSKB8wUigfMFIoHzBXrL+ZKwoLu0tJTq6+tFX7fZbFbLyDmQzsnJ6Xbfmpoan9v445KSkogft7a2mdxu0i2+WsInlN6PU5pYkkF/nDuayOGgmhrP2jGIn2Q7XyCxcL5AJHC+QCRwvkAkcL5Aqpwv8th0G3SPGjVKBNs8DI1XgbHVq1fTuHHjyGj0ne/Gu7l5yrnb7RZD1Pjtd999R9dee23Ej8t/UHr7w0rm4wR9wPkCkcD5ApHA+QKRwPkCkcD5Ar3lfEnY9HKbzUZz586le+65h77//ntavnw5LVq0iC699FI1622328X7vEKsqamJ7rvvPtq+fbt4y33eZ5xxRqIOHwAAAAAAAEC/QTe74447xH7uyy67jO6991668cYbafbs2eJzM2bMEPu5WVZWFj3zzDMiE857uXmF2F//+lfKyMhI5OEDAAAAAAAA9Mjg5lrtXoT7jvX8E3NfQFFRtu6PE/QB5wtEAucLRALnC0QC5wtEAucLpMr5Io9N15luAAAAAAAAgFSGoBsAAAAAAAAgRhB0AwAAAAAAAMQIgm4AAAAAAACAGEHQDQAAAAAAABAjCLoBAAAAAAAAYgRBNwAAAAAAAECMmKmX4V1qyXB8ej9O0AecLxAJnC8QCZwvEAmcLxAJnC+QKudLuMdkcLv1tmIcAAAAAAAAIDWgvBwAAAAAAAAgRhB0AwAAAAAAAMQIgm4AAAAAAACAGEHQDQAAAAAAABAjCLoBAAAAAAAAYgRBNwAAAAAAAECMIOgGAAAAAAAAiBEE3QAAAAAAAAAxgqBbJzo6OmjBggU0depUmjFjBi1atCjRhwQ68uGHH9LIkSN9/rvpppvE5zZu3Ejz58+nCRMm0AUXXEDr169P9OFCAnV2dtLZZ59NX331lXrb3r176fLLL6eJEyfSmWeeSZ9//rnP13z55Zfia/gcuvTSS8X9ofeeL7/73e+6Pd+8/PLL6ueXLl1Kp556qjhfrr/+eqqrq0vQ0UO8VFVViX9zjjnmGDrhhBPogQceEK9bGJ5fIJLzBc8v4G/Pnj3005/+lCZNmkQnnXQSPffcc+rnUun5BUG3Tjz88MMiWHrxxRdp4cKF9OSTT9KyZcsSfVigE9u3b6dZs2aJJxv5H//D1dbWRldffbW4WPPmm2+KJ6xrrrlG3A69D7+oueWWW2jbtm3qbW63W7xwKSoqoiVLltB5551HN9xwA1VWVorP81v+/Lx58+iNN96ggoICuu6668TXQe87X9iOHTvoF7/4hc/zDV/QY99//z3deeed4hz6xz/+QU1NTXTHHXck6CeAeODnAg6g2tvb6ZVXXqE//OEP9N///pf++Mc/4vkFIjpfGJ5fQMvlconXsfn5+fSvf/2L7r33XnrqqafonXfeSb3nFzckXGtrq3vcuHHuVatWqbf9+c9/dv/oRz9K6HGBfvziF79wP/bYY91uX7x4sfvkk092u1wu8TG/Pe2009xLlixJwFFCIm3bts197rnnus855xz3iBEj1OeTL7/80j1x4kTxPCNddtll7ieeeEK8/8c//tHnuaatrc09adIkn+cj6D3nCzvhhBPcK1asCPh1t956q/v2229XP66srHSPHDnSXVFREZfjhvjbvn27OEeqq6vV29555x33jBkz8PwCEZ0vDM8voFVVVeW++eab3c3Nzept119/vXvhwoUp9/yCTLcObN68mRwOh8hSSlOmTKG1a9eKK0AAfGV40KBB3W7nc4TPFYPBID7mt5MnT6Y1a9Yk4Cghkb7++ms69thjRXbA/xwZPXo0ZWRkqLfxOSPPEf48V0pINpuNxowZg3Ool54vLS0tojQ00PNNoPOlrKyM+vbtK26H1FRcXCzKPTnb5H+u4PkFIjlf8PwC/kpKSkQVRFZWlshQr169mr755hvRmpBqzy/mRB8AEFVXV4uyirS0NPU2frLi0r+GhgZRLgG9Fz8J7dq1S5RgPfPMM+R0OmnOnDmifIvPnWHDhvncv7CwsFu5KKS+iy++OODtfI7wP2r+58jBgwfD+jz0rvOFL/Dxxbunn36aPvvsM8rLy6MrrriCzj//fPH5Q4cO4XzpZXJyckRfrsTJAO7BnTZtGp5fIKLzBc8v0JOTTz5ZlIxzO+Xpp59O999/f0o9vyDo1gHue9EG3Ex+zENuoHfjJyB5jvDVwH379ol+brvdHvTcwXkDUqhzBOcQaO3cuVO8KB4yZAj96Ec/EhmHX//61yILcdppp4nnHZwvvdsjjzwiBnhyD+ULL7yA5xcI+3zZsGEDnl8gqCeeeIJqamronnvuEcP3Uu31C4JuHUhPT+92gsiPrVZrgo4K9KJfv35isnBubq74x2rUqFHiyvGtt94qym8CnTs4b0D7/MIVM8HOkWDPP5ytgN5n7ty5IsvAGSh21FFH0e7du+m1114TL4qDnS9c1ge9I4Diga88HGvEiBF4foGIzpfhw4fj+QWCGjdunHjLlb6//OUvxYA9DqxT5fkFPd06UFpaSvX19aKvW+KSCT6p9HriQHzxP1Cyb5sNHTpUPClx7xRfFdTij/3LbaB3P7/0dI4E+zyfW9D78POMfEEscVaK+zAZzpfe67e//S397W9/E4EUl34yPL9AJOcLnl/AH//5Ll++3Oc2bpvs6uoK+Ro32c4XBN06wJlLs9ns0/jPgwT4io/RiD+i3m7FihVi4JH2at+mTZvEP1w8UOJ///ufuh6B33733XdiXyEA43OBS/q4bE/7/CLPEX7LH0t8nnEpIM6h3unxxx8XO1H9h33yC+NA58uBAwfEfzhfUhuvMX399dfp97//PZ111lnq7Xh+gUjOFzy/gD9umeQ1YPLCC+MVyjzPil/jptLzCyI6HeCyGS7p4x4G3lHIV3wWLVoklrwD8FR7LqG56667RL/lp59+Kva6X3nllWKgGu+xvO+++8Qub37LTzpnnHFGog8bdIJbEHgCLO865QF7f/3rX8XzzIUXXig+z+VbfKGGb+fP8/3Ky8vFhR7ofbj0k/ssn3/+eaqoqKBXX32V3nrrLfrJT34iPn/RRRfRv//9b1q8eLF4sXzbbbfRSSedRP3790/0oUOM8PCrv/zlL3TVVVeJF8FciSf/w/MLRHK+4PkF/HGCkSeOL1iwQLyO5de4XB1x7bXXpt7zS6J3loF3t9xtt90m9tHxLsO//e1viT4k0JGtW7e6L7/8cnF+TJ8+3f2nP/1J3c29du1a99y5c8Wu9wsvvNC9YcOGRB8uJJj/3uXdu3e7L7nkEvfYsWPdZ511lvuLL77wuf8nn3zinj17tnv8+PFiByZ2ovbu8+XDDz8U+7v5OWXOnDnu999/3+f+S5Yscc+cOVM8H/E+1bq6ugQcNcTLM888I86RQP8xPL9AJOcLnl/A38GDB8Wf9eTJk8Vr3Keeekp9jZtKzy8G/l+iA38AAAAAAACAVITycgAAAAAAAIAYQdANAAAAAAAAECMIugEAAAAAAABiBEE3AAAAAAAAQIwg6AYAAAAAAACIEQTdAAAAAAAAADGCoBsAAAAAAAAgRhB0AwAAAAAAAMQIgm4AAACd+tWvfkUjR44M+t+bb74p3u7bty+hx7l371769NNPE3oMAAAAemVwu93uRB8EAAAAdNfc3Ex2u128/+6779KiRYvojTfeUD+fm5tLjY2NVFBQQCaTKWHH+eMf/5iOOeYYuvHGGxN2DAAAAHplTvQBAAAAQGDZ2dniP/k+B9bFxcU+9/H/GAAAAPQF5eUAAABJisvKteXl/P57771HZ5xxBk2YMIFuueUWUfp96aWXio8vvvhiqqqqUr/+ww8/pDPPPFN87sILL6Svv/466GOtXLmSzjvvPBo3bhydcsop9Prrr6sl8Px1Tz75pMh4swMHDtC1114rvu/JJ58sPud0OsXnuCT+oosuokcffZQmTZpEJ510Ei1evDjGvykAAIDEQdANAACQQp544gl68MEH6ZlnnqEPPvhABLj8HwfJ1dXV9Oyzz4r7bd68mW6//Xb62c9+Rm+//Tade+65dNVVV9GePXu6fU8OmH/+85/TnDlzRFB/880307333kvbt2+nO++8UwTPP/nJT+hPf/oTcdfaDTfcQIWFhfSvf/2LHnjgAXrnnXfo6aefVr/funXraNOmTfSPf/xD3Je/1+effx7X3xMAAEC8oLwcAAAghVx++eUiw8xGjRpFgwcPFplvNnv2bBFss+eff55+8IMf0DnnnCM+5mz4N998Q6+99prIXvv3ljc0NFBRURGVl5eL/0pKSkRpO5e9WywWysjIoLy8PJERr6ysFNlro9FIQ4YMEcH9HXfcQddff734fgaDgR5++GERmI8YMUI87j//+U+aMWNGnH9bAAAAsYegGwAAIIX0799ffd9qtVK/fv18Pu7s7BTv79ixQ2StOdssdXV1BQx8OZjmbPldd91Ff/nLX2jWrFl0wQUXiEFu/vj7coA+ZcoU9TaXyyUGwtXX14uPBw4cKAJuaezYsWq5OgAAQKpB0A0AAJBC/KeYc7Y5EC4Z53LyuXPn+tzOgXkg99xzD11yySW0fPly8R8H6xyAz5w50+d+DodDZLf5c/7kUDiz2dztWIIdJwAAQLLDv3AAAAC9EJed8wA2zjrL/ziQ/uyzz7rdl3vBue+a78M94EuWLKFp06bRxx9/HPD7cnk5rzGT35cfh3vNuayccd94a2ur+jXr168XZeYAAACpCEE3AABAL+395t3fL730ElVUVNALL7wg/hs0aFC3+3IZOU86v//++8V9uQebe8NHjx4tPs/93Lt376ba2lpRns4l7bfeeitt2bKFvv32W/r1r39NNptNzcK3tbXRwoULRSk693IvW7ZMTFYHAABIRQi6AQAAeqGJEyeKYWavvvqqWBvGwe9jjz1GRx99dLf7pqWliXJxDrR5yjlPMucVY/Pnzxef57crVqygK6+8UgTWTz31lOjj5kFtN954oyhB535wqaysTAxh4+/x3HPP0SOPPOLTAw4AAJBKDG7e7QEAAAAQB7ynm/d2BypNBwAASEXIdAMAAAAAAADECIJuAAAAAAAAgBhBeTkAAAAAAABAjCDTDQAAAAAAABAjCLoBAAAAAAAAYgRBNwAAAAAAAECMIOgGAAAAAAAAiBEE3QAAAAAAAAAxgqAbAAAAAAAAIEYQdAMAAAAAAADECIJuAAAAAAAAgBhB0A0AAAAAAABAsfH/AZ2oGf1KZI0IAAAAAElFTkSuQmCC"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQWUG1UXx//Junvd3R1aoKWFIsXdXT7c3d0p7lbcChS3Qgul1IW6u2x13bO7yXfuy9zJJBvdjazc3zl7NptkM29m3kze/6rJZrPZIAiCIAiCIAiCIAhC0DEH/yMFQRAEQRAEQRAEQSBEdAuCIAiCIAiCIAhCiBDRLQiCIAiCIAiCIAghQkS3IAiCIAiCIAiCIIQIEd2CIAiCIAiCIAiCECJEdAuCIAiCIAiCIAhCiBDRLQiCIAiCIAiCIAghQkS3IAiCIAiCIAiCIIQIEd2CIAhCULDZbGiqRHrskd5+KMbWmPdJEARBEMKJiG5BEARB56677kLv3r09/vz222/qfRdccIH6Yb766is8/fTTQRnDs88+iwMPPBBDhgzBd9995/Y93sZIPxMnTvR7e9OmTcOdd96p/z1v3jz1GfQ71FgsFjzxxBP48ccfg/J5hx9+uDqH3qipqcEHH3yAU045RR3joUOHqseTJk1S42no2IqLi3HHHXdg4cKFCBaLFi3CVVddhZEjR2LAgAEYN24c7rnnHmzfvh1NiR07duhz9Msvv3T7npKSEgwcODBoc5DmA82LUP+PIAiC4JloL68JgiAILZCcnBy8+uqrbl/r0qWL+v3ggw86Pf/GG28oodxQ1q1bh3fffRdnnnkmTjrpJHTr1s3je08//XScccYZbl9r3bq139skAWqkf//+ShD16NEDoWbv3r348MMP8eSTTyJc3H///Zg6dSquuOIKJWCtVqsSyC+++KISt6+99lqDxrZ69Wp8//33OO2004Iy3jlz5uDyyy/HkUceiccffxwpKSnYtm2bMhLQHCCDT6dOndCUMJvNyoB11lln1Xntjz/+cDJ+CIIgCE0fEd2CIAiCE7GxscoD6o1QCdLCwkL1+7jjjsOIESO8vrdNmzY+x1kfkpOTQ/K5jYHc3Fx8++23eOSRR5RhgxkzZgwyMzOVZ3vZsmUYNGgQGgtvvvmmGg8ZBRjyeI8dO1YJ8ffff7+OEaixM2zYMOXFzs/PV8fdyM8//4y+ffsq44UgCILQPJDwckEQBCFgjOHlFIa6c+dOJeYoJJZCaD3xyy+/4NRTT1UhzYcccggeeOABFBUVqddeeeUV/TMvuuiioIW3/vTTTzjxxBOVcBs1ahRuu+027NmzR9+P+fPnqx8O53UNL6dxTZgwQXkgjz/+eBX6S174//77D0uWLFHedvpseo28skb+/PNPnHvuuWp/yatMn/Ppp5+q1+g4jR8/Xj2+++67nfaXPM/nn38+Bg8erCIIKPydBJqRNWvW4JJLLlGffdhhh+GHH37weSz279+vcq3Ju+3KCSecgFtuuQWpqalex0aeZTqHZJig/aZj8euvv6rX6JhdeOGF6jH9NqYg0LGg/6PjR+f+scceQ3l5ud9jdqVVq1a477771GcxNM4XXnhBGQ8OOOAAJc4p1J2NOf7sA7Np0yZcd9116vjTZ1155ZXYuHGj/npVVRWeeeYZJf7p3NLxo/ntD2QsIG83zSkjBQUFmDt3rjI6ubJlyxbccMMNan9p3HRsKTLBCF1LdL54zJSq4e5c1/dcCIIgCPVDRLcgCILgNu/X9cdTYSwKRaeQdBIfFJZNYsgdr7/+uhJ1JBhefvllXHvttfj999+VeKisrFTilUQ4Qb89hbgzJCbcjZN+GBIlJLqOOuoovPPOO0qQkKi59dZb1evkIe3Xr5/6obFTaLk7du/ejaeeekrlFb/00ksqb5kEEO0PjZtCsun43HzzzWpfiL///lvtI30m7TuJ944dOyov89KlS9Vx4n28+uqr9ccLFizAxRdfjPj4eOXdpdxlMgqQiOXPJqMBiXLK/yVhdeONN6o8djYmeKJPnz5o27atChl/+OGH8c8//6C0tFS9Rh5XEpaUQuBpbGQwoHNzxBFH4K233lLbpMgIMmTQMaJ9NZ5D9kBTXjgdC0oXoGNFYpaMBNdcc43PgmuUv00GDponX3/9tVMeNx17GouRzz77DIsXL1b7SOd5xowZar94O772gY8vhX6T0H3ooYfUMSbxT8YgEvD0WbQ/X3zxhTJ8UHoFGT/o/HuqQ2CEDBskdrlGAkPXQ7t27epEGmzYsEGJZDKGkKGBxmwymdR4aG7w9UBh+LS/ZKSh+UrHwdUQ0JBzIQiCINQPCS8XBEEQnCCvtTvxSQKG8oBdIcFKooVEm6ewbPLAkTChkGYWZUSvXr1w3nnn4ZtvvlG/OWydftPneoOELP24gzzONB4S3SReadw0RiI9PR3Lly9XAoO2Q+HkhLeQ8oqKCiUgDz30UF0EPffccyrHmPKKCfIUkhDfvHmzCg+m91CBsnvvvVf/HBJm5H0ljzB5sel9BOUk8/7S53bt2lUJwqioKPUcvZe8n3ycKA+9trYWb7/9th6eTP9jDBl3Bx0D+h8yRJA4pR/yuNL5PuaYY9Rn0/Gi97kbGwneyy67TAk0pn379koQ0rGmMRrPIf3QcSaRSCHsxgJ3JO7JuEAikYS1J8igQMYFEtwsMCm1gIw89P+uef+0PxRyTrnfBB0fEpkzZ85U58+ffaDjS3nV9DlkUGKDxTnnnKMMJtHR0erzyKt+7LHHqtdp/2ie0D5S1AO9xxt0vMmgYgwxp9By/jwjZPSgc/LRRx/p85WOGW2HvO10bMiAQqkBZFzieXrQQQc5RSk09FwIgiAI9UNEtyAIguAEiQwSyK6Q0KkvFIZNIoZEghHK2ybBQ2KKBF8gkMD0JDLJk0hQiC0JI9ru0UcfrYTa6NGj1e/65OEy2dnZuhhmSMwT5AUnyOtIlJWVKSFOxb9I7BOeCmWRaCNRR6KQBBJ77clD3r17d8yaNUsdJxKHZCQw5gPTWMhL6gsydJA3lsby77//KgMAeZLpbxJv5Al2zTNmuDI67SOFX2/dulUPw/e0T/Q+8iCTt9kYhUDnhgQk7RMJPeNrBBkcyJtLYpOiA66//nolCilSgbZJkQlTpkzB888/ryIZGBKZLLj5bxLAFEFAYtSffeDjy4Kb5/9ff/2lHrOnmeaRcdy0LfIar1+/XjdaeII87VTUjkLMyatOhesorYCMUq6pBHR9UAoBC26C9okMBOStpjlG/xsTE6MENZOYmKjGSPseyLkQBEEQgouIbkEQBMEJEjmU6xlMOG+bxaoReo48mYFCIdC+xkmeZfLskueSvJb0mLZHYeLGfGN/MAoeJiEhweP7STiRd5zyZ0mgde7cWS8O5ymMl4QghQmTt5J+XImLi9OPZ4cOHeq8bhSJvqBjRz8UPk5in6qBU9g/bdfYQs0IGQ5IFFIkAQk88jKTB9jbPnE+NYWz048rJDaNOeQMhYeT99m4bxRVwJEFJL5vv/12Ff5NApY83O4q19PzGRkZ+hz0Zx9ozO6Or3Gf6L1GQ4zrPvkS3TSfyAjAVczpN0UG9OzZs06rMBq7p2uHxkEpAvQeMvzQXPM0J/w5F4IgCELwEdEtCIIghJy0tDT1m/JiXcOB9+3bpzy5oYI8fxz6S0KNQnSpcBR5hkNZpZtyhMmzSIKfxD8ZM2gMkydP9vg/SUlJSjRRqK+7Ylos8klE0rF0xbVgmCvUS528ta65xPS5FIJNrcQoLN4dZAygMH0SquQRJ1FJ3lZ6P7UI8wRHHVBIu7u2cjQ3yIBCn2mERC95/ckoQDnVxoJpBBXFo4gAEudUgCwrK0s9T4+NUBg+PUfee3/3gTzlrt5mgoQ6jYteJy8yzSV3kIHFHyiUnAwHtC3KvXZ3zvkYuTvfdO3wfKAf2k/aX05LcJ0T/pwLQRAEIfhIITVBEAShwbCX0RMkcEl0UiVxIxQSS22sPHkMGwqJTOoXTd5AEpYUosteXNquP2OvLxSiTGHPlMPN+eSUd0twRWmjOGLvJ+VPk1hnTzT9kPeTCrGxB5QEJ4WEGwunkXA0FhlzB+V9U6i7uyrbFKJMnk4KP3c3NhJ09L/kaaYxcc6yr30iIwsJYvJmG/eJPNKUv75q1So9usL4QyKSco3JUEHi1l0VbhoPeXKN4fA0HmOo+7Rp01QoNeU3+7sPFJFAgt8ovPPy8vRCZSRYKYef5pVxzNRnnsK9XUPlPUHzkfb9k08+USkYnkQ3hX+TsYSL3hEkrikHnLZLn0H7R9ulyAqGjgOFjAdyLgRBEITgI55uQRAEocGQB40W7JR7St5jKsZlhMJeycNIgoS8jCQ2aOFPlcAppJYKjgUK5aaSUHEHCWxq+0XilMLKKY+X2oZVV1fj3XffVeOh13jsJGDJi+mreFsg0HGgStFUpIzygamSNIW3kyebhCTBuce0bcrZJuMEVUSnY0WF62jMJK4o9JtEIBf/oqrV5KklTy/lOtN7KHedjq03Tj75ZDUm8nSSgKd8X9p/qtJNwpbO26WXXupxbJR/TznftD/0f1RMjL29rvtE1dvJc0qh21TVm0K6SZDTuacweiqCR0YDTxXjCfp/MpJQmD61XqMcfoqKoHQEyoWmNnWcX83s2rVLecep2js9ppxvinQg4wfhzz5QpAHlvZPIpvxnOq5U54D+h1qD0T6SEKbzQT90fKiIGYXnc89zf+Cca5oXNF88RXxQhXEyDNA+saeehDoZWWg+EyS6qV4BVTcnAwHtJ+0XGQ44CoCOf33PhSAIglB/RHQLgiAIDYaEGvVGJhFIIpdzl42QOKQcVBILVASLhC/1rb7pppuU+AgUEp2uIckMCT0KFyZBQ6KMRCsJFxJnw4cPV2KEC59RYbIVK1bgf//7nwpV9tTyLFCoZdOjjz6qfgjy2lIeLRXaIg8/e7ap5RQdD/KgkleShNN7772nKlZTNXQSWCSG6LhyhXXyAn/++eeqejoZFCgsnQSirz7R5BGlz6b9pxBz8pRSGzLaZyoCRmKVBZq7sZE4423SZ5HBhMQonXvaJ8qTJ688Fa4jYUuClqIbqLUXjZEEIn0enW+KbqBz4yu14Oyzz1bh2jRmEtAULk2fRSL1ww8/1MU0Q95iEtM8r8igQ0KT8WcfqK0aVXansHZ+H22HDBscgk1CmYxGVGWeRC55i+l4UZh+IFCIOZ0Ld1XLGTqmNB7af2p7R/OY9p+OifFaozlDx5TEP/URp88kQwV5+5mGnAtBEAShfphs0pRREARBEIRmABkOKPSbDB6CIAiC0FiQnG5BEARBEARBEARBCBEiugVBEARBEARBEAQhREh4uSAIgiAIgiAIgiCECPF0C4IgCIIgCIIgCEKIENEtCIIgCIIgCIIgCCFCRLcgCIIgCIIgCIIghAgR3YIgCIIgCIIgCIIQIkR0C4IgCIIgCIIgCEKIiEYLIy+vBI25XrvJBGRlpTT6cQqNA5kvQiDIfBECQeaLEAgyX4RAkPkiNJf5wmPzRYsT3XSiGtvJasrjFBoHMl+EQJD5IgSCzBchEGS+CIEg80VoKfNFwssFQRAEQRAEQRAEIUSI6BYEQRAEQRAEQRCEECGiWxAEQRAEQRAEQRBCRIvL6RYEQRAEQRAEoeljtVpRW1sT6WEIYShWVllZiepqS9hzuqOiomE2N9xPLaJbEARBEARBEIQmg81mQ3FxPioqSiM9FCFM5OeblZElEiQkJCM1NRMmUv/1RES3IAiCIAiCIAhNBhbcyckZiI2Na5AYEpoGUVEm1Nbawm7csViqUFpaoP5OS8tq2qLbYrHg1FNPxf3334+RI0e6fc+qVavw4IMPYt26dejRowcefvhhDBgwIOxjFQRBEARBEAQhMlittbrgTk5OjfRwhDARHW1GTU34Pd1k1CFIeKekZNQ71DzihdSqqqpwyy23YP369R7fU15ejiuuuAIjRozAlClTMHToUFx55ZXqeUEQBEEQBEEQWga1tbVOYkgQQg3PtYbUD4io6N6wYQPOPPNMbNu2zev7fvnlF8TFxeGOO+5A9+7dce+99yIpKQm//fZb2MYqCIIgCIIgCELjQELKhaY01yIquufPn6/Cyb/88kuv71u6dCmGDx+u7zD9HjZsGJYsWRKmkQqCIAiCIAiCIAhCE8vpPvfcc/163759+1Qet5GsrCyvIemeaOxGMR5fYx+n0DhoyvNlxoY8zN1SgFsO64aYqIhnujQubFZE585H3MafYa7IR21aF9Smd0V1uwNhTe3UIueLEH5kvgiBIPNFCNd8aapzbPToEer311//hDZt2ji99t13X2PixKdwySX/w2WXXYmmzHvvvYX//luEV1992+N7FiyYi48+eh9r1qxCdHQM+vbthwsuuARDhw73ezs7d+7Atm1bcdBBhzR4zOXlZZgx4y8cc8zxPuee6/zzdz42ikJqvqioqEBsbKzTc/Q3FWALlKysFDQFmso4hcZBU5wvr324CJv2leGUER1xcI9stEio9UX5fqB4J5CUA6R1sD+/9AvgWw9fut3HA+PuBjoe0KLmixA5ZL4IgSDzRQj1fKF+zdQ+iqpZU3GtpkR0dDTmzPkHZ5xxttPzM2f+rSJ5zeamt0+u0D7Qvnjaj59++h5PP/0ELrzwEtx55z2qQvhvv/2Cm2++Fvfe+4BX4Wv8zKeffgxDhw7DmDFjGjzmyZM/w6JFC3HCCSe6fd1qpXNjRkZGEuLj4+u1jSYhuimf21Vg09/12em8vJKwN1UPBLKW0A2osY9TaBw01flitdmwI99eCHHnvhLsT2+GxVBsNpgsxbDFpelPmaqKYYtJQkzuPMSt+QqxG3+BubpMvVY+4gaUj7rD/r6sQ5CRkAVL5/GozewBc9FWROevQ8yuBcDGaSgacDmqE0rUe83F29Xn1mb2BKKcjZPNZb4IkUHmixAIMl+EcM2X6mqL6tdM7aMiUc26IQwePAz//DMDp5xypv5cWVkpli9fjp49e8NqbXr75ArtAwlpd/uxf/8+PPvsU7jlljtxwgkn68//73/XICUlFc8++zSGDTsQWVnZPquX0xwI1vGqrbV6HLP9dZvaXkFBGWJiqt3O5WYhulu3bo39+/c7PUd/t2rVKuDPogu7KXwZNJVxCo2DpjZf8suqYdF6LZZbapvU2P2BhHDqnzfAFp2IohM/1Z/P+Hw8zGV7YLI5buo2mGBNbAXUVuvHwRaXjryLFwPmKOfPLdqC+PU/wtL+EPpHRcLiN5Gw4kPYzLGoyemPqp4nobLnybAlZjeb+SJEFpkvQiDIfBFCPV+a8vwaM+ZQvPbaS0poJyUlq+dmz/4XgwcPUZG9Rr777ht8+umHKCwsQO/efXHzzVRQ2p5uu2/fXrz00kQsXLgAVVWV6Nq1G2666XYMGjREvf7VV1/giy8+QUFBPrp27Y4bbrhVbWPx4oW44Yar8O+/C/XtPP74Q+r3vfc+pELDN2xYh+LiYmzatBFPPPEs+vcfiNdffxl//PGret/IkQfjpptuQ2qq3amwefMmPPPM41i3bo16b5cuXT3u/9SpvyI5ORnHHVfXo3z66Wfjww8nYdq0qTjzzHNx3XVXqHBzDrfPzc3Fqacej6+++gGTJr2NJUsWqx8KZaexn3HGiXjggcfw+usvobKyAhMmHI/rrrtJRRe4C3k//fQTcOmlV6jH77//jp4CYDw2wby/NYn4hcGDB+O///5TFgiCfi9evFg9LwhC02N3caX+uKLa3vqjuRC78WdkTJ6gvNKmygLHC9ZamMv3KcFtjUlGRb9zUXDqt9h/1SbkX7IIZQff6/xBLoJbfURaF5SPuB4wOW7dpuoyWGNTYbJaELPnPyT/+xCyPhyBlN+uUuJfEARBEJo7pA1oPRHOH9YlgdCtWw9kZ7fC3Llz9Of++edvjBkzzul9//77D95//20lpCdN+hSDBw/FDTdcqcQw8cgj9yvv7Ftvva9ez8lpheeee0q9RuKXhOett96FTz/9WontBx64U3lq/WHmzBk48sij8fLLb6Bfv/54663XVO71s8++hJdffgulpaW4//679MjjO+64Ce3atVfjGDduPL7/forHz16zZjV69erjttc1ieN+/QZg1aqVPsd44423YcCAQTj77POVYYChY/bww0/iiScmYsaM6Ups+2L8+CPV59Dnff996DpjNVpPNxVPS0lJUSHkEyZMwHPPPYfHH38cZ599Nr744gtlDTrmmGMiPUxBEOrB7pIq/TF5upsLCYtfQ/KcJ9Xj6tbDUHzUa44XzVHYf8U6mMv2wpqYBUQnBGWbJUe8qMyu5uJtiN32F+LXfI2YvUsQv/EnxOxZjPzzZwFRMUHZliAIgiA0Nkj8Xv7FUizLtQvScDG4XSreOXtwwO2kyNs9a9Y/SuyRaKWiYrfccofyAjOfffaRKix2yCH2fOX//e9qzJkzC1On/oLTTjtLifRx4w5Hq1at1eunnnombr/9RvV4165dakxUrK1t23YqdPvgg8f4LbozM7Nw8smn6/nzU6ZMxrvvfqx72e+//xEcd9x4bNy4AXv27EZRURFuu+1uJCQkoHPnLsqjTB52dxQXF6nP9wRpP3qPL8hbTiKdtkke97Iye6reNdfcoIwMxOWXX4U33ngFV1xxjdfPiouLV59Dn+curL3Zi+7Ro0fjySefxKmnnqoO7FtvvYUHH3wQkydPRu/evfH2228jMTEx0sMUBKEe7C6uanae7thNv+uCu3zIlSgbdVddsRsVC2uqViwtmJhMsKZ1RuXAi9VP1P5VSP73QVT1OkUEtyAIgtDsaUoFzUePHov77rsTNTU1WLRovvJ+Z2RkOr1n69bNeP31V5SXmSGBvn37NiWoTznldPz55+9YsWIZtm7dgrVr1+iieuTIg9RnXnjh2ejVq7fa3oknnqJEpT+0adNWf5ybuwPV1dW46qpLnN5D29q+fStyc3eiQ4eOSrQyVImcQubdkZqahry8PI/bppzv7Owc1JeBA+2Cm+jTp58KzS8sLERjoNGI7rVr13r9e9CgQfj222/DPCpBEELBLqfw8qZdMISIyluDlD9vUI8rBl6EskPuj+h4arP7oeikySpjnInZ/g+iC9YDh9st4YIgCILQHCARSh7nyjAXIIuPNgfs5SY473rZsiWqqNqhhzqHlhO1tbW44YZbMGLEgU7PJyUlKcFLlb5LSkqUt/yQQw5Vwvjee2+3jys+Hm+//YHKdyaP+i+//Kjyw99772O346VtRUU5UtqMHaPoNeL1199FQoKzszMzM1N9rnGtQVALME/069cfn332sRpvTIzz+6qqqrBlyyaMGTNW/e061traGo+f69i2Q9parbVO1dRd4X0LF00ip1sQhObFnpLm5emO3rcCpppKWNofjNJD7AVJIo5qJmm/xZuqipDy501Invkg8M5hiN34q+oF7gvKCU9Y/AbSvjtL/dBjQRAEQWhskKhKiIkK6099BDcLQ+otTYJ49ux/cOihh9V5T8eOnVWxNPIi889HH03CypXLlTAlQf3ii6/jwgsvxcEHj0Ze3n491J683x9//D6GDRuB66+/BZ999g0sliol8lnoUl9qhrzVnmjfvoMS5BRCzuMg4f/yy88jP99epI2875Tnzaxf7+w4NXLEERNUyPq3335V57VvvpmMqioLxo8/Wv1NYy0vL/c4TnfH37htyh8nr3laWnqdz6LHxhD4+p7LJunpFgShZYaXN4ec7qo+p8Oa0g41WX0bZTi3LTZVtSRLnv04TLn/ITX3f6jJ6IWyUXfA0vVou0BnrDWI2/gzEpa+p3LCjdSmhCA0XhAEQRBaGOTNfeKJR1QBMvpx5eyzz8NTTz2Gjh07YeDAwao42fTpf6g8b2qlTIXIpk37XYWOr169EpMmvaWHoNPrVI2bcqfJU04CnWphde/eEzk5Oep1qhJ+0kmn4u+/p2HdurVqO+5ITExSrb0mTnwKd9xxjwqDf+WVF7Bnzy6VL06h6K1bt8FTTz2Cyy+/GqtWrcC0aX8oj7Y7srOzceutd6oe25SHTZ564s8/p+KTTz7A7bffo97D4eG//fYzjjjiKPX32287G/4ppH3Hju1O4vmll57DXXfdp6IA3n33TZx22pn6Z9Hf06f/iR49eqrq52ZDwdr4+ATVGWvXrly1X6FARLcgCBEOL2+aojsqfz1slKOd1ln9Xd3+YDRaTCaV623peQKy1n0M67y3EV2wDmm/Xm73zo95FLVZvVXbsowvxiO6cJP6N5vJjOp2o1DV/Vgl3I2iOzp3PuI2/oTyA2916kUuCIIgCIJ3DjzwIJXTzaHUrowff5TyJJNQtHuUu+Hpp1/QxTFVJv/gg3dVzjd5xama92OPPag8vVSF++67H1Cvv/DCM0oUU/EzbuV15533qf/7+usvMHbs4UqYUu6zJ6677ma8+uqLeh76kCFDVSVzDkl/5pkXlYi+9NLzVbG1U089Q1U798TRRx+rqq2TN/7LLz9Tz1HV8ueee0W1CDMaHjZt2oBrr71CGQtuueV23HqrI0Xu+ONPxpNPPqLy3x9/3F7BnET87bffBJvNqorBnX/+xep5Mj6cdda5qrVZVJQZZ511nsofZ8aOPQzff/8Nzj//DHz99Y91cuyDgclWn3r3TZj9+0sadX8/cjhlZ6c0+nEKjYOmOF9IZB/68iz975Gd0/Hq6YPQlIjevRhpP12oxCa1/bIltUJTmi95O3cifvEbSFzyNky1VSg85RtUtxup3pM8/VbEbfkTFQMuQkX/893vW00FMj89FFGlu2CNTUHlgItQ2etkFbJuqqlQfcZrM7o73k+TMwyhW0JwaYr3FyFyyHwRwjVfqqstyMvbhaystoiJceQfC82b6Ggzajzk7ZOHmvp0Uw/vUHiqvc05nsu+EE+3IAgRCy0nyi1Nq5AaFSRL++VymGrKUZ3WpVGGk/vCFpeK8lF3orLfuYjb/LsuuImyg+5F6aGPeW9pFp2A0nFPI2n244jOX4vExa+qH6ai71koPfw5+x+1Vcj44ihYOo2FpftxqG4zwm0PckEQBEEQhOaKiG5BEMLK7hJHaHmTCi+32RC37hukTL8dJms1LB0PRdGEd4DYJDRVrKkdUTH4cqfnbAn+hVRZOh8OS6dxiN38BxL/ewNR+etgi45XbdFAvzVit/6F6MKN6idx2SRY4zNg6XKk8oxXtz9EBLggCIIgCM0eEd2CIETE050aH43iypomIbpjts9E0tynEbN3ifq7sscJKDniRSAqDi0akxmWbkerH09YOo9H0XEfIm7994jdOg3mygLEr5msfmoTW6N8+HWoHOTc/1MQBEEQBMFfKKT8338XojEjolsQhLCyWyui1jUzEUtzi5uE6I7dPFUJblt0AsqHXInyA24WD62/RMXA0mW8+qFCbTG7qADbz4hb/wNM1aWobuvcg1QQBEEQBKG5IaJbEISwslvr0d01yy66G23LsJpKPUy6Yvh1gDkG5cOuhi0xJ9Ija7pExaC6wyHqp3T0QzCX7IQ13V5NVVFb3SRz5AVBEARBELxh9vqqIAhCiMLLu2Xbc6Era6ywNrJSt0lznkLqb1fYq25T7nNSa5SNfkAEdzChdmsGwR29ayEyPx6FuLXf6MddEARBEAShOSCiWxCEiISXd8tM1J+rrG48FczjV36iKnHHbZ2O6H3LIj2cFkPSwhcRVbYHqX/eiNRfLoG5eFukhyQIgiAIghAURHQLghA2aq027Cm1qMedMxPAnZvLG0led8y2GUieca96XHbgrahpNTjSQ2oxFB37PspG3gGbOVb1Cc/8ZDRSfrsK0bsXRXpogiAIgiAIDUJEtyAIYWN/mUUJ7ygTkJMch4QYezGyikaQ100tr1J/uxImWy0qe5+G8hE3RXpILYuoGJSPuAEFZ/6q2rGZbFbEb/wJGd+chKSZD0R6dIIgCIIgCPVGRLcgCGEPLW+VEocoswkJsZrojrCn22QpReqv/4O5uhSWdqNQctgzgIn98EI4qc3qjaITP0P+WVNR2edM2ExmqXAuCIIgNHlOP/0EjB49os7P1Vdfpl6/7ror8N57b6nH1dXV+OGHb/X/LS8vw6+//lTvbdPn0ud7Y8GCubj++itx5JFjcMwxh+OWW67Df/8FFm22c+cOzJkzC8GgvIH73NiQ6uWCIISNPVrl8jYp9v7WCTHmRiG6k/++E9GFG1Gb1AbFE96S/tuNgNrsfigZ/zzKhl/vXOHcZlX9wQVBEAShqXHDDbdi/PgjnZ6LibF37XjiiWcRHW1//Oefv+OjjybhxBNPUX9/8cWnWLx4IY455viQjOvnn3/AxIlP4vzzL8Ztt90Nq9WKqVN/xc03X4u77rofEyYc59fnPPXUoxgyZBgOOuiQBo/pixDvc7gR0S0IQtjYpVUub51qb8XF4eWRzumu6n0aYnbOUYLblpAV0bEIzhgFt7kkF2k/X4SSQx9HTTvxfguCIAhNi+TkZGRlZbt9LTU1TX9sc+ni4fp3MNm/fx+ef/5p3HLLnTjhhJP156+88lqkpaXh+eefwQEHjPQ47lCN09bMOpmIu0AQhLCHl7dNtXuSExtJTrel8+HIv2AWatoMj+g4BO8kLngO0Xmrkf7jeYjZEZzwNUEQBEFoDHB4OXl3n3jiYezevUuFn//yy494//13sGTJYvU3YbFY8OKLE3HccePVzyOP3I/i4iL9szZv3qTC1sePPwQ33HAViooKPW6XPNpkDDjuuBPrvHb66WcjKioK06ZNdRojs2tXrhoT/X788YfUGGms9D5+berU33DyycdgwoRxasw1NTUeQ94pBJ/2190+N3VEdAuCEDbyy6vV76zEWPXbkdMdgZZhNZUwl+12/B2dEP4xCAFROuYxWDqOhammAmk/XYiYrX9FekiCIAhCY6G63PNPTWUA763w770hYuDAwSoMvVWr1vj++99w2GFH4Oyzz8eAAYPU38Rbb72GNWtW4dlnX8LLL7+F0tJS3H//Xbogv+OOm9CuXXtMmvQpxo0bj++/n+Jxe2vWrEavXn1gNteVhdHR0ejXbwBWrVrpc9w33nibGiONlULlmffffxsPP/wknnhiImbMmO4k2j1BIfiu+9zUkfByQRDCRnGlXXSnJcREPLw8ad6ziF/9BUoOexaW7seGfftCPYhJQNFxk5D629WI2zIVab9ciuKj34Sl29GRHpkgCIIQYXLe7uXxtarOh6P4+I/0v7MnDVYGXHdQQdWiU77W/876aBTMlfl13rfv2h0Bj5Hypl944Rmn5374YSoSEhKccrzJ80wimEO66XUSwPR3ZWUlpkyZjHff/Rjdu/dQr99//yPK471x4wbs2bMbRUVFKjeb/q9z5y6qIFpBQd19IMhDnpnpObUuJSXFyYvuCRozjZG2SaHyZWVl6vlrrrkBgwcPUY8vv/wqvPHGK7jiimu8flZcXLzTPjcHRHQLghA2iirtIUVpCfZbTyIXUgtzeHlM7lwkLHkbJtiAKLvXXWgiRMWp3PuUP65XLcVSf78SJUe8gqqeJ0R6ZIIgCILglcsuuxJjxx7u9Fx8vL3Ojb/k5u5Q1c2vuuoSp+ep+Nn27VuRm7sTHTp0dBLyffv2w+zZ/7r9PBLIeXl5XnO+s7NzUF8GDrQLbqJPn34oLCxAYaHncPfmiohuQRDCRlGF3dOdGu/s6Q5n9XJqD5Yy7RYluCv6ng1LlyPCtm0hSETFoOSoV4HpcYhf+w0S5z+LKvJ2iwFFEAShxbLvinWeX3TperH/0qVe3uvcMjTvwrkIFhkZmUoQN4TaWvua6fXX30VCQqLTa5mZmfjuu2+oDJnT81wV3R39+vXHZ599rIQ8V1JnqqqqsGXLJowZM1b9bXI5NjwWb5C3mrFa7e83m011Psvfz2uqSE63IAgBs72gAm/M2qKHiwfs6Y7XPN2x4Q8vT5r1CKKKt6E2pQPKRj8Ytu0KQcYcjZLxL6Bs5B0oPPU7EdyCIAgtnZhEzz/R8QG816XGi6f3hRBXQWr8u337Dqq4GYWQk4Cnn6SkJLz88vPIz89H167dsX37NpXnzaxfv9bjto44YoIKWf/226/qvPbNN5NRVWXB+PH2NC4S5eXljnx28qp7G7frttesWa285mlp6XU+ix4bQ+DdfVZTRkS3IAgB8/68bZg0dxu+XJzr9/9UVteiqsZeMC1N83THh9nTHbtlGhJWfQYbTEqw2WJTwrJdIUSYzCgfcQNsCZmO55pZixFBEASh5UEh5yUlxUo8U7Xv+PgE7N+/X1UET0xMUq29Jk58SlU6p0rljz76IHbu3I62bdup9l6tW7fBU089gi1bNqtK4NOm/eFxW9nZ2bj11jvx5puvqorh27ZtUT+TJr2Nd999A7fccod6D4eH//XXn1i9eqX6effdN50+i0Lad+zY7iSeX3rpOVX0bcGCeer9p556hv5ZGzeux/Tpf2Lbtq145pnHYTZHGY6BY5+bAyK6BUEImH1lFvV7wbYCv/+nWPNyR5mA5Lgop5Zh5WHI6TZVFiD5r9vV44rBl6O6/UEh36YQXuJXfa5yvUV4C4IgCE2Z4cMPQPv2HXHRRWdjw4Z1GDv2MNhsVpx//hlK0F533c0YMeJA3HffnbjyyksQHR2lKpmTB5zCuZ955kWUlJTg0kvPx7fffq0LXU8cffSxmDjxZSxbtgRXXHGJ+lmxYjmee+4VHHPM8fr7zj77PPTq1RvXXnsFHnroXlx88eVOn3P88Sdj7tzZuPXW650qkd9++014+OF7lbHg/PMvVs/T+M8661wltq+++lJ069Zdhbozrvvc1DHZmlvncR/s31/SqNdjFEmRnZ3S6McptOz5cuEni7F6TymizSb8dd3BusfaG+v3leLcjxYjIyEGU6+xC94py3bhyT/WY2z3LEw82XGjDQnVFUie8zhidsxGwZk/t8gWYc35/mIu3o7MTw+FyVqN0oPvR8XQKyM9pCZPc54vQvCR+SKEa75UV1uQl7cLWVltERMjqUWNFfJQn3HGifjqqx+UB76hREebUaNFTIYbb3OO57IvxNMtCEK9C6LVWG1YmlsckKc7VcvndvJ0hyO8PCYBpYc+hoIzWqbgbu5YUzuidMzD6nHSnCcQs3N2pIckCIIgCIKgENEtCELAcEE0YtH2woCEOvfoJhK4ZVgIRXf0nv+AWkPBtxgR3M2Vyv4XoLL36TDZapH6+zUwlzgXeBEEQRAEQYgEIroFQQgIS40VZYYc7IXb/BTdbjzdoW4ZFr1nCdK/PR1pP54Lk6UkJNsQGhEmE0rGPomarL4wV+xH+jcnqjkgCIIgCEJ4oZDyf/9dGJTQ8uaAiG5BEAKiyKVN2KrdJSiz1NTL080twypCUEjNXLoLqb9cBlNtFWzRCbBFh7a9h9BIiElA0XEfoCazN6LK9iD9uzNgLtsT6VEJgiAIgtCCEdEtCEJAFFXYBXZ6QgzapcWj1gYs2Vnsd0439+gmuABbeXWQC2NUVyjBHVW+R4mvkqNeAwxtKITmjTWlPQpP+w5VXY5E+fDrYU1qHekhCYIgCILQghHRLQhCQBRqHuv0hGiM6JimHi/yI8ScPeTco9tYSC2o4eU2G1Km34KYfctgjc9A0bGTpB93C4TOefGx7ynRLQiCIDQ/qJ2UIDSVueZwOQmCIPiBUTyP6JSOH1bswUI/iqnpnu6EutXLq2qsqLXaEGU2NXh8iQteQPyGH2Ezx6D4mHdgTevc4M8Umigms1Of9qQ5T6Hs4Hthi0uN6LAEQRCE+hMdHQOTyYyiojwkJ6cjKioaJurbJDRrrFYTaim8MoxQZ+3a2hqUlBSqOUdzr76I6BYEoZ6e7hiM6JiuHq/dW4qSyhqkGELHPeV0pxo83QlaTjd7u5PjGnZLMpXvR8LSd9Xj0rFPorrdqAZ9ntB8SP31csTmzoO5Mg/FE96xN9YUBEEQmhwksLOy2qCoKB9FRfsjPRwhTJjNZlitkYluiI2NR2pqZoOMOyK6BUGoV043eaxzkuPQMT0e2wsrVUG1kV0yPP+fm5zu2CgTyLlttQVHdNsSs1Uub+yWP1HZ7+wGfZbQvCg7+H7ETDkVcZt+Q/zqz1HZ79xID0kQBEGoJ+RxzMxsBau1NmJCTAgfJhOQkZGEgoIyyiIMu9g3m6MaHE0holsQhHp7uolOGYlKdOcWV3r9P4fodni66QZGbcOoBVlFQ4qp0R1YuxnWZvZCRWav+n+W0CypaT0EZaPuRPLsR5H078OwdBgDa2rHSA9LEARBqCe0hqDQ8iipk9rsMZmA+Ph4xMRUh110BwsppCYIQkC4FkRrmxqnfu/yIropJ8bRMszZ1tfQtmGmqmKkfXc6YnbOqdf/Cy2HisGXo7rtgTBXlyFl+q2AFOERBEEQBCEMiOgWBKFBnm5qG0bsKq7y+D/kxa6hGHKXnG6CPN1EeX0qmNdakPrr/1Subsq0W9TfguARcxSKxz+v+rbH7pyN+OUfRHpEgiAIgiC0AER0C4JQ75xuom2qJrqLKn16x2OiKJzc7FZ0B9w2TLUGuw2xO2fBGpOkKpUjKjawzxBaHNa0Lig9+F71OH7N14A1iO3qBEEQBEEQ3CA53YIgNMjT3Vb3dHsW3cUs1ONj6hSiSNREeKCiO3HeM4hfNwU2UxSKJ7yFmpwBAe6J0FKpHHAhzBX5qBh0qfJ+C4IgCIIghBLxdAuCUL+cbg4v13K695VaYKlxnyNbqP1PqpuWYtw2rDyAnO74FZ8gadEr6nHpuKdR3WlcwPshtGBMZpQfeAts8faWd4rq8kiOSBAEQRCEZoyIbkEQ/Kam1orSKrs4Ttdys8njHRdtBmVs7ylxn9ddzJXLNaFuJDHA8PKY3HlI/uce9bjsgJulNZjQYOKXTULmJ2MQtW9lpIciCIIgCEIzRES3IAh+w22/KEA8RfNaU7h4Oy2v21PbML1yuRtPd7wuuv2rJF3degiqepyIij5nofyAW+q5J4KgUV2B+NVfIqp8D9KpCn7u3EiPSBAEQRCEZoaIbkEQAs7npjDxKLMjN7ttmj3EfLcH0a17ul0qlxs93X5XL4+KQ8mRL6P0sKf13tyCUG9iElB08lewtBsJs6UEaT+ch5jt/0Z6VIIgCIIgNCNEdAuCUO98boYrmOd6aBtW5EdOt7c+3TE7ZiHpn/sdfZVNZsAsdSCF4GCLS0XRCZ+gqsuRMNVWIfWPa2Eu2xPpYQmCIAiC0EyIqOiuqqrCPffcgxEjRmD06NGYNGmSx/f+8ccfOOaYYzB06FCcc845WLlScu8EIdwUGqqQG2nno21YUQNyuklwp/18ERKXv4/4FR81cA8EwQPRCSg++g3UZPWFuSIPKX/cIO3EBEEQBEFo+qL7mWeewYoVK/Dhhx/iwQcfxKuvvorffvutzvvWr1+PW2+9FVdeeSW+//579O3bVz2uqKiIyLgFoaXCudnpWo9uxlfbMO853Z5bhsXsnIO0ny+GqaYSVZ0PR2W/c4KwF0JjYcqyXXh79hbYbFSGrxEQHa+Ety06QfV/j93yZ6RHJAiCIAhCMyBi8Znl5eX46quv8M4776B///7qh8T1p59+igkTJji9d9asWejRowdOPvlk9fctt9yi3rdhwwYMHDgwQnsgCC03p7tueLk9pzvXk6db85CnevF0u7YMo4JWaT9dCFNNBao6HYbiCW+rfG6h4ZRW1WDulgIc0jVTL2QXbkhoP//XRlTVWHFE7xx0y0pCY6A2owdKxj2tUhks3Y6O9HAEQRAEQWgGRMzTvWbNGtTU1KhwcWb48OFYunQprFbnKsbp6elKYC9atEi9NmXKFCQnJ6NTp04RGLkgtFxYPFObMHc53dSru7q2bhXy4krPnu5Ezuk2eLqjc+cj7Ue74LZ0GoviY95RXkghOHy0YDvu+nG18jRHCqpWT4KbWLOnFI2Jqt6noqrP6ZEehiAIgiAIzYSIebr37duHjIwMxMbG6s9lZ2erPO/CwkJkZmbqzx977LGYPn06zj33XERFRcFsNuOtt95CWlpawNtt7MWOeXyNfZxCy5wvXBCNRLdxm1lJ9l7dJKL2llahQ3qCy/85xLrrWPVCatVW9Zqpqhhpv1wCU005LB3HovjY92AKsuAmj3yN1YZOGc7jbO7wsd+tFbyj4xCpe01JlX0uEev2luK4/q3RGDFV5CN5xj0oG/0QrMlt0JKQ7yMhEGS+CIEg80VoLvPF3zFFTHRTPrZRcBP8t8VicXq+oKBAifQHHngAgwcPxueff467774b3377LbKysgLablZWCpoCTWWcQsuaLxW19tzbDjnJyM523maHjARs3FeGcpidXrNabbqnu2v7dGRrXnGmTZFdAFqsNu3/UoCTXwMWf4TYMz9CdkxwhXFNrRUT3pyLymor5t4zHslxLa8KukVLoa6ykbEzMveaPRZHRMTmwsqIjcMnn10ObPgNcaVbgUt+BeIa6ThDiHwfCYEg80UIBJkvQkuZLxFbbcbFxdUR1/x3fLzzonzixIno1asXzjvvPPX3o48+qiqZf/PNN7jiiisC2m5eXgkaS80eT9YSmlCNfZxCy5kvtVb7B1Nf7r1F9uKF0bW12L+/xOl9rZNilehevb0AvdIdudcllTXQPgI15VXYb3F4OInqcgtiUY2s8k3Yv3+Y/cmcccBRY4Ei8pA7b6eh7CiswP5S+71m4bo9GNA2FS1tvuSX2A0de+lYuJzHcLF9d7H+eMXOIuzbVwxTIzRhm0c9gPTtC2HevRyWT89H8fEftJh2dfJ9JASCzBchEGS+CM1lvvDYfBGxlUPr1q2VB5vyuqOj7cMgbzYJ7tRU50UwtQe74IIL9L8pvLxPnz7Izc0NeLt0ohrbyWrK4xSa93zJL7fg9EkLMbJzOp48oZ8eJp4aH1Nne1zBnEKWja9x8bX4aDNio8x1/i/ZVo4vYh9F55p9QOkYWJM4zNgEhGCfthc4uh5s3F+O/m1ajuhmSi3280jnM1L3Ga5oTxRX1mBXcZVeG6AxUZvSCUXHvY/0785A7La/kfT3vSgd91TjjHELEfJ9JASCzBchEGS+CC1lvkSskBq1/SKxvWTJEv05KpRG1chJVBtp1aoVNm7c6PTc5s2b0aFDh7CNVxBaIqt3l6KkqgZ/rtuPLXnluoB2LaRGtEmJc9s2zFuPbtRUoPe/V2GYeQPMtlqYi7ch1GwrcIxvc145WiJlVfaidRz2Hwl4XhjzuhsrNa2HovjI12CDCQmrPkXCf29EekiCIAiCIDQhIia6ExISVAuwhx56CMuWLcOff/6JSZMm4cILL9S93pWV9sXxmWeeicmTJ+O7777D1q1bVbg5eblPOeWUSA1fEFoE5Olmvl2+S4WKE2kufbqJdtyr26VtGAu7VNfK5bXVSP3tKiTvXYBiWwLOt9yDylbDEWq2Fzo83ZvyytBSW4axhzlS8Fxi1jZi0U1Q+zAqpkYkzX1KVdgXBEEQBEHwh4gmplExNBLdF110kWoBdv311+Ooo45Sr40ePRpPPvkkTj31VFW9vKysTFUs3717t/KSf/jhhwEXURMEITAKyh2e0O+X79ajvSm83BUODaYwYXdtxoyebpOlFCl/3oi4rdNgi4rDZeW3Y6WtC8qra5EaFVpbIOV0NxVPd16ZvQVbmyCGXVN/bKPoppx9ytePlKebq96v3dv4DSAVgy9D9L7liN7zHxCTGOnhCIIgCILQRIio6CZv99NPP61+XFm7dq3T32eccYb6EQQhfBQY8m7LLPaQ5JS4aES7EWmc000tw/aWVKFVSpwSeP9uylPPZ2qi21yai7Qfzkd0wTrYzDEonvA2ln8fB9RYlQh0J+iDyTZDTjcZCMottXqv8MYEtTS78JPFKK2qxe9Xj0J8THDGSP3QtSL0yohCAtxt6H+I4QiIwe1SMX9bYaMOLzdSeuhjsJmigCBX1RcEQRAEofkSsfByQRAaPwVaeHmSQZSmuwktJ7ISY9C7VbKqVH7LdyuVmP12+W78vmYfokzAGUPaqfdZE7Jgi01CbWJrFJ78FSxdxuuh55Q/Hmohu1MLf2fDwZb8xuntJhG6t9SivP9G40eww7ojFWLO53p4x3T1e3dJlV4zwN0cbCzYYpOdBXdt5PLiBd/tAQVBEAShMSCiWxAEj+Rr4eWnDbYLZsKTV5TaPT1zYj9kJsao/NybpizHxOkb1GvXjO6KIR3S7G+MilPe7YIzf0VN2xFOn1mshaKHit3FlSqcmkKaB7ZLjUiI+axN+X7lki/eUaQ/pp7iwaLEpXhapIqpcXg51QJor0VJuHq7v1mai6PemIufV+5BY4AiN35dvQfztxYAtVVIXPgyMj8bB5MlMm3XBPdYbTY89vs6jH1lFlbucrSmEwRBEIRIIaJbEASfOd1DO6RiSPtUj5XLGRJQE0/qj9goE/7bWYzqWhsO7Z6FCwYkIm7t1/r7rMltYUtqpf9NIetEUYgFIBdRI5HXPcuek7spjKKbxPZN367A7d+v8vnexdsL9ceVNfbQ/lB4ul2riIcLHgdFOVCEBLFun7MxYu6WAvV79Z7GIWqpiv8Dv6zFjVNWYOO+cjWno4q3InHBi5EemmAwjDw3fSO+X7Ebllobpq7dF+khCc2UqLzViF/xibr+E5a+i7g1XyN696Km289IEITmm9MtCELjhsOaMxJjcf6Ijli6cyUGtvXe15o8yA9O6I37fl6D9unxePDILkj//ULE5s5DaeluVAy/rs7/cHh5qEOduUd3x/QEdMtOUo83h7GCObVg47zyyupaj3na5I3/b2eoPN2uojsynm5jVXsS3dPX769TwZwNIpGssm4cL0duUJrC/VM34YvRDyDr14uRsGwSKvufh9r0bsrLSoXhEoKUgy8ExjtztmLyklz97/8MESOC4BNLGRIXv4aY3HmwxaXBmpBpTylRPiobykfcAFt8hnpr3MZfkbTg+TofUdV5vKr9YE3tGIEdEAShsSKiWxAEjx4jzqfNSIhB/zYpmHr1QUj1kNNt5Kg+rdCvTQqy42rRatrVSnBbY1Ng6XKk2/enacXTgp3TPWNDHl7+ZxMeOaY3+rdNxfZCez53x4wEdNM83ZvDmNO9cX+Zk9e9Z47dw+vKhn1lqoBaODzdoQ7p9wQLaSqc16uV3QBiFN0kXLnSfChENwlnmuMxflbLf3nGZpVu0SkjAUUV1Vi/rwyv7eqBOzsdhrhtfyHp34dQfPxHeGbaBny3bBc+uWA4euTY90sIDzM35uGdOdvU44sP7IgP5m9XKQtllhokxcpyR/BN4pK3kLToZY+vV3c4BJYuR6jHNTkDUdXlCFgTc2CqLoe5Ih8xuXNVV47Yz2ch/5y/YU3tEMbRC4LQmJFvIUEQ3ELVyik8k8hItIvidO23P3RMqEbqz5cgdtc82KLjVR53bVZvt+9lTze3FwsWf6zdq7zKHy7YofLNdU93RgK6aqJ7Z2GlV69zMNlo8KrTuDyJ7kU7HKHloc/prolIgSuuhk/nvo8WXr41v1xVVycvMT2monyhGCOJsNMmLVQC+q0zB6l6BN5YtL1QhSsT9x3VS/Wvv+vH1fhw3jYcffxtOHDHTMRtnY7iVb/h22WJatyLdxSK6A4z7NU+tl8rXDumK6au2Yvc4ioszy3GqC6ZkR6e0Agwl+5C3NpvYKqpVGLZFpOkCntauh2jXq8YcgVids5CVa9TVZi4uTJPCWrYrOrHqnm5CUvXI9WPkaj89Uj+5x5Y47NEcAuC4ISIbkEQvOZzJ8SYAw6VpcJSad+fhZh9y5WHu+i4D1HT7kCP70/Rw8uDG+rMYm325nwltDinu2N6vPLep8VHq5zmrQUVel5xKNm4v9xt6zJXXENiQ5vTHf7wcmNEA+XzU5/wVsmxqlr7mj2lGNohzSnXPtjzgiIJqAc6/ZDHupePc/+sFlZ+6qC2amzE0X32q8r8d8+uxg8DLkHysncQM+c5WG330RWAPSXO/eqF0MPV77tk2g1qdK5yV+1V15OI7pYN5VonLP8AcRt+hMnqfA+syeqni24KJS865Zt6b6c2syeKTpoM1Dju76bKAkQVbkJNm+EN2ANBEJo6UkhNEASf+dwBYbMh+a877II7IQtFJ3/lVXATJH5D4dFkcUehyn+t36+3C6OcbvJu6iHmYSimRv2wjUKMhL47KCeYRXdWUmzIPd2RKKTG20yOi1KCm6B0BGLV7pI6ufbBTjswngfKJffGvtIqZSyhYV4zuov+/G2H91BFBck48KHpJFij4tCuYi16mHaq13cXi+iOlOjmbghD2tsNJFTUUWjZJC5+HfHrvlWC29J2JCr6X4CqbhNgaTcKlvYHAdbgGTZBkTMx9u8W8o6nTLsZaT+ci6h9K4O3DUEQmhwiugVBcIsxnztQaloNViHlRcdOQk3OAJ/vp7xeojjI4soo4j9ZuENvF9YqJU491zUrfMXUjPncxLb8Co/vI1FKEQaDtbZmlTXWoB8Tau1m/zsCnm7O59aq1rsT3UZPNx0Pyr8Oiehe5110r9hlH0/37CSndnkkuG8e1009fnlRKT5pdQcOszyHTbCHlIqnGxEz5qRrRjyOSqC2YWR4E1oG5pJcpPxxPUwVefpzVV2PQmXv01Fwxi8oOvUblI57EsXHvIuiU75G2ZiHAXOI0otqLfZ87+oypP18oRqbIAgtExHdgiB47dHN+dx+YzKhYuhVyLtgrt/hdKEKLzeGUnNoN7ULM2s5vN2C1DaMwpRJ0Htjo7aNbM17va3A/TYXb7d7uQe3S1OeYIJyzoPpcSfapyVELKfbWESN6dvaHuK9SmsPZjwndGwrgujtN3qhqZCet0iHFVqf5wFt7UYBI8f0bYURndKVoHtgc19st7XGKYPaqtdEdEfe0005+2RcotoUbMwRmjexG35CxueHK6928qxH9Oer+p6FkiNeRE2rQeEdENUzOeYd1GT2RlTZHiW8TVUSeSEILRER3YIgeM3pZo+oT2oqgVqHaLYlZvu9rVCEl5NnlD3nRm89LcQZLqZGeb0NqZh8zJtz8casLV7ft0nzdI/tkaV75agKtiuLtNDyYR3TEB9tF93B9NJxeHm7tLg6x3x/mQU7izznmgeL4ipHuzCmb2u7qN1RWKlCurlyuf4/QTTIsCDWItsxfb3nXs7LNU/3ADet8ihF4a7xPVRfejaoXHBAB7RCgdoHX4YYIbjw9URRCHx+2Nu9xNCCT2ieUIG01KnXwFxdiuo2I1A+/Ho0Bqj1GNU1qU1shei8NUifcgqi8tdFeliCIIQZEd2CIAQlpztp/nPImDxBFawJFD28PIiimzyjLHpOHNhGf75DeoJTSDPpJcr1rq/YfH/edtBW5m8t8Cu8nFqv5STbjykXdjOG9M/aZA+JHNk5Q4XCh6pPN3n8jUKFjBSXfPofzv1wcchDzrlNmVF0k3eyQ7p9TL+t3qsqgNPrjjD44M2N3ZroHtfDbhia5iHEnNqKsYfUU3/6zpmJuOoQe673pQe2Q5/ZN2F23PXohh0qAkIID3St8xwxpgEM1fK6FzeBft1vz96Cyz9fEtTIlpZC3OrJSPnzJphsVlT0OweFp3yD2oweaCxQJXNqKWhNyEZ0/lpkfHUsYjdPjfSwBEEIIyK6BUFocE53VN5qJCx9Ry0mzIY8On9h8UUe3WAtOFk4RptNOKF/a/15ahfGJMdFY5CWNz13i3fR7I7Ve0qwXAs/3ppf4TXvmMPbKTeYve2uFcy/X75bhcJSqDX9xMeYQ1a9vJ0mukmoUPE2EogkRsura7F6j6NfdrjCy4l+mrf7x5V79PB/nhvBLKbGnu4zh7ZTRheKdHD1rBMb95WpOUlh/p0zHfPGlQsO6Ig/rj4IZwzrBBOsiDZZ8WD0h9hdbC/cJ4Qemtd89XFONzFE83Qv21msjCiNmW+X7cbS3GKsa0DkTYvDZkPCf28idfotMMGGigEXonTc06HL0W4AVN8k/6ypsHQ8FDZzjAo5FwSh5SCiWxCEhuV0U3XWv+9WVWGruh4NS9ejAt5WUmyUEj/BFFcOYRetvJEsrsnTbOSgrvZWQnM2By66v/zPURSHxCqFZ7uD+jpT5IBJC2ln0W2sYE6C4Oulu3QxSKGxHF5eGZLwcrvotml53saxrNsbYtFdVdfTbSymxjnW3bKSkBIXE9Qq62TU4dzfXjnJGN4x3WNBNTaoDGiTqtcB8AT3sC89+F5YEIPRUSsRt/GnoIxZ8E2hNq/pXhId5Vja9MhOUvOMrs/rvl6GXY3YEML3vupaKfrmL6bqMiSs+Fg9Lh90GUoPfRwwNd6lrS2pFYpO+ASFp/0Aa1pnxwvVoU/rEQQhsjTeO5MgCE0ipzt+1eeI2b0Q1pgklI55tF7bIoGZEh+4uHpn9la8NnOz1wUsC7vnTuqPj84fWqcf90FdMtTvBdsKA1rsUiTAH2v2qsccBk7ebm+h5e3T41XP804ZiXUqmP+zMU95YCkf9cjerdRz7Omuqg6+p5u2k6j1XycDxXaD6F4batGtCSRPopshT3dagubpDlLIO4eWkzgjD/bhvewh5v9qYf3+FlHzhDWtC35LO0c9HrJmIkyW0B5LwX0+N0Mt6e4+oifio81YtL0I53y4CNPWec7hjxSWGqteu8Eiots3Nqujr/ZxH6BkzKMoG/2QvV1XY8dkVv28mZhtM5D5ySGI3rMkosMSBCG0iOgWBKHeOd3mws1ImmUX2uUH3gZrSrt6b08PI/ZTdFPo7ttztuKD+dtV0SpPnm72lJInkot1GenVKlmF0JMnbFmu/1VlvzOEgo/QvKVbPVQk10PLtRZljvByx/sn/2fv73zKoDa6iK+vp3vtnlIs3lHo9jU+vhRaz8ecBIsx1D3U4a3GKAQjfVon68XNiG7ZiUjR2ooFK6ebQ8upbRwZe4Z3sJ+7VXtKUeMidvQialqUhL8s6XABtlpbIbl6HxIXvBCUcQveKdTqBLiKbuKI3jn47MLhKtqlzFKLR35b1+hCzUstjvltqWlcY2tMROWtReqv/0PSrMf050jAVg66pGkIbldsNiT+9yaiyvci/bszEbN9ZqRHJAhCiBDRLQgtvPjQ1vzyOrnIlONb6Cunu7ZKrxRraTsSFbToaQAswPwt4rV0Z7HbFlB1ekG7CDtXKGx4lObtnu1niDkt2L/RQsHPGtpez/f15enunp3oJLqpkBod+w37ypQXjkLsT9VaThF6TncAnm46d9d+vQzXfrW8TnV08qaxFy051iC6ydNtyGmmORHKYk6ecropCoArynN4uWNeBEl0a3OljdarvVNmghL25GXcYOilXmgwRLimJPgiKy0VD9ZcpB4nLH0X0XuXoaVBqRYTp29Qlf3/Xu+9F3ow4LnOkRGuUC2Ht84arDzfKhXEjaEukhiNjRJe7gxF3vywfDdi105RBcjiNv2KhJUfN4/WWyaTailm6TAGpppypP10kWp7JghC80NEtyC0YKha7unvL8RfLotiEji1mg73lNNtqq6ALT4T1vgMlBz1CmD2Lm59YRSA/vCfoQUQhwwbKdLEO/cA98ZBXe2ie86WfL+2vXJXsfKYUqsz8qJ11nO0fXi6s5MMvcLtFdb3lVr0dmNje2SjTao915qIq4enmz6PjiEZBlyPC/foJhJjo5CqGVTofBtzuskJyIaCcIaXG4up0bGl1IZgF1JjT3eb1Djd6NJfCx9nzzaxUqtaTgYSd95Tb7ROicPf1qH4J+YQWBOyYLK0nB7RNO9oPp/y7nxV84DE998bAy+uGCh8vXs7V1RUsZXWOaCx9VE3XpsSXu7MY7+tRen0J5D25w0w1VbB0mksCk7/Cba4wCJQGisqRP74D1DV/TiYrBak/n414ld+EulhCYIQZER0C0ILZo2Wu7vCIDaM+dzkAYwxFCUyYotPR9EJH6PwtO9hTa5/WHl924YZ++66W0DrOd1aeLI3RnXOUEXOqIq1Px4wDr8e2C5VhYJToTZPnm7yZG/Ks7+/mya66ZhyIbMX/t6k8rljoky4bFQnp/91eLr9X4TnFjkKRbm2rCq11DoK15lNepVnSiXYqXm62Qu/NoQh5p7Cy4350z1yklT4N8+LIi18uKHsLqnUhTEzUNsm53Crx1qqAb8WCPzZD9RchoKz/0R1h0PQUvhi8U5MmrtNGYq4HsS+MAhcLo6X5hI94encND7RXRtxT7e77gt0nCLab76mAjeXPI0bo6eoP8uHXo2i4z9GbVYzq/wdFYfio15HRb/zVBX2lL/vQsKiV1X4uSAIzQMR3YLQgskvsy9Ud7mEZxdUWDx7uY2LACoIk94tKGMhz6a/BbPIU8reY08LaD2n2w9PN+WtUz4xMddHv21i/b5SvTIywZ5uqoxMIdxGSNBSHimJ+k6GHuEsbv/Uijpdf2g3lV9uhIo/BdoyzKvo1gwRVECMYEG7fm+pyk8n4T+mW1ZIK5jTwt5TeDlxXP82uPjAjrhxrH1eOTzd1cH1dKc4IgoGaD24jcYn7uvc30N/bn+E3ZaKeFTF2HPGjcWfmitUXPC9uVvV45vGdsMjx/bRoy/CJbp9RSU0VtFtjOSgazGYUDu8279fiaUGQ6UREtX/+2IJ/vfFUqdc919X78Hxb8/Dxwu2IyLYrEj78XwcjdmotkVhWrd7UXbwvY26OnmDMEehdNxTKBt+vfozunBjpEckCEIQaaZ3LkEQ/CFPy9tm75+rp9tdPnfSnCeQTC3CKgNvseUNLpjlT3i5MZ/bo6fbz5xu1yrm87e6L0BmhDziRM8cu+jOSopV3mNarxpzo4mdhZV64a5YTUQTXMGcGN0tE2cPrRstEK9VFw+ap1tb2CfFRjsdGxabHdISVGG4UIpuCqnnhb27c0ORA9eO6aoXvQt2Tjfn/xs93ZyzTTncJN6oSN9/mug+RGspFwgk/LgY3l6KnLDZEEf5qF8e1SjzUCn3+tLPlujVs+vL27O3Ko9tr5wknD2sPVolxzmOQYjhSIh0DzndTGvN2NKYRXewPd1Tlu7C3xvyMNnQ4tAIpQAs2VmseoTP1FIByDj28YIdTve7sGMyo7TXmSiwJeOC6rsxK2UCmj0mE8pH3YmiY95FyWHPNs3icIIguEVEtyC0UKjgVr4mylwLkXnq0R2Vvw4JS99RRWxidi8O6niM+cX+hpZz+KpbT7eHXtCeYC/zDk0keztuVPhM/U+O/X8oDNpRkdxFdGsimMPJje2wiOykWDxwdC/1Ga7Ux9O909CHOE87j64hrFS5nEjTjvnm/HK92BS3VKOFdijCSjmfm7zqvH/eCGb1chISu11yuvk4cLTCyl0l+HX1XtW/fFiHtDrnzR/oXDp5VGurkDT/OUTnrUHSbEfV5cbCjyv2qJ7ka/bUP/ecUii+XWYvLnjLYd1V+kKOlj9NkR7lWmpDyMPLm6in2ymnu4HGD1c4bcLTPudrxlfi6yW5uiGOxXZDjTENYU/nkzGu6nnMtfZDnhaZ1RKwdJvgqJNirVEV22O2/xvpYQmC0ABEdAtCC4Wq/XIUI3k6jAs9ChMlMo3twmw2JP9zH0zWGlR1PRqWLuODOp60AKqXk1eGOLJ3jvpNnklPnm5uGeYLx2Lcu+gmUU75quTJ7KAJNcKR1+1cTG1nUYVePM3IMX1b4YqDO+PV0wd6bMsWKk93cmyUW4MEGQ5IeJMYpn109doHA0crt2i3hgZXOEc3GKKboihYQLAXluG2YMt2FeOXVXvU4+P6t673tiiyQRc60fEoOXyi+jth1WeNqi0QeVWpmjeR6+Y68pcX/96k7ifjemRhuNZCj4w73AveXVu/cBdSM17n7joeNB5Pd/CMXdQGj9rheYs44DQjYv62QmzJL8cUzYASdtFdU6kiqcxl9muwpKoWRUh2isxqaVBRNarYnvbzRYjZ/k+khyMIQj0R0S0ILRRXr4HRC1Lg6ummXqILXkDsztmwRcWhdPRDQR+Pvx5NamW1SqssPaFvK90z7+od8lYh29tinAwQ3nr4btDyuclTTdWQGUcFc/fh5a6imwT1/w7qrFc0dwd7gmk8/vYV9ia6yeNIJLGn2+XYkOAmDyWHzYcixJzPr6+CVwzn5JPBgKIM/IEqr9/382psySt32y6MIiSMof7EAC3E/KcVu7Elv0IZVQ7vmY364upRrW5/ECoG2tuIpfx1O0yW0ITvB4rxeuO5GihLdhRhzpYCdT3ccKhzjQf2doc6r5v7dPuaVxzh0Ng83caWYcGsXr5+f5kumveWWtxGrxg93cSH87fjj7X2WhNEVQCRNv4WaPPwRqRMv01FUlEuN+V0G40RHIHV0qjsd44ydFPl9rSfLxGPdzOHUjxWNyDqSGi8iOgWhBaKqyCjImDG4l96TnetBSnTb0XSgufVc2Wj7oI1tWPQx+Nv7i61ciIBSmHZlIvrlDtbz0JqnJdNooHWpN4qmK9zCS1nPFUw5/Dy9umBhymzp9vfhS95LfcaxIS/hdQYLvTGofZr9wYnl3PhtkKc+9EilScdaNg/v8/mEoKrnrPZ8MG8bZimFaNjqIf672v24dvlDm8dwaHlxnxuZqBWMI2ECUEeWw7Drw/uwphLR92D2pSOiCrZgeR/7m0UhdWM15vRYBMIH2qFto7v31oZbtyJ7lDmdZMxho1svnO64/R7XCTDpl3hzgLBFt3Lcx2LdxLcHMVkhMUst1P7aeUedWzYphhIy0JXyGN+9BtznToDuMVmQ9KsRxG//jvYzNF2w67J7GSMcL2ftRiosvnRb6CqyxF24f3LxYjZMSvSoxJCAEXt3fLdStzy7Ur/jVVCk0FEtyC0UFxD9YzhlnpOd0K0vWfomsmwmaJQMvZJVAz5X0jG428YMedzD2mfWjd3VoO+rFiguXpzPUH9mv3p4ct5jtTSygh7ure59OrWRXeasxjxh9gok6p67m+IOZ1Dm5dz7BDdnNNdN7ycoEJYxDrNq+8LWsx7y//+fsVuddyenb5BpTUEYgyh9moJWus017lBBpDX/t2Cx6auc1qgsHh09a5y6oCxFzrTPSdJN+CwgGwIbdzlDscmqTBzm8mM+LXfqHSNSLcEMqZz1Ce8nCr5/7spXwm0Cw+oa4zL0cL494fQ003CjKefr5xuuh/ohrpG5O0uDVF4OeXqG9nj5jywp/uI3jlOETlje9gjPRpinPh++W5l4JjnrSsECe5/H0Ti0rfVn6Vjn9Tb7Dl7ui0tV4hExaJ4wluo6nw4TDWVSPv5YsTsnIOWBhnc7/1pNT5daC/y19zglC6KuHOtySI0fUR0C0ILxaunm3O6k+JQNvIO1GT1Q9FxH6BywAUhG0+qJgBpkeVNwHE+95D2aXVzZw1h1Lxu5bB1f/CnyBKHl3MItqtgpbzhQu3LkkLeeWHvGl7uD2RUiAugmBqLTfYuUuE0Csd39aax6DZ6uimUnf+PPd2b9vv2dNNC+IJPFuPU9+ajwrAtI5u1MG8S3r+t3huQMcRb6sFaLVeV9tPYx5vnsmvEgqNdWF1PN0U59NNCzCmK4oBO9mr29cVT7jCJiZLxz8MGE2pTOkS8OnFRA8PLKRSZOLxnTh0vt1F0h9LTzUXUqIMAGWm8YTTUuXZtaI7h5exhjtKmmbt7GxtZad6fNritfj84aWCbBoluuves1VJUPBZB02qFJC6bpP4sGfeUCqf2lOtu7GfeIj3eE96GpdM4mGoqkPr7VUC1s5G3uUPzaeraffgoUm3sQszeEse6bHNehLoGCCFDRLcgtFDIkkpQDi+xy0NOd21WbxSc9TuqOx8W0vGkGsSxaxixEc7T5b7a7oQyL9TIU2wM0faFOwFvhMaVq4koV9FN22Ext1XzdlM4s01bwHKl9UAJpJgaVy6nCuS07655kHUKqRmOOQkmLmzGBfR8tW+jz7vhmxVKTNNxcdcHmAwoVJjJtf+1ux7dnmDvpWuRPaMnnvddVSjXztE+F8OSu3ZhRkZ1tgttEht8XdQXbwacqt6no+DsP1Ex7BrHk9bgtEQLFOMxJWFMhbcC6f/Mub/UW90d4cjp5nnqy8vtNQqhGbYMI+Mpd2Pg4nbuvPvcxYKu+1MGtcURvXJUBfos7Z5VX9FNqUBsQPUUGp7w3+tIWPGhMkKVHDYRlf3P92iM8PY5LYboeNVOjHK8i496HYhxtJ5sCfBcbUypIcHEaJxkY7XQfBDRLQgtFBZjPbVCXlwBnBZ8IyzzcKBptaOQWhi8cdFRZr3SsacQc1rAcRVkDhF2J24c+dyBCV3+TE+LcW4VRtt0Jxo7ZyY45XXrlcvT4/2q1O0OR9swq9+e7nap8SpH3XWRqvfp1sQ2FRPj0G321Btzvmlh40kAkBeLcs/Yk2WMQjBCXmf6HGoRxoaAQMLLvXm6jYXedmn7TgKMq3GT0DOGo+5x0y7MyAUHdMBrpw9UBe4aCs9LElPu2mWRMYsxVeQj89OxiF/xUdjDzY3HlPQR5737wycLd6j/GdUlA701I5grnLIRyurleruwAIsmhkp0f7dsFx6fui4gA4Zzy7DgzIHlu+z53F0zE/V0GHeim2t4ZCbFqCiYJ0/oq8R3XLTjPlAfOBXIm1iu6nkKqjN7o1R5uM/2aoxoyRXMnYiOR/Gx7+kh+ASFmpsqvYTwNxPYIRDMaJDGhNE4KaK7+SGiWxBaKLwI6t/WHlK7S/MCbtu8Gi/FvIZP455ATuHSsI7JUUyt2uOYKWyctBuFQnryWumVywMshOWrnRAXUXP1cjNciXyVVnnUUbk88HxuJl4TxcYwcYbCucnTyMKYt0e9pd2Lbg4vj6qTS28U3UmxvqMOJv61URVGo5De07WQVOMi23Xh0CUzEScMaGPYbnSDiuxR8Sw+H0aDg7F9HIkFrtjuq5AaQaHJB3bOaLCXmyDxQsfGn9zhhBUfIap4K1Jm3IOE/95EOHGNZuA5RKkR1AZszsY8t/9Hxoypa+xe7gsP6ODx8zm8PJSebhbdvtqFhUt0vzpzM75bvhtzveUxu2AMmw6Wp5tDywe2S9Fb5LnbZ75HOLWIBPTUlvoKnKUGI5wnsbzXlIWD8h/AfTsOcPu6q+huqRXMvWEu3oHUXy5FxhdHIjp3PpozXH+AUg2aY36/8btis0v7UaHpI6JbEFoovNDiPFZajNXW1KDj7DuRbKrEhth+qG0zNKxjYu8nV7h2hReM2clxujByG15eGViFbH8X41Q0ypvoHtYhTa/W7VxELfB8biZe8za583Q//9dG3PPTarw3d5tTISwlurUFtHGxW2bh8HLHceFj1FGrXE7QseWoA3c5lGQA+F3LzSav2JlD26vHK3aV1BEMLLrJ20aeZHZ2BxJezmM0LsBJZBsFNe87G48YFnvkddSjJDyI7mDDkSLsSfRE+fDrUTbydvU4ad7TiN69yClE2DXENpgUu4yNw/R/W7NXebKf/HW12/+jIj90PugyHNTOPu+9hpeXWfxu+eZvaDsbWLg4X1qQRTfNGXfGLm+QkYoNGctyiz0WgyKDFXuQ6W+OzgimF4893QPapuqpM6659RQ9xEYL1xQYFt00zkAFDn2usYib0fhnLtqCmG0z1ON5Wwuxv9KEmZvcG3ckvNw3puoSWBNzEFW2G+nfnYGyf55HXmnjqVcQTIxGl2AWHGwsSHh580ZEtyC0UHjx0qdVshJZtEiyLXwL7UuWoNQWj5m9HwTM9W+ZVB/Y+1lsKIplZI8bT6U773Sg7cJcP8tjeLlWWKynS7swZliHdCVCqFc3WayDIro1T3eVy+KfBPTva/bqLX5I0Ojh5T493Y7jcvyANsqIcHDXTKfPZ294qSbUjdBCmYwAJF4pD7pLZoI6d7Q4X60VN2M2adb6rlmJyuN/8chOKuR4qGag8AcW6EZPt9HLTfC+GwsCEiy0yctNodAkJPjYhBrVcs8P0Q1zFMqH34DKHifCZK1B6tRrYaosVBEbp7+/EJd+/p/ffdoDhY8pG7H4OC7TvJSb9pW5FVxbtfNKc81Y9d0Vikgx6e2qguOlJCFGxfsu/XyJMvJwj25/Pd2cXuApooWh9Inj354XUJVzY9s1T6L7xxW7ccWXS/He3K1uo0mC4emm471KE93UDo/vba77QnOMpxbPV8Z4XgMNMd+UV6buN/wZFdVWe5pFrUXN7/Qfz0P8yk/09BQSUxRd4Qob2vi7wbWnuECpKn1RcMavqOx1Cky2WnRZ/jwKPz0PqHZuX9kcMJ7/5hhibowIomuCDWJC80BEtyC0QGhRx94YCjtsnRyLnqYdaP3fRPXcozUXoEu3vmEfF4srTwW8vIluY+4sL9QC9XSzB5REkquHi4QH53RzHrwrJPL7tLZHDizcXoidWvuP+vTo9uXpnrZ2v1rI8nGhtk38BU0in8PvjVWDXft0E+cMa4/PLhxeR4iyMHfnZf17w371e2yPLJWrTj9cTd61mBpb67tl2Qv+XHVIF/x85SiPId7+ph1wPnc7TUA5wsur3BYMZDHeNjWu3vn1gcIisNAfoWAyofSwp1Gb2ln18U7563as3lWiRPGW/ArM3ZIfUtHdXTs/HF6+NLdInzPuQnqNaQO+ajWwxz9Yed1r9pYoQUcLVBK2RX726GZap3iv3UCQF33OlgJ1L6JqyfUR3RT54S6ve6Umhrn9oKvotgTBg0dFBsl7TikOZPDi3HrqQ2+MOOC2RCRq6Vy5qydRH9HNoeWD26XqdSPIAJg0fyJi9i6FNS4Nlk6HYY2hLoO7Cvd8bDpr8yzfUxX0lg61IzziZSzo9yAqbTEYVTMP6T+eq4x3zQmj4a65iW66V7CRnCPNuHCs0DwQ0S0ILRBeRJN3i1p1DUgqxpsxL8Bsrcb02iGYgsP0sPPGlNPtTnSTOGQRya/rnu4Ac7pp+7zQpMWp60KYhW+2toB1xwGd7FWC528rbFCPbl853T+u3K1+875ziDntAx2TrCS70OEvcRUqq43f6On2BL+H24wx5HGdqeX5HtbT3seXGKJ5rils1mio4LYnXbPcGyrqm9PNopt7CZOoJjFR19NtcRJDbd306I50eDlji01B8dGvw2aOQdymXxG19jv9tR9W7AnJGFmw9tWMRRSmT8YbEvrM9oK6HjOuSO9LdBOtgpzXzWKVmL25wBFe7mfKAt8/KD3BU82CWZsdRo7p6+xGJn8w9jonoeoakWHsbsBe55IQeLo/mm/vYzxSq1FAKTkUzEDXr9GIYqxc7gqJcE4HCVh0a17+we1THQa9LTOQsPgN9bDksGdRk9zOqRiiOyMIX/OdtZoTUkjNCyYTZqceg/Mtd6PIloiYXQuQsMTe+7y5YLyXuouMaMqQgZjMYXS9DmqXqp6TvO7mhYhuQWiBsBCjljBmkwlHmeeju3kX9piycVf1/9CnVarXkNFQ4S5315foNv69R+u7W19Pt7GHL38WU2Xok230ALlygNaah4Qp5xyTd7W+OPp0W51Ce6lSOC2I7zmyl3pu1e4SvXI5oYeXa4tUo3jmlmHe0MPLXc7Fkh1FyvtHnrHBmnebGNo+VV9ssyeNzhd542kR0bEB3n531ctZzBzaPUuJCTKKkIBgTzd594yebmPofbhIT7Cfg0DCqmtaDUb5iBth6Xgo5lV30Z//Z2Oeyu8ONnxMuQUfRWdwAS5mmxvRzRX6KbXAF462YVVBF91ztuTrotvf8PLE2Ch9Tnnyds/c6BDdlJvsb9E1o6fbKD7dHTs27LlGkzTUg0dC9s91+1RY/+UHddL70HP0i3FfeG5S5XJ31LeCOUe8DG6XpupLpKIUfRbdDRNsqOh/Pizdj1VRFca6DO6OsaunW3K6fc+/hbY+OMvyAIp6nIbyA25Cc6I553SzUTInKRbdsu3zXfK6mxciugWhJYtubRG2usO5eKr6bJxc8SD2IkN5JyJBfcLLjX+z4CqqqF/LMONnuS4AedFJQtc1DNMIHTtqj8VihgRHIL3C/enT/eNKu9fzoK6ZGN8rWw+xNopK15xuXryS59zb+BkutuYqujm0fEz3LLWQZ6g3OBkjaL95obBJ+02V0f3ZpifYg8nGFPLE8vkhscjnjCIL2NM9qK19Du/XhB73V2ejRDg93YHm5VFhtaITPsW8IrsBh44z5ej+qhWvCyY8T/tqopuuvTmbnatub9fSJOrr6eYK5q7RI/WF0zxYgPM8S/MzvNwpr9uN0KOuAAu22Y8Bh2X/vd4/bzdHt3CqCufGM2QgYG8dzQu6r7BBzBQkMfHmrC3q95G9c5zqT+jF1Az7zEY5d55u12Jq/kKfTwUN6fYwoF2Kuhc9HPMhEqv2oSa9G0oPeVC9zxha7u6eS8Y7vubZuCPVy73DhSTX2Dph3YgngSjtvJIh1BpYUcDGBs0HY6pOVTMLL2ejJN0vqfAowd+l5NWfsWF/0DobCJFBRLcgtECoGEkH0z601tbLbdPi8WbtidiFLPX3kIiJbi6k5n94ufFvfr2kKrC+vd4+i2HR60tA0+tUuIhpSBE19Xm6p9u+YKLw0J810X3igDYqUuGYfq29im4K8y7Tiqj5a4jg8HL+P4I+Z8YGe2j5OC2smyFRPUALiePWYa753PWFC+KxR5OryHdIj1fj5JBxEl9ssKE2Se7Cy8Pp6ebCVAEXwzFHqdZ4LCbPHWy/Ln9csSeobXJIyLOooXsAXy/Uhs543lw93SRKWayyBzJcnm6a/1Sky/i5fM799XT7Kpq4YFuhipygCJXzRtjboU33U3TzPJvQt5X6vSy3yOmcUZFFI3RMSl3G35Cw2eW5xZi5KV8ZB6842LnfvLtiarqn26VyeV3R7b9gW6ylmJDgT4qNxjDTOpwSNQtWmFEy/kUgxi6guYga43ouqEYHF3nTc7rL7fczwXekBaeOkNhOmvmAqhOhxHcThQqsGu1RzU2A7tG+q1qnxOqRWhxe/sz0Dbjt+1WqY4nQdBHRLQgtEEvBDkyOfRh3Fz4Ek6UUbVy8f5xPFG706uVuPN30BcteW1+iu7453UYPmCdPtz9h9yO0vO6giG5N5PP2yQNHIdMk6EZ3s1ccP9aN6GbPFYkHKjrFVcj9rejurno5eaZIbJEhYGRnxz66hphzXjcvGNhqH6y0g3V77aKrl+bF433mxT6dd/bAUquqiIWXc063i3fOH1FFHtPYmlI8GTsJ9+6+HinRNap6vmt1eF+Q4L/9+5WYtq5uMTBjGgf1tOdjw57YEwa0dpvTvU0LjyaR6I/QDWZO97aCcjWnqdAQGZ2M+JvT7Ut0/6u1rxrdLUuvW0Bz2ldoM4lBnmdH9M5Rwpe8+8ZtcNV3Y/EwPg8c4t2Q8PI3NC/3cf1b1zGIuOvVne+np9tdy0J3UO2I9+fZ60uM6pKhfpdmD8ENluvwc9alqGkzTH/vWm0uc5SF67ngKBuKHGLDGkUBeEo/aunYXGpasDEqet8yJKz4CPFrJiN98gTEr/wUqG56Ycv5FS51VppZTve+EoOnWxPddE1QqgZ1PCC+Xb5btUsUmiYiugWhhWGqLMBpa29CO1M+Mq15gLXaqbgUhQJneFiAhZoUL21haMFu0xZgHLbLtHGpRlzfnG5PLciMnh5/RPeBBtHdLliebs3Tzt5jEvYxWsg2nbMRHe351VwAj8bJRgcSC6X19HQb8025gBqFtbvz+HMF87lbCpQHT+/R3UBPN59Hyg8n4wtVZiZ6tUpyChlfvL1QN5wYPf1ksODc7rCGl7vxdNMxOfy12bjtu5Vee0CTwI5CLSZELUBcwVq8nPmNev6qyUtx1OtzVCur2YZiX5746r9c/L0hD58u3FnnNTZOUYVrilQwFvwjA9iYbll6eLnRu8jGFH/yuYmclNigiW4OLe+enYRDXNrc+dun25vopv2kTgAEGbXo3kjXFO09hXd6Q3U9qLGqMHEyNPVqlVyndZirp3tvicUhurX7bn3Dy+n6JC89pSNcNsrZy02469Wd78PTHRtgePnn87dh4/5yNX8u0KIEspLi8IP1YHwZd7rTcebwcqrL4O5cGI2ndD9jQ6BUMHcPiWxjjjwXJK1pPRQlhz0DW1QcYvavRMrfdyLro5GI2TELTQlX42Vzy+nm65IieCjVjmswPPDrWhXxwa0XOX1EaHqI6BaEloTNhpS/7kBry1bk2jLxc/+XYYvPcPIcRyq0nBfStGDcXlhZp5gTL8jIW0Mh1UZ4/BQGS4u5knr26fYaXq4tOrmFlzdokc5tchpSudzZ01TrNRz06RP74aPzh6K/oeq8XsG83KIX4fLXEOGuejnnqxq3YYR6b3fPTlSLvzt+WKWHAXdrQOVyHgufcfrs1btL3Xq6OWeYhBIvWFQFaW1xT97RQPJ+g1m9nEXr4h2FakwzNubhVi/Ce+P+MhQiBZ+1uUv9fVjx9zgyapEyPNDn0fz0tfiibf6yeo/e190VXpTznDAaiAa2S1Wt7igvl7bJRotA87mJnKS4oIWXcxE16i1P1xlHx9C5DaT4o36du1S7pygKMg6QsWu4VhTxcM3bTRXkSfR7Cm/mdmu0aCaxyhFD3D7L6Onm+Uyh3uzR5Wu6Pp5u8vo9/7c99PTc4e3dGvvchZez6PZkaGWjnz9eRUr/eP6PderxFQd3Qaut38FUvq9OfQk1hlKLMkZRNMAhWsSO6z2XjRFsPKSCbOpzpIK5W1w7N3BtE6Kq71nIu3ghSg++X7UlNFcWIO3HCxC74Sc0FVzz+ZtbTjd/f/F12kUzVlP0DBUjffx4exvXqWv26SlWQtNCRLcgtCDi1k1RrYhqEIX/WW5FXKa9si0tVnlhRNVmIwV5eo7WciE/XWhveeMrn5vo2yZZiVwKfaYQY93TXY/wck89fFl0+7OwJw80hb6SIDCGmgejkBqH/rqG9ZJlnNs+McbF7m9r7EW4Bnfwbzzuqpezx5Y9uO72e+JJ/dUimXoUk3edRBt54hsCGVnYgPLgL2uUp5WMM3018e8qMCgXl44bi0n2NNL7wtWj23icyCPDHijjvKK2cjd/u0LlSLsT3QT1Mi4ffIV6/Ebye/jmjA744NwhKuKDQs25ar07aL93aELQ3TY4/JQLGLZPc1xbJBjpfHbIqJvXvTVQ0W3Ivfbm3Q9UdNNClEOYAzWmsIArNAgTYqYWWk6ttvhaZ9G9cncJzvloESa8ORffLttV5zNdUxi4ur+Tp1sLzafCg3XCy3VPd+Bi4tNFO9S5JmPTpaPs93VXuCicU3i5XlTTV0637zG9M2erMgpSLYBz0lYiddrNyJg8Aa2iy+qI7jVaaDm1EuyYnqB7to3zlO89fO1nuhHvgoNdLpXz9ZxuDTKwVwy9EvnnTENVt2NgslLf9OeA2sZ5PCf/txMXf/qfbjDmucpU1zTfQmpEN8P99dRBbVVhxCN65aiom9f/FW93U0REtyC0EMwluUj+5371eFL0WVhp6+ron6qKcrVGj+wkPdQvUpw3vL1euGhnUYVfojspNhpH9baL9U8W7tCL7zSkerlrD99AcrqJWw/rjj+vPdjteBtSSK1Q90zF+C0s5m0twKLtRcqrdO5I9wtyf6qXs0DxFsbbIT0Bjx/fR4lt/ptDVBsCe7tIqNJn3390L92b7dqSjWsU8OssehrSuq0+kPDn88cGC57H43pkqbDuhduL8M7srR7DqHtkJ6LsoDtRnTMQ0VWFGPzvpRgUm6sLwSlL64o/xljtnIpSucIRIWycMEZlsJe2S3ZSnbxu7uHtr+imz+frxugxrw/s4SHRTRyshZhna950f6G2YUS5SwQAGzEONNQs6JiRgIeP6a0EPp1P8rhRlAG3xnPt0a2Lbu0YUjoEXbdUBI4rwR+gGeNoPnDqB3u66f5F7/UX+oxJc+151Ncf2lXdD92he7pLLWrs5LH3ndPtX8swMjhQKgNx/8gYpE+7UT22dJuAtAz7vZmOGx+ztXvtx7l362QVyULXgtoXQ1oPh5dz1A21uOTPCTcUKXLuR4vwzLQNaKxwJBLjrjaKIjoexUe/ifJh16Ho+I8cFc4bGV8tyVWGrllaGk2+S0HKhrbWa0zQtai3DNOMY5yWRVE83PrvqkM6q+9xSoF57q+NgRfpFCKKiG5BaCEkz7gLZksxqlsPxStVx6vnjKL7mtFd8flFw/XiT5GCKt6O6pyhFp5fLLYv4nyJbuKUQfaiSpyPSYv8+vQap8U4ixBjOyH20FHLLX8IlkfVk6fbk7fZCJ9frnY+tkc22mleJb+rlxvEGrdr8SX4D+qSievGdFWPhxp6eTcEPifk4X7yhH5OxePIM2BsX8bimkU390oOZxG1OiHmmlDgeXx4r2w8cLS9x/pPK/eoAlTGucbijAxhiIpDyVGvoTaxNaILNiDt54txxsAc9frva/bW6fPM4cBchZwod+Nh5vByDtEmcUmQF51TCHjhx+OhnEIqZkZ09jOnm64FRwXz+otuCl/mEExKRSGO6tMK14zugpvGdauX6DbOb+PfrpEkNN9eOW0g/rjmILUIJuHHaQuuooeLJ1IONXm06V42Y+N+5YkkMU33JQrfJ2h/HIXUHPdjf7zdFH3w2aIdKlqCInHIUHKMFinkDroe6DKhMdD4aV+pKJ0/1ct9FVKjQnP0USM7xmPM0lvt3zVtRqj2YCzoabssBNdqxRD7aB5/d2k9rhFL7sLUwwWltFCUBQlBLhTZWNuFsQGDuz24xRyFsoPugjW1o/5UwqJXEbt5KhoDZJzhyBGuDcIe7+YouikKiA1b7OmmYoxUt+K+o3vp1xAVRzz/APs5+2LxTpz63gJMWepYJwmNm4iK7qqqKtxzzz0YMWIERo8ejUmTJnl879q1a3HOOedg0KBBOOGEEzB37tywjlUQmjplB92tFkF7D30eJdp3saeQwkhz3gi7t/v75bt0YeBLdFN+J3u/6ltEjXG3AHR4uuvfc7thnm779tmy7Y9xhBepXG/mrGHt/N6u+/By/1szXXBAR3xx0XDcdnh3BAOqIk3C7bmT++teXobCjI1ebPZ0s9DjRXokRDcfKzaWGOfxoT2y1Tmi19hYxCHIJNRIDOvnML0bCs76HVWdDkPJuKcwqGOWCuOlefHLKrtRxQh5h0jg8HVAIe6uQs41vJyOz91H9sRjx/XVjT3s6ebwcsobJaEWa6go7Q852n40JK+bisvxONkoRMaWS0Z2CrjjAgsTV2MERwQkeUhNoePCXuo5W5z7mburkD++l32uTlu3H1s1YwWFU3OXBGNON0em+JNDTRE9p01agBf+3qTEIN0n7ji8h1djHxXL4/lE22WPMRkRPLVC9LdlmL24oQ331L6F6Lw1sCbkoHjCm8qLSpEubNjha3HNHs3T7UV01wkv146Pu0KbocZ4H3zln82Nsm0Z53TzMeXr2x+i9yxB0rxnkPrr5Yhf9QUizf5Si24QcohuV093eM8BGUPfnr2ljrEtGPB9kb4v+Jqjxy+eOkCFlRshg/Yrpw1QBlkyTD355was1q4noXETUdH9zDPPYMWKFfjwww/x4IMP4tVXX8Vvv/1W530lJSW49NJL0aNHD/z444848sgjcd111yEvz557JQiCb2qz+qLw1G+xN9ZeUZYWabTYaoxQPiV9oVABp2+X7fZLdNNi85RBbfW/69MujHG3AAwkpzuYsGedPe288MhI8B0SaDSq0PEc1sF/rzMfP/Y2kdGBBYo/Xnb2Rvrqa+4vJKx+vmKkHk7silEA6p5uzWPAhLNyuaunm8KLaaHORaxojpFgPK6f3TP5g9YSxigu6fgZRZQtMRvFx3+E6k7j1POnDW6Hs6OmI3Ph00CFcyVzFuLH92/tMcScvY5GAxXlDhqNGnp4uebp5iJqnTISlbHD/+PAOdTVDc/n1sbUENjT7WqM4IJzSV7m7UFd7Xnkc1yqx7sT3XwsKS1i+a4Sveo7t+8iEcrXNOWlm/z0dFPrQG63dfO4bph8yQgVqu0LYzE1zpHlVmUNyekmIXJh1FQMzv8dNlMUio9+HdYkR0s3Yz42bZs8/LSvbCh1d891DS/PjGB4ubF14vJdxfhH6+TQmOBIiz7aPPDq6XahJrsfKvueDZPNipS/bkPC0nfRWELl+Z7D552jmsKd0z117T68M2cb3nKTDtRQOIKHDcW+GNUlE59cMAxjtXTAH1fUNbz6C6eaCM1YdJeXl+Orr77Cvffei/79+yshffnll+PTTz+t895vv/0WiYmJeOihh9C5c2fccMMN6jcJdkEQfGAzfDGZTLqngTwe4SwqFQg0LqrAS1A4H4Ul+hLdBIVW8iKxIZ7ubDdhjFUcXh5u0a151kn0Uwgyi+BAwsuJM4a2C+h880KXRAktuFkskdBiL3i48TZ+Fjp0/vnYsHfV9T3hhMdC3mz6Ie8M7QWLrhP624UJtf/ar3k7WHSr0HJXDMfguB7xuCv6c5xbPQUZH45E0r+PwFy8Q3nl2HNOn09eaXdeXdfq5e6gQlcEFemixVmg+dwMeys95pnWI5+7ISQa8p6NIeb8mEW5O7h4G9UKYA8ohd1zOorRuEPhoHQe6fVvltjDQDtlJipjDIkHmyHPnQxdXP/AlxePK1NTa7Bzh3fwO+qA2ytSriznyHoz4PkjumnBvm1fPi6L+lX9XXbIfahuf5DbexEJJ2prRlAhRL7PsOd/d4lDbJU2ovByzrtnO9NrM7cElHcflh7dmlDlgpoBXWtRsSgd9zTKh1yp/kz+96GICm9jPRcS4DT/OMKBW9+FO7yc62yUuBSoCwZsjOXvBX+g7+LThrTV04z8betnZN6WApzw9jzVSUNoxqJ7zZo1qKmpwdChQ/Xnhg8fjqVLl8JqdZ448+fPx/jx4xEV5fgS/OabbzB27NiwjlkQmhw2K9K/ORlJ/z6k+nMTeXrLqcZZPIWhXE0KryKx/efafbro8ya6aQHHoVgcMlsfeMFtrLQcaCG1UHi6+RjQwi/Vj2rNHbTCWBTa6S3X09MxMBkWv1zAjc5JYzTWsKBukxKnj8/VaxCZ8HL7GMibyYYj8vpxj3VqC0Oh0aSxflm119nT7UNcJiVn4OOcO7DK2hnRtRVIXPo2sj4ehbafjMQbURNxcdJc9MhJ0gWmJ093mpdrpUNGglrc0fynhSGHVvrbo5th4cRGo4ZWLm8oJHj5WjYeF0d4uWfRTQXnOmckqHNGHmyuQk7Cmj6XczIZyt83hvvS/1JFfq4mbjRMUD69P4KCK1OnB1i1/Yje9rFQ9fWdWvSCtzQjfwqp0bzeWxmF42ueRvXxL6Ny8OV13sNF0Egwz9e89AcaOju4z+m2n4vkRlC9nA0Ah/fMUfdT6qDgLq0jUhQaesT3apXktnq5T0wmlB18H8oOvFX9mTTrUUTvXoxIwO33CLJtUCFHjghpHSHRzWHuvuobNCS8vFVKYOuyAztlqPsI3csDib7gft/Xf7NcednJ6OtaGFJoRqJ73759yMjIQGysY4JlZ2erPO/CQvuXGLN9+3ZkZmbi/vvvxyGHHIIzzzwTixYtisCoBaFpEbv5d8TsWeyUo+XwdDfOfG6GFsQnD7R7Ad/Q+hGTl9mXB5uqfI7snI7TBjtCzQOFQ6IpvL1On+4wh+THGxa9nBdMIsm1V7k7qDDW8yf3x+tnDEJCgOOmz2fjgxLdequy8PW5DgT2CnOBLVdPP80b9qpFJLy8wqJXZnY1HFHnAGLKsl146Le1WKgJObeebiMmEyq7HIljLU/g5VZPwNL+INhMZsRX7lE9vYcl2gupJcaY0Q770XrJC4hb+7XqnWz0lnq7pigPmAuDPT1tg14RfUDb1LB6umlByIvebkEILyc4vYaFNnku+TpPivE+V9jbPXdLvlNoOaU2uIbdU5sfI+T9NnrsjB0DYjVjjK/wcj533gwm7hjXIxsd0uOVAYAKMfkywHJkjzfRvU4zhrTOzETMiIucojFcr0Xy6s/fWlinQrxb0a2JRkefbkd4eaDhsGv3lmKt1qasIZ5uGudZw+xRWMY6DJGG5x8ZGjlSi76//Omv7oTJhPIRN6Gyx4kw2WqR+sd1MFlKIl6Jfc3eEj0KxSG6wysSN+XZ53l9PMr+h5cH1oWB7jXHaSlEP610pCj54oFf1uC9udtUpA1Bh9JYt0AIDRFbPVVUVDgJboL/tlgsdULR3377bVx44YV455138PPPP+Oyyy7Dr7/+irZtA1tYN0IHjdvxNfZxCk1gvtisSFrwonpYOfhSICFDWcG5II7yZDbyeXb6kLb4eMF2fUHROjUOZh95pNSi6rUzBjVouyRS2LvMx4i/aGkRGs7jlhBb19NNQs7fMRzaI6ve9xcSqbTQoZ9CbQFM4dKNcd6M7p6J50/pr6pu8/iMosbeoxuRq15eUY09mjeDFo3GsRzZJwcTp29UC01ebFL+fb82yT7H3EsVTTLhu7J+OPeSCwFLGT7++VeUblmIVu2PUv9Pnu6u5i3ouvZNYC2UMK/ucAgOLRuAGlMnpMf1dbsdfo6MN1RIjUXGZaM64ZBuGQEdTxb25Omuz3nYV1KlBDEtMjumB+dc0j2Qzkt5tX1MxsgW8nR72wbVFvjyv1zM2UxeW0elZXfzrFt2oip6t0kzGlCUAL3HuMBW3RZizHoEBKV1eNo+GQc4YiA9MTqgYxEdZcJ5wzsoAwov9ClX2tNn0JigfW+4nSPl+xG/ejJM6IfemofV3ftYCC7cXqiEN+0v9THn93LxQ7vopn036Z5umjv0PvZ00/7TPYkNOb4gA8aVXy5VhpupVx+EBC+pA57gXP+U+Ci9yj/lTDeWeyFXLqf5R8eFvibJQ1xSVY3smLjAPd6HPYmYfUtR2fcsICYxJPvp7fuI74NkcKG5vlirGE+RJJzbT+c1XMefBClfL7QWCPZ26f7Gnu5AP/uEAW3w/rztmLulQHnMXY15rtA6gvLTiUeP7Y2n/tygricyxHlrBxppTI1YH/k7poiJ7ri4uDrimv+Oj3cOAaSw8r59+6pcbqJfv36YNWsWvv/+e1x11VUBbTcry57r0thpKuMUGvF8WTgJ2L8SiE1B4uE3IzHR/p7YePvCJTkxFtnZjXue0fiO6t8Gv2pFpjpmJoVlzDkZ9sWj1WzWt2fSPD4ZaQlhPW4xSfG6JbpCC05qlRbfoDH4e39JT4xVi+Co+FhUmzXBmJ7YaOfNqTnO3teUdEfecZfs5IiMu3Nru9AqrbaipMbuV+jSynksFPD7v0O74d2Zm3F0/9a46OAuGNrJ7kn1xahYWiStwNaCCiSnJSI+JgXTKntgRW0rvNF/mNpOamIMdudlYlu3s9Cpcj1MuYsRu30mbsdM3B4H2H5+AKbzvwG6aSlb1RX23r1muzjp1TYVszblK8H72MkDcM6B/vV6N9I+x76/FbW2ep2HtYVVupe4TesgtaFLjFWL++iEODUmixZuTSHe7dp438ZRqYmI/WGVyuMusplQqEXFdGud6nb/jh/SHi9PW4+clDh0aZ+hzwNoi9/UhBj1fywIE1M8X+N5hgrwXdtnqGiEQLh4bA+8M3ebXkitU+sUj9vK5N7t0VHu3zPlNhy39QsURR+O8q7Peby/dGljvzbXaN7mA7tmor3hGNPcZe9sbFIC0hJj9BoEHQ3HlHLeyXsbkxSH7Az/6grsKa7UvaQlMKNjPeZftZZs0zozCR1z7IXKymusjeZeWFhjj0Dp2ioFrXJSlXiicGxTvH1uB04KcN18JMXEIzhxJZ5xN1+4PsK4Pq3w49JcLM0t0YtjZmgGmqiY6LAd/21aSgRRba3fPcwb+VoEUM/2GQF/Nr1/ROcMLNxagL+3FuKacT28vn+JlhbRLScJFxzaA2/P3Yay/ArYYu33oMZOVhPWRxET3a1bt0ZBQYHK646OjtZDzklwp6Y6L5xycnLQrZtzD84uXbpg165dAW83L68EjTltgawlNKEa+ziFxj1fKHw044+HlEQrHXkbKstjgHL7l1ZJqd2CXG2pwf79jb/NxMn9W+miOyM+Kixjrq2ye3ULS6v07dFjwhrm42YMM12faw/LTI4212sMgd5f4qPtC80de4uxUwshTTCjScwbhipCUyhudkJ0RMYdVWNfTO0rrsTmvfbtp8XUPX8XDWunfhh/x2q22VSePXkvFqzdg56tkrFut/1/22jXS6zZhMW2bvir8zEqFNFctBVx677Hijk/oK9pG1Kt5chHDqzaNhMWv4mExa+juvM4xA0/G8f0GIANuzNxxpB2OLhrRv2Oo8V+TRUYrqlAWLbZnq/YPi0uaOcxTtOqu/aVYH9mPHZoufTkAfdnGxSNQN6l417+V4+EyYpzf20e0S0Dn82NxZG9svXXU7Tri0jS5gTL5315pdif7N7rtEXzmFNBw8IC+5gD5bRBbVQlZiLWavW4vzXavbC4rO55i9kxG2nLvgBlEn9ZOw5XJWltwdzcX2gbRoa0TanzeTyPV23dj545yXodidpKi+OYxUYhr8aKbbuKEF/rvY0Zs1m7dxHLt+xHq1jvbimqIULt4O46ooceeZCnFXgzVdc45rKbYxIpNuyye4Iz4+xzlzzEJLq37ipEVoNW+vZ9NZXtRfI/96FszEOwJvvferI+30cUccKFxQ5on4IflwLbtArmlN5Uo0V5FJVWhu34L95oN44RFZbaoG93l2bwi6ut32dP6JOtRPfXC7bjTC1dyRMz19hF98A29mswVav5sWVXETpr13BjxNSI9RGPzRcBH13Kr+7Y0d6YvSGQ55rE9pIlS1SfboLytAcOHAiz2dlqO2TIECxYsMDpuU2bNuH4448PeLt0ohrbyWrK4xQa53xJ/vdRmKuKUJ0zCBUDLqZoPR0KWySizeYmMceGtk9D9+xEbNxfropkhWPMnLdNnhbeXpXmySJPSziPW5TJBKqtRKdtV5Gjl2dDxuDv/YVzKSm0jvPJG7rtcJOTFKdEN+XaRmLcnHOrCqlxTndyMMdiUoXFqCL0ur1ldk9grQ0JlMedFq+2w/n85O2jv2tTO2PvwGtw1owhKpR39iWdEZPcQb9PRO+cA3NlPuLWTgHWTsHwlI54Y8D5qGxzbr3HzXOJcrrr8xncNqhzRmLQjh3XLODjwnm71C7Mn20c0StbiW4W3HRtUNi5u/+l6uK/XjVKPebXjZWK6fjQ85zTbamhNj7ut8tpJjS36nssyIDy0YIdauwU+u3pc3g8dP9zek+tBUkz7lUPP6s5HEttPZRQ5v1z/TxjD3JiZKeMOu+htAvat93FVeiSmaR7ulNi7ceGU16oGGgg88jYpm57QaXP/3tt5mZsL6xURTmpfSVRpgm9pNhofS7TfaWx3Av19IZU+zXPfdELgzTGlL/vRhzViNkxG+XDr0PFgIuAmMCKKXrCdb5waDkZlajIpBFKb2JDCN3nwnX8N+2333841SKY26XIDS6ySLUP6vPZdD0RFPFktdrTMzyxRAvVH9wuVW2L7luOtpZo9NiasD4KuJDahAkTcMYZZ+CDDz7Anj31r9yYkJCAk08+WbUBW7ZsGf78809MmjRJ5W2z17uy0n7hnX322Vi7di1eeeUVbN26FS+99JIS/yeddFK9ty8IzRXycsdu+ZOy4lA67kk9RNRYtZIIpMduJKEvj7uP6Ikx3TJV7lI4IMHiqXp5uFuG0f6zEWBXcaVTnnCoSdILqTnyyfkLuqkwuH2qym+k/NFIwOeK8pFpQeSrAn994Gre6/aVYv1eR7sxLrbH4pI8NAwXNKPq1DGZXZyS0oqPeReFp3yNCqpCHZ+OqJLtSJ7zJLJUW7KH6rXiSdGMDyX1LKTGx44qfweLRK1YGhdS49/GdmLeOHFAG3x6wTB8efFwTLv2IEy9epQuPP3BKLqTNCHnEBSeizWRkCIakn9JfdMfPqY3LjygIwa6CBt/CqklLHkb0QXrURWXhWdqzlIVlL3dG4yFO0kQ9tTyv42QUZWglBZjUSdji0LO4w6k6JOz6Ha0onIH5X1zaLOxzzUbZEj0syGNrulQFNWqD3ohv7Q4p7kRSK9ub5QefB+qcwbCXFWI5NmPIfOTQxC/6jOEsnI5dQkgY5WxYwjlc3NbvXD26eYijiz2g1npm1uh0Zqsvq1O+dqj9Z2xBaIrNF9X7bF70odo34lcHNV4nQihIeDV48yZM3Hqqadi+vTpqo3X+eefj88++wz5+YFXcbz77rtVj+6LLroIDz/8MK6//nocddRR6rXRo0fjl19+UY/bt2+Pd999F3/99ZfybtNvKqxGIeqCIDhjS8xB/rl/o2T8C6hpNbjO69xblAqSNBVIMD1/ygC/e9E2FPYMVhhEd6VWgC7copvgRQcvBrkNVajhat/G6uXhEvzB4o7xPVTxpN6q4Fj4IcMFX2v+tL1riOimllrrtRBpo/jjKt1lhvnstUd3VAyq241SoaS4dQ1Kxj+Pmqx+MNWUI6pkR70q2XDLMPJeUr/5QOHwUq78HUyjEl/nfHz4eX8MYlTIrltWkmpRGGgrPWPBI/aexmoh596ql/O5Y29mfRnfKwfXH9rVaycEdy3DzMXbkLTQXqTzn47XoRjJWkE/z5AI1Lqh4YBOGW63ydcFebrZOEMGUGPOuuOe5F9ouavw3K6F8XqCIlI4GoyNG2p7WiE1MgCoInva86Ho2Rwo9J3O3w38HZnWwG4BrljTu6Lw9B9RfPhzqE3piKjyvUj5646QCG/2dFPXBJonRkMbGYti/WyrF0y4CCITcFV4L1A1fq7O709XEneQYZ7XCd7E8+rdJWp+k/GCuhg4tbUU0R1yAr5jU+uuc845R/3k5eVh6tSpmDFjBiZOnKh6bpMoJm84ebJ9Qe95+umn1Y8r5Nk2Qj28p0yZEuhwBaFFYktqhao+p7t9ral5uiOBu5Zhjj7dUeEfD4vuMHu69QWupVbvkdqYq5u6gxYxkRwzCTE6X/u0yrd03RlbmQUDFtgkurmvO/XnZtx5ujmc0adnJSYBVX3PRGXvMxCzYyasCfY+z4SpsgBRBRtQ0/YAn2PkXssEVSOmxbO/0LXH1Zk7BdHTzUXL2DPEIcR8vEINzQOuMp0SgKebz1045jUv5I2iO3nWozDVVKoWdT/ZDiXftE/RTdchVR+n68DYKsxIm9Q4vU89V2fn48Kk1KPfOx8vYocP0W1sWcbGDaNnne6JtC903dDn0g8V94okFC5M54e8nSy6yQhUr17d3jBHo6rvWajqdQqS5k9E4uLXkTzjXtRk9kZNm+GqjRtFpJBY5nncUNFNdM1K1NvSkVj05xoJJnTujfOCoxyC1T6UPd3eWvf5A51/GifNyQ4e3rNkpxZarjoHmDx6uudtKcAjv6/FDYd2w9F9WzVoXIKDBrlsKAScfnbv3g2r1YqkpCRMnjwZ48aNU2JcEITwQRbn2A0/+XxfU/R0hxv2DBrDy7l/rzHULVzEaePhvqSU1xYOkt306Q7XtpsTxrDbnKTYoBu8umYmqs8kIbJou31R1csoul36URs9YLw494nJhOqOh6I2u5/+VPKsR5D+7WmIWz3Z57/T/YY9yIF638g7adO8jNwuKBiwuHYNL/fX091Qog0GGDZw6TndXnoQs+e2oZ7uwES3Y+6UHXgLajJ6ovTQJ7BOi6zobZhvnji2X2sVlXFYD4fhxsgh3TLV7zmb87FR+1zXtmAcah6I6DaKCWr7ZLyvu8IeY6NYp+9MNsBSL3WjsSpYnuSGMGOjvcjg6G6Z+r2FCki6Ghx8QUZdbo3mlahYlI26G5U9ToCl01jUZvZST8/bWoAz3l+I5//a6HmsG/Lw80rvqak7NcNI+3SH6GbIgOnPNRJMtmpRNnStcrRGMNMK8rQuApmGFIz64Mjj92xoWZpbrH4Pae9IKdFzug3/N339fnWtPDp1nVNovdAwAr5jr169Gr/99pv62blzJw4++GBccsklOOKII5ToJl5//XXcf//9eqi4IAihJWrvMiTPuA8mqwWFCZNR3f5gj+8VT7f/Od1cyIeo0h6zJzGcuIa0p4fZ002hnkVNNKe7MWA0VAQ7tJygHEcS3uQh5MVg9+y6nm7jfG5wiLK1FqithslmRer0W1BqKbbngHuBvJTkVQ5EMDmFlmdQv+Dg3beoYBpRrgkNPj7h8nRzXjd5f1M0Mcmhs97yVdl7GU5PNxsdidqsvig4+0/UwIyN+/9Vz/nydBPXjemqfjxBYfpUEZ56Mn+6aIdXT3cgOd2uec07CiudIkF8ebo5AsIo+u3GqsqIi27yLv+zYb96PLZ7lv687un2M2SYqoWf/N4C9GudjEnnDvX9D9RHffwLgDlGrxvD7eBWab/djfX+X1YrAwb1ru/XJsU/T7chpYQiZPgeF8wQb29s1ERnt6xErLTUqvtEVUjCyxvm6faVx0956Ms00W2scZLu5v/2at1aaD/v/Xk13j93aIMcDlSccMP+Mjx7Yr+AWxw2JwLec8rnXrx4MS6++GKV30251VTQjAU3h4IffvjhwR6rIAjusFqR/NddSnBXdZuA6nYHeX17jda6RTzdnuGwMcp94siASHq6XcPYwubp1ha4VMCNnQoiugPHmA4QCtFtzOsmqGo5nzvfnu56im5zFEqOfAXlg69Qfyb/+xAS5z1rF+MeYK9loEJFL6KWGbzQctfq5YRevdzPQmrBgPeJ87v9Ci/nQmr+Rik0AL7f9apZi5jceY4XzFGqzzd5G8lOQHMuGJw2uK36Td0q3IluoyHQX1y9vd7yujmFxzhPOZ+bjgULBoenO7J5sCRkcour1NhGdrFXsK5PTjfVgiCD/PJdJf4bNKLjHYVabTb03fYxslDkdAyNkIDjiIEfV+zxKMy5KBwVUiO6ZjnubZT3rBumwhRevtkguvl6qK/gJ6POm7O2YL8map093Q0U3XpKQY3H/aD5QEZ8Y2QKfz8Zc7q5ZZtJS1t6ecamBo1t8n+5+HdTPlbsahwt9iJFwKtHKmL28ccfq5zujAzHBW5k5MiRePLJJ4MxPkEQfLHqO8TsWwZrTBJKxj7ls8gRe7pFdPsupEZwKGJjyOlmwpWjzAte9jxQ2C1XjhX8x2ioCIfoNoaWe/J0s3DzO7zcHSYTyg65H2Ujb1d/Ji18CWk/nA1zaa7bt7NQCbSC+VaDpzuY1A0vD29ON0Ge3weO7oUjeuWovzl0lot5efN0cy5mKCGREQcLnjK9irTvz0bM9pn6a1znIT2RctOD831yWM9sJ6Oia3i57un2UqHZFQ6bZeOTt7xuFhtGz5/DGOOYF40lvJzCtYkDO6U7fW/pXk8/jQLG/SaRFSiJC1/C8XvfwCexTyChPNdtCL+xqvZvq/e69RaT15cM3LQ84Rz/jumOCuaUPx/unG4W3RTm7i7dIhA+X7QT783dhi//c9wj88rs56ihqTN8P/Dk6V6q5XMPaJvi5G1OcxNezjVIrtUiUyYvycWi7YX1Ghc5Lvi7Z1095lZzIuDVU5s24WnZIwiCH9RWA9MfVQ8rhl4FW6L7XDkj7LmV8HLPkCWdDw9XNmZPd3yEPd3kwQiXwYRDKXmxJF7uxuvp7mWoVm4U4MaCYc6ebi/VywPBZEL5iBtRPP5F2KITEbtzDlJ/vtRtWzG9V3eg4eUh8nSziOIFIf8OV043kZMcp1ohsjErxo/KzA6DSehFd3x0FK6L/g5dTLthTch06oiRpxeACt59gQTViQMd68ygFFLTxES/Nsm+Pd1ucrqNRdRcvYqR9nT/o+Vzj3PJk2dPN88VXxjD6tfsdR8e7o2qHicgz5SJvubtmBV/IzK/OgaJ85+DuWy3/h5jNxA6f39rYfFG2MBL90kW1yQQnzy+Lx6c0Ev1lI/zwzAVTDbllenpD+7SLQJhd0llHcMPF1KjfWsI7sSzkSU764aWG7/XybhEnSXIi89e75MGtMEpg+zX42eLdtZrXMb0jPX7Ap9bzQlxWQhCEyZ+1edA/iZVUZjDPH0hhdR8Q3mjjrZhVvVFxBECEQkvN2wznMKXewdHYtvNiVDndBPGvsc9XHpFc+6ycdHLHrpgFeOibgkFZ/2G6lZDUDrmEUfETU0lYLPW29PNFZGDXbncXXh5uAupuUPvQVzbOHK6k4rX46qoH9Xj/IMfhi0utY5YaGguqiu0yOdvpzrh5dynux7h5QPa2se+XesD7Ut8sljn+WEU3eyBD6RQWbChMO7Ve0rVsRrd3V6EjuG5QUYBuoYC8XSvrYfors3ojqujHsI8ax9YbSYkFaxC0oIXkPnxIUia9agywhmNfsQPyx2CnNlZpBVRc0lXGNM9C8f3t4u/GA+940MBjZk7Jzh7uuu37f2aB5k/M5jVyx053e7nJBs0XI2ydF/m5SAJ9n1lVbrzgQrynTvcXgt95sY8/fyw4YBD473B6RmEeLoFQWiaVFcgccEL6mH5ATcCsb6rxxISXh54r26jVTsyOd2ObYazTzZXL4/EtpsTFH7LtNZCJoMNLdi6ZycqA83AtileW2MZvSHBFG616d1UL9+adgfqzyX+9wZSf7sSqK1CShwLAe9ChQTnX+v3qwUvjZPeT3erjunBFt1a73DO6dZ+8/ORwBE6614okYByVC8P8fVosyL737sRY6rF1NrhKGzvXBw3n8NiG1h12RXK5eVK5q5GKr4n+evpJiMzG3korJbYrhlx3M07FkW8DSo+pXu6G0F4OQntt2dvwVdLcvH5YrvncVC71DqCjcdH88jVK0ueTFdvqNHYsNZDITRv0HFaXJ6DsywP4ICq1/FXzwdQ3fYAmGqrYK7MV0Y4NvqxUWv+1kLsKHCujL2z0Dmf2x3hzOn+Zqk9DLxVcqwyOrvrWx8I+zWRSnVS6oSXJwUpvNxD9AVXpnc1ZKm2mtq9hHrT7yux6FE45IDokpmIUZ0zVAeJr5fs0tvUnf7+Qlw9eZnPcXF6BkFdCXgN2hIJePX43XffwWKpa9koLy/HRx99FKxxCYLgi+h4lIx/Duh9HCr7n+f3vzk83WJz86eCOfU2Nn7BRsbTHRURb7PRs9MUe3S3JE838erpg/DZhcPVYslIkps+3Rw+GPT5ZMzttdYgYflHiNv0K9J+uRSZsfZFX0mV95Dcl2Zswh0/rMJ1Xy/TQ10pvzNYfXHrVi939nSHM6c7UEFBAooFObeFCgnV5UiZfhti9yxCqS0eD1ZfjEqXMXHV5YyE4Hq6iQcn9MY9R/bEMf1aOz3PHmZ/i32VkKdXe9xfq5ZNAtNdzjHlsdoMqVf0VUnbYdHgLrw80PoEDeXjBTvwzpxteGbaBj3cd2wPR9VyhvLX2bDumuP78G9rcexbc/VaCcZq1cTmvDKvbdXcQSKe1xZ5SMOMhCNReMoUFJ74GcoOuNmQvmFTXuwRndLVsf7GJWSZxWjbNM/3yXDldFNay1uzt6rHVxzcWf2O09YF9RHdZDBj0U3XDn0GGUDYgNTg6uW6cHZ/f9VrE7h8r7u2DeO5QIYG5oyh7dTvH1bsVoYfqmhO4nlrQbnPSArjtVpVY/Vo9GoJ+LV6zM/PR25urvq5++67sX79ev1v/pkzZw4mTpwY+hELguDom9v5cOCcz1TfTH+RnG7/4AV+RY1DdJPgDmbLosbu6SbxYdzb9DBUS26OcC9mmj+hrDxPOYEd3YRgc9QGLXrJI0WEpQWcORrFR74MW3QCYrfNwDkbblbVjUsMng931Zi/XmL3LlEl5ft/XhOSImrOhdRq1MKRC6lFMrxcFxQeFvV83khQcWGwkIxj13zEr5kMG0x40nYxdiGrjtDQw8uD7OnmeXnKoLZ1jJzGlmH+hE1zqC3Vp6DrkM9trpsK2+ztbZsapxtdyZPNHkKucWH0JPtbqCxYsGjrkpmgxGvnjAQc07dVnffR95SjmJpD9JBhiXowUz70fzvshbXoOPK+07KAbDrcJ91fuPCWk3imNUrHQ2FN7aSeq6iy4JWYV3B67S84cYDdmPLD0p1uP8fVcGiE50Qoc7rpPvnY1HVqzlORuhMHtHFK9apPITWKNDJeQ3TM+Rqi67mhNRp8tQzT57Gb+xt7yVV4uZtzcEjXTNWhgK6Hiz9bonp4E7Sc9JXfbvR0E+tacF63X2d4/vz5uOmmm/TF5umnn+70Ot/4TjzxxFCMURAEIzYbTJUFsCU453D5i+R0+4cxp7tS+4KNRBE1+3ajnPqUhgsKOyPvDlviJby8flD13UtHdVKL5EgYbYwisrLaqvKGeSEe6nNa3XEMCk/8HGk/XYh2JUvxZ9zt+KTwf4Ctr1qUU3sgKh5GCzxaSzz/10a16B/YNhUb9pfq4wx2ETWj6Kbt0WK4rDHkdPvw4vHxoAV2sOeSuWQnrCnt1ePqTuNQduBtKkT41x/NgMXumTMSrFzUQGDRTeeM7s2+ohIcld7tx4vqAlAe9PaCSlUYy12RK4pGIUFXUV2ljre7QmqRCi9n4XTJyE441iUKwBUaI+XcGkUYCW1eA3BBORJF3MqLimzReyjCpL+WA+8PxrB815xlptXOP3BY1FygfC62W/rQkcbWvHIlcE2aeZcFn9HL6skwRfOR7hmhuKd+u2yXOg70nX/PUT31bTQkp7vuMarU5xQVI2zofjjCy+vOSTrGZd483do1XGD0dBuisshJc8aQdioKieYUHQcyDNq0QmnGyvme5qwxr/soOv0tEL9E94QJEzB9+nRYrVYcccQR+Oqrr5CZmelcdCghwWMLMUEQgkfspl+QMu1WlI26E1WDLwn4/zmfRjzd3mFPB4XZGT3dkcDJ0x3mEG/y7rDoDkeLouYIfUdefUiXiG2f5i1d7nTpkze3otp+7ZvC1Ou5pu0IFJ76DaJ+vg4ZJWtxfckLqPxzC3Yd+gLO/nChuiddfGAndMlKxIJthSrE+pFje6v8zpu+XaFEQqcQero5CqC8EeV0e/LiOfK5gzjG6nKk/nkjYjf/jvxzZ8Cabm8TVH7ATep3fLS9P3dd0V0ddmOc6pVtNtlztatqfIpuvXaBNs87pGui200F8z2aUGyTEqfCxskTScdbDy+PdVe9PLyi212ouyfS3RgG5m8rqNMVYI8msmhODWmfahfdAeZ1s1Cj7ycSbu56da9KPwzra47DFdE/o8PsO3Gg+S7Mt/ZR84hDq/dpn0OtwXylYBA0D7jif7CYsyUfL/xt70t9zZiuTvnlDRLdLkXH6BixwYqjoRoCz0kaG61bjOk4lE/PdxRfnu69ek6385goOuGtWVuUZ/uWw7rjlX82qflItTC89c1xTQVZL55u37RrZ4/nX7PGHuolCEL4IQ938r8Pw1xdCnNF3XYb/lCjLebE0+1/IbUqzQsQ7JxSfzF62MMvuulrwr4QSg9B7qYQvmr85Mmln2rN8EaesHAZ32qz+mLp4ZMx/+sncVPMN6huM1z1v2UP29tz7LmTxHkjOihxRD8vnNIff6zdhwl97X2sgx3JQcY1GgN5gRpTTrc/nu6gYClD2s8XIjZ3HmwmM2Jz56JSE92Mp+JRLLqDXb3c11wmbzcJOxLdvmokcHg5579T1ImnXt3cLow+c4/mlSTByqIhyRhern0ejYGMRuG6jthr6E80Rqomwowh8PO21hXdXLmcPJu9WyXXq4I5e3GpqNuMjXnKY011CdiIRJRXW/F6zTk4MK0YQ8pm4u3YF3BS1cNq+zSHaH7x/Pbm6eZoEL5OjNtoKP9uylP1JMjodWj3LJw5xK59mIa0DHMV3cZogGBEi9CcoHlI85HEcxvDeoWNNfS6O+cBpxmRkYkNH61cDB80n146bYAyRk3o0wrvzdmqPte1Kr0rvO2umYnYnF/usw/8mj0l+GtDHs4f3kGv4dBcCHhvLrzwQq+vSzE1QQgNFPqX9uN5iCrNRW1KR5QPu84p39ZfarV0EPF0e0fPg7VQ9fLaiHq6edFLpIc5xNtoFRdPd9OFhCQJbjIicRh1uNMFkhMT8Ebtifgr6iB83O947Fxnzyk9JWkl+lvX4NmKE5CSlKy83syoLpnqJ1SQV7ui2qJCJr15ghpLy7CgerpJcP90IWJ3zYM1NgVFJ3yCmjbD67zNnXePwlULObw8BDndvqJvSHT70zbMGF5OkCGHcFfMifOaW6fGI117XXm6LW7Cyw2PSXiHq8BlIJ5uNjSwp3t/aRU27ncUTyPDA51H3m8SWSy6qbaCq2j2BreZ6tUqCXO3Fqi5Qp/Lx5ujSWww4+sO96J/wZ1I37sUk2KexfK84WTp0MUezTfXCtvurhGCQpyD4CRWzNqcj9u/X6W85+N6ZOGJ4/vWWSc1pHq5O083X1vB6HWv8vjjo5UxjIwXbVLd53O7C2Pn+VtQ7j68nBnWIV1/rMLUSy11wsddYaPV4PapSnSTQaag3OIxVe6NWVswe3MBVu4qxounDmxWDqKAV5AHHnig08+wYcOQk5ODVatWYezYsaEZpSC0cKLy1iD9m5MQXbABtcltUXT8h0BM/XIcqec0ER3kkKzmKropB5a/YONbYHi5Mf8rnPnkQnDholskuGlhFYm+65wHu8aSg1pTrFr0x8GC+03v4HLbN5iT/iDeH1cdVk8zewz3aQtiWt9FyrjmT8uwoPXorqlE2s8XaYI7FUUnfuZWcDuLbkOf94oalVcduegbR/9fEjOP/b4Oq3aX+Awv517vG/PqVl3WRXdKnO4ltnu66wrd6Cizfk2Fs4J5IJ5u12rW87cVqt+9cpKUkKE5Rvu817DfVHeCjBrk6d2U59zOyxvG4lsUnu/aFotgj2hMfBKKjn0f+6Naobt5F4Ytvl3VqnF8RqzX/GaKUGEx7Ok6qQ+v/rNZCe4jemXjyeP7ujU4BCOnm0PJydPNfa4zg2Q5MFYh97dyufH/8g2F1LxFGxiNkz493dqcbZUchw5apIm3ft0c3j5vayFe/HsjmhMBm0qvu+46t89PmTIFU6dOxWWXXRaMcQmCoBGzbQZSf78aZksxajJ6ouiET2FNcQ55qpenOwIFnZoSLHQrGkNOt1MhtcgscAnxdDddWMjSfA5ZuzAfuHoHdxRVogoxmNHpRpy4+yVklm9FxvTzUVZxNyqGXOncfixEsHBiL5uq2B/Be6OvlmF6uHRDcvGttUj94zoVSq483Cd+iprWQz2+XRcahjHlaV5u8qyRAA0n7AXlWhO/rtqD71fsVoL0yRP6eQ0vJ08uCTYSOyR6qCKzq+gm0WisTu5J6NJ7yHtbrAwhCcprTALEHy90fSBByOkY/mxD3wcW3Vpo+UFdM9V32taCChVirnu6U+xit0+rZCzcXqRCzNnz7QuHUItD29R49dmuxdS4TzcZtG1JrfBp56dw5sbb8HfGmTjGZNKvQW+Vy43XSYXVFrRe3YXl1cq7T9w+vofHOe3OAOUv+7VogIFtU/D3hryg53R7q2DurXK58buA2sjRPDNp3TD8+U7hyClPOAR/FHrlJGNHYaUKMR/Z2X0dMP5+Ir78LxfdspNw6qC2aA4E7U55wAEHqLZhgiAEl+h9y5XgpiqyhadOaZDgdsrpFk+33znd5O2OaE63wdMdbqHEX9I0XbyF/AmNG0d7rFq1wIyEAYcWslygkLyDO1VerQnlXY9BwTnTUdnzJJhstUie/RhSf7kUpkq7Zy4cx4VFQyjbcAWlZVhlEMLLay0w1VTCZo5F8bHveRXcTkJDuw9GqnI5w3meJZX2xTxVwDfmZHsLL6d7OIlKYllusf4+ui44DJs8vsZ2W55Cuh3C3P5/9/28BhPenKuPJ9hwSzs1Fj883RzaTTURKJebPIcEtcDi1oIUZs/hxJwf37uVvZ95IMXUHAXQYtEm1f45rsXUyi1W52sspx/GVb2A2abB2mf452H1p8p/oCzeaU916ZaV6HVOO1qGBb5d9moP0KrCU90AFuJZQboX833BtYK5v55uPgfkefdlTEvSCgu6tgRzxVj9v2dOktdiahR9wl760wbbhfbE6RvqFGNrqgR816ae3K6UlZXhvffeQ/v29lYTgiA0EPJGa96WimHXwhafgco+pwNRvi3AvhBPt3/wwqCCKoFG3NNt3y6F/QWzaEwgC9xQtCgSIlOjgD0J4Q4LJshwQznUxeTpLrQvytunJ8AWn4KSI19FdbuDkPzvg4jb8geivj4Bhad9B1tCVhhEd5XXRWm4iHWpXk5ViO/+aTVGd8vEaYPb1fHc1ouYBBXeG71vmceQcl95rPll1RHJ53YKL9cW4uyp5TBp9znwjnFSsa+Vu0uwdGcRJmg9rvkzyJtNn2/0EuuiwdXTrV0/JNZJLMzenK+OEQkKowc9WLC4URXc/fgeGNczW+Umk1f15m9XqDlF/0ttwSh/maAq7hzOy4WzumXbOwVsKyj3O2WNU1YoNJz3PdeTp1s7juRZtyBG375p/yrcFv09dife7HObnNftyTgVKIu32w0SwzqkeX1fMKqXk9GHC55xUbFgGa+MBdGMUFsvfzzdjD+GD4ch11dOt8NolaZdh56KqXFhQuKWcd3V/+wqqvTakqwpEfBd+/DDD1cLL9dcmLZt2+KJJ54I5tgEoUUSu+lXJC5+HUUnfg5bbLIS35X9zwva5zs83ZHLW2wKsFe7wkLh5ZEtpNY1K0ktZHwtCEIBt8mRHt1NGw6NpXBY9iRwb9ZwQrmye0st2FdSpS9CO7BAoXvdgPNR03oIUn+5DDWtBsEWH7oiasbjwmOJZI9ugtsfsQdv4fZC/LspH0t2FuGkgW0Nnu4Ar0dLGRJWfYqKwZcDJjMQFeOX4Cbiok11RbduuImAp9slvJw93HQOKTTWWHip0I2Rggo6fb54p5One4/Wo5u9tMZ8aM5ZdfV0s1eRwstpTnOYrbs+yeHO5yboODx+XF/c9v1KzNliDy0f2j5NfY9xbrtzeHmcU6uoPM2w4ou88mpVhJC2R+LNs6fbefy8PbV9Sxku2nIb0qPzsXJfLWB9DTBH1bv2QaAs3mH3dA/v6CgUFirRnZMSq6IKKCKC50yww8vr5HRr2/FkVHT9fvcnxD/J3/ByQ2h7O+1ez5XzXeGOCPTZZFi5boxzJ4UWJ7qnTZvm9DcJ8JiYGGRnZ4sXRBAagKkiD8n/3I/4DT+ovxOWvIXyA28N+nbY0x0t16tXOAxWhZfrhdQisyAni/J3lx0QkXssedcjEdYuhN7THYkcfY6cWKO1JCIB5VoUrCZnAArO+Bm22KSQ53U3tvBy1+rlHPJM3qLlucUOz20A16O5NBepP1+CmP0rYbKUBPy94t7TzUWhIuHpto+HPdDs4SYHGVXobpMa7zG8nD3dBOXwkpBNio3G7mLnEGsW1PS8XtXeS3j5pjyH564hhdU+mLdNGQquO7RrnarNgVQuN86nZ07shxunrFDC8tAe9qiRjlroORWfI0Occd85l5fDof0OLU+KVUXO2mnH3zWnm1qGGe9FrTVhR+Ht1phEfJhwEa4reRH99/2EipmZKB3r2ZEXp0eENNzTTQKVPa/DOvrydGsFVgMU3RSxwuePjlPbVLvoZoJRvdxbeLkvTzdF05FBga9x1x7d7mAB76uQmr7tuGj9OnTXS5yIVOpTuAj4G5dCyKurqzF79mxs3LgRZrMZvXv3RlZWlohuQagPNhviNvyI5H/ug7kyHzZTFCqGXo3yYdeGZHPs6Y6SnG4/q5dHvpAaEan76wGdMtA5IwFH97GHYQrNKKc7AoYULqa2eo+90jRXs3XFlpjt+MNai+S/7oCl82Gw9Dg+qONJjIluVOHlrh48Ft0EhQQ7+nT7N87ovUuR+vOliCrfA2tCNiydxgU8Jne9iSOa020IL6f5bBQY5DVl0U0Rme7Cy8mL145ET3EVVuwqUQWdHEXU4p2MGmygoggE1/s/VzgnkW1sxWUvrBY4JCBf/3eLEvnUpvLO8T2c7vuBeroZEjavnj5QCWzOJ2ZPN3sWyYDA33nsdaV9p9BxX1FxxqrjBB9/OqbGHuYcXs6GLcr/pt2jsHcSvpOrx2BtdS1ei30FCSs+Qk1WX1QOuMBrREh9PM6u/Kd5uamPtK/57K6+QSBebioAR/PXfozs2yXjChtwQhVe7svTze3GKGLDaIDxRpLeEcP/8PLE2CjVIYIMZBSp4iq6HalPzbNTSsBnedOmTbjiiiuQn5+PLl26wGq1YuvWrejQoQPeeecdtGnTJjQjFYRmSsLi15A89yn1uCarD0oOf16FVYYKCr8jxNPtbyE1u0U20qI7UlDBna8vPSDSwxAaCC90yasVyYUNe7pX77Z7utun+W59GL/6CySs+RLx675BsTkKlm7HBG08LGC4KnQ425V5z+m2OoVQEzM35uleVH/Cy2M3/ITUaTepomk1mb1RdNwHsKZ2DHhM7io250fQI8WeXjo2LJYZFg282OfoY9fIgIHtUpFbvA/LdhYr0b1CazfGodGuIojTbNwZkEhkGws91Te8nAp2slf9m6W70DkzEecMa98gT7fRmEO53AyFdhs9m0aRRcKNc44pdNyXAGPRna15rsmTy/9PxiwW4ewR5ZxuGhP9D6Wa0HkkYfqLdRR2DYlBuyXPIXnm/ajN6IHq9gcF3M++PqHlvrzcDalezlEDdGxI4LY1HFPycgfLqO4pvNyXp5tbgvL145+n23d4Oc0BjqRIjiPBbTc60DVCBkXXMHb9u6mZeroDXkE+8MADGDRoEGbOnKnahH333Xf4559/0LVrV/WaIAj+E7t5qi64y4ddh4Izfgmp4Ca4SIVULw+8ZZixirggNCWM7V0cOd2RKaRmXFx58nQbqex7Nip7nQqTtQapv16B1F//h+i9y4IyHleRzd6bSLcM45xuY6gy9U1mUeaterm5eLvybqf9fpUS3FWdDlMF6eojuD3lsbLojqSnu6SqVs/FZozF1Di0nFKFXA2mLEApr3vhtkLM3VKghOLhPbPdi25NYHgOLzd6uuspul2E3At/bVSGloZ6ut1B4sd47XERNX6Nq2n7E2LOFbhzNA85HUfu1c1h+0bRbRw/5/hu2Femzy/rgTfYOxnQ9f7bFTCX5IY0p3uRVkTNVz53Q3K6+ThmJdmPC7VVY4KVz+21erkPT7drupE/Od3+tAwzesGTNcOVo/tA3eukQIugiUQUVjgIeAW5YsUK1as7Kcle9p1ISUnBjTfeiAULFgR7fILQrKHwKfJuVwy8GGUH3QVEhX4BU2O1f1m45osJnvsaO8LLm0cFTaHlYazSzYa3SOTp84KL8Ud0U0GlkvHPo6LfuTDBhrhNvyLjq2OR8elYJM2xGy2DJboj7elmMUEhtxQeTVXeXSHR4jXk1xyF2O0zYDOZUT7kShQf9z5ssfY2UEET3RHM6TaGlxtFHWH0fLsLLXfN616+qxgvztikHp82qK3yLvN5MIpDd95lrl5O29mc1/Dwcm5NSVEpJw9sowwsr8zcHBRPtzs4r5sriRthIchh0d5g7yiFizOUs0zs0owi1MPc2KebaaOJbqomz6IxLiYKJYdNRHXOQLU+Uk2jg5jTTfPmlX824aeVu5UYJsFP+FOotL4tw/g48jHiiIpgG6489unW86o939+M3wecb++NJE1EexPdPGfJmBirHTu+ft3d27gKfiQMwuEg4Cu3X79+mDVrFrp16+b0/PLly9GnT59gjk0Qmj3keSg49XsguuGtwPyFF9ycZyW4JyHaEF6uF1ITT7fQNGExycV7aGEfiXQJDsl17SXsE3M0Sg97BhWDLkPi4tcQt/57RBduRHXFPsd7rDVIWPIOLB0PRS0t1r1UP2ZcvYZJjSS8nIU3e4PIc8hVut0WUbPW6vtrTW6HksOeQU2rwSo8t6GwsZG972QM4EiFSHi6kw2eMhbZFCBATk/uOe1cubzu8eqRnaSuARIMa/eWqvN++UGd6niyy7x4CNmrSPncHEIbDE83RVRdeEBHfLd8t1MF8GB6uolOGWRgsHvSXUPIWXT75enWjrnRW845y2wUIZFqc2PYaqull1BuvZOHldranfApbPHp9mr7AeR0Uys4qn/wv4M6u22x+co/mzFl2S77WGKi1Li6ZCb45XF2V1QwINGtbcPZ0x08gcnCmeYtGSR4/3VPt5s0Cdf/5QrrfnfE8JLTbezR7Roh4s7TzVFYwSos1+RF98EHH4yJEydi/vz5GDZsGKKjo7F69Wr89NNPOOGEE/Dqq6/q7yWPuCAIdTFVFcEWp1lVqUJvmKDFEkdjiac7kPDylpvTLTSvnG4WKZHyJLh6utsH2M+4Nqs3So58GWUH3Y2owk2wxmfor8Vt/AXJcx4H5jwOa0wSatqOUN5xS9cJHgV4XU93pAupOe7LJHJLNK/p0X1b4cP5292GlpsLNyPt18tROvZxVLcbpZ6r6n1a0Mbk6t2jBT0/jsTimPNSqRURGyJ6tUrG6j2lzp5uvXJ53XNKRucBbVMwf5s9tPiSkZ1UTqsR8pBzBW53ubAsHlhw05mzNUB062lM0WY9p5VrilDBqWB7ujtluA8vD9TT7cjpdhw/vRib5rnk0HKTy/coe7o37Cutk0tsS3BpF1hdocS4r5zuV2duxpKdxRjYNhVjuturtTNkYPlWE9w0dzlNwp/Q8oaEl+/nY6QdF6ORI5iGK/Ii8zykEHPeXiCebhLTSX7cB/1pGaa3CzPM2ZS4GN+e7mYaXh7wlTtv3jyV011YWIjp06frzw8ePBjbtm1TP4RUMhcEz/l2GV8cgao+p6P0kAfDElLu6uUmxNPtHQ6Bo8JzZdpiR0S30FRhccm3gEjlzBlzZSnkkHv1Boo1ua36cXouPgOWTmMRvWsRzNWliN02Q/3UpnZC+eD/obL/+ao/tdec7kh7ug33GBIUvDAd0TENP67YrUSC0XMbvW850n48H+aKPCTNfAiFZ/4a9DZrrtXLWaiQIce1+nA4DTcUCcD9filcnES3MaebvWaeis5Rv24S3RRFcLahYJm7uerO083Vy5meOUlYt6+s/p5uLbycwqtVCoHZpL5/aD/aKK98cD3dVCSTcfV0B9I2TO8/bRDMbBjic2AMLaeccaatJrrZGeAq/hXVFUie/Rhids5G0XHvw5rWRY8IcZfTzdvkaAyj0+H5vzYqQXpk7xw8NKE3fluzF0t2FOHiA/2rd1DfQmqunm66zukxPZ8ZxJxuWtfRvCXBTSHmvL1APN1uz4Eb+LO8tQxjQ5Fxzqbqnu66aRjNvZBawKL76aefVhXKqVWYkdraWqxZswb9+/cP5vgEodmRNO8ZmKvLEFWwETCH98bClcuJaJdrWHDGmHfGX+KRWGAKQjBw7T8dqUUN5/NxESXjAryhVHccg6KOY1SodVTBOsRt+Em1Hooq3oaUmferIpU1bYY7/U+S1jKssYhuOh5c+ZkEBYdgksA7uGsmflq5Rxc0MblzVf9ts6UE1dkDUHT8RyHpa+7aJomLHWVGIJ+b5zK3Hdq4v0wX3V/+l6tEDH3PkWB1tFdzP84zhrRT6RanDW7n1qBqFNXuPN2uEQdDO6Qp0U1V1Y2tsgIOL482K8cViSDaHxIiFK4dfE+3PX+daFXP8HLywrORIUcrEubUukoTVuwNdTVyGXuqu3rLGVN1KeI2/gxzxX5kfnEkSg+6G3Hmg9VrFjceZz5OxoryxF/r96tK5XSubzi0qxK+Jw5oo378hecJaX1/2qm5iu4sw/5RPQt6vrUflcIDgeY7zX1jBXN/PN3cRq5btmNe+Fu9nHL23d3L3YWXp2jXjTvjFHu6pZCaxvjx45WX25UdO3bg3HPPDda4BKFZEr1vBeLXfaselx18b0gWSP6KbvF0+w7z5EhP/vIST7fQVHENm45U+J5RyPidzx0o5ijUZvVF+cjbkXfhfJSMfQLlg6+oI7gbYyE1YwVz5enWRXc0zhveAX1bJ+PEPmmIX/Y+0n44TwluS7tRKDrlK9iSWoVkPHExzt49aiMVyV66JEjZeMNirm/rFPWdRl9xnGPMxaTchZcTFE7+0DF9VPswdxh7obsTuvR9wOeKGGJoyWVs9Raop5uNu2wYYyESbE83VSin+dQxPb5Omoe/nm4Wk2QoMAo6vr9wXn2FB9HdzuUe0MqNALUl5qDg9B9gaX8QTDUVSJn5AK7cfS/iUaXXGTDCx4kj1PhaekkrmHfBiA51xL6/GNcAxr71gbQMY64b01Xl7h/SzTkEvqFwZAcbncg4wGNN8uLpPqBTOt44YxDuOqJnwIZcT95ud4aiVEPLP9dIBL2zRjMV3X6Zy7766iu8+eab+kE57bTT6ni6i4uL0b1799CMUhCaAzYbkmY/ph5W9jwZNTkDwz4EZ0+3iG5fCzvqJ0pfGvzlJYXUhKYKtU0yEqlFjTGnO9B87noRk4DKARc6PWUu24345R+h/MBbG114OUGhs5TLS4KSF8skMjukx+Cjs/sh85PRiCrbrZ6v6nIkio9+HYhOCHlxN85jjWTlcoYW8ca2SBQeTYKNcrCpmjaJKm/Vy/3B6Ml2J7qV+I+P0QUV5ZXT/KHzRsaSQK8xo6fbWbja9yPYnm4a//vnDlXrelePrb853ZzPTaHlxrRS137RnPdujCAjWhmqeNs/x31oszW1E4pO+hLxKz5C8uzH0bdsHt6NKcVf1S/UWePQteMq6qilW25xlTIMXOhnKLmv9A+6HvyJxKYxseHEKLqpbZ2xd3qwYGMRz39jzrW3Pt10/kZ08i+3nQ0QHJVDotvdvGQDiHG7KR483TS/eY3qWl+hueDXlXvyyScjJiYGVqsV99xzDy655BLVJsxpcZqQgFGj7AU8BEGoS9zarxG741/YzLEoG3VHRMZgzOkWze0bWiDwQoeIl5ZhQhMlycXDEbGcbsPCLGSebm/UViPt+3MQXbAe5vK9qBz9ZKMqpEZwxeF8LYyb0Be00fGwdByL2J2zUT7kCrd56sHGtZAajysSlcsZ4wKfBCKJIRLeSnRred2FPsLLfWH8P09ihSIQSHSTACEjEhlH7KKbBE9CwzzdLsI12J5uR8Rb3cWA0dNNotxTnSZqQaje76I+9fByl5zuRBfjH1UDNxY0M+aF18FkRuXAi1GT1Q+J35+H0ViJzK0PAZisv8VYSdsYXs5t3EjUuwr/QKAQaopuoNQPb8XU6Ji9OWuLiuw5rGe2yiOnoIhwpPW4HnsuZkZz1N9weH+gOUFzkcSzp2JqgVQvz9fuK/SZzTWq0K9vFxLcJLyJDh066FXLBUHwD3PxDiTPfEA9LjvwFmW1jQRsRSQvtxQ79I3rl3Nz/SIQmj8UtWEkUtXLSRzRdUQLVr96dAebqBiUH3ALUv64Fgmrv0C2zYo40/GoskU3Ik+3SRc8SajAs3HvIba4A2rT7a1ay0Y/gNKYJNVGLRy4tkligRTJtj4phlBmLgLGBaC4gjl7oI1h4oFgLKTmybvM3vDOGQl6ESuqqF6fYmoc1cDfM67h5cH2dHuDPd2qrkBVTZ2icXU83S7FwDikn1tXOXK6646d8skdotu367im3YH4svvzOGbdXfgr/QycaXjNKP64eBih10YIwrGj68FSW+NVdG/Nr8CkefZuA58t2qF+U8G0YNaw8ARHdnBof1kI5w2Lbk9tw/h8GFMPUjz06W7uoeVEwGeAWoXRjyekTZgg1CWqaLOy0la3GYGKoVdHbBzSozswXMPJObdREJoaZGhjsRvpQjUkUDbmlaNnTnJEtl/V8wTAakHKnzchYc1kfB67FFdU3YT9SGsUOd3s6S4qLsGk2Gcx0rQGln/uQ9GJn6nn9XaTYcK1TRILpEiGgBoFBFUfNxYDo17d1N96c1658uHWd54Zw9I9FaBiMdot2976M1W7ruoluqvdh5cXhNDT7e2ckzgiwZ1XVu1bdLuIZTo/XOyOPK6c0+3Oy0zGkjV7StW6xF9P8J60wRhT9SKOiHN2YBi928bHHGru2rKwvseG7DreKphzATmC0h2IrDBdL3p4eaWzpzsU8yZJGVGqnAwc9fV0F+j3FRHdTi3DXKuWUxE1yuk++uijgzk2QWg2UFXdgrP/UFV1PfWLDbenW/CN6wJBcrqFpj6fddEdwYXNK6cPVAss1zZF4YT6WNviM5Ay9ToMs6zFj3H34snqc5AYOwaRhqIBYlGNY9fegV7mNShDIiwH3hax8bi2SWoMOd3GKvhttLxgnk/k6Z6xIU+vam7Mow22p5u32adVspPnm8OZ69Wn26WQWmF5tXqNWqR5G0uwoeNGYnV/WRW6ZrmvaE2vuQsLJ48uGS3IYEAeV87pToyt+x3aOiVW356/nmC6RioRp/fpjirchKi81SiLG+0hvFwT3UHxdPvu1c0eXqoI3rtVMv5Yuw99WofHyOhaCyCUnm42UnoOL9e2bYhwSGHR7eLp1tuFiafbwccff+z2+SeeeELCVQXBC9bkdpEeAmqs9i8JEd31C8nlMEtBaIrQAqkxhPBRLnAk84EZS+fDUXj6jyj9/Fx0wk6Mjl7jWPRTC5zSXbCmhP++HW+24rWYl9GrbBHKbHF4IvMR3NRmGCKFU5skq02FT4fTc+cOo8eytaunu6QKf2/Yrx5TPm19cfJ0e8j1v3RUJ3TPTsSx/Vo7CXVjkTd3LNxWiPfmbsWd43uiiyZoObycjbssPkiMsJebZme4ojHIqLI533sxNWMhNVfoHkNjJ4+rsU+3K470AP/nk7FPNwnu9K9PgKm6HPEj3qAj5NHTbTSkBKtvvTt423Rcnji+L64Z3aXeFdMDhe+t+7VzE1pPt/0zPYWXOzzdhj7dcTG60YJ++Hi2BE930Nw2F1xwAaZMmRKsjxOEpo/NipSp1yJ2yzQ0FiS8PDAkp1toThhbvDTnvLlAqM3ojltTn8PT1Wfjj+ix+vPRe5ci66MDkfbj+TAXbQ3fgKy1uKPieRwZtQgWxODy6tuwK3kQIonxvrejoEJ5kukrpGcre0h1Ywkv537HW/IrVD9mYlzP+rdjcm4Z5l6wkHeW+nzzdwWHYfsKL/9x5W4s3F6E6evtxgGn8HItjclYAZw9hiS4w5EX7Nyr27PX3lFILdbj8aPxc0spd8KvXxt7YeY+rR0Fmv0W3TVW1KZ1QXWHQ2CyVmPUoutxgGmNes1YBJXPRzC8vXw9uOsRzrDnN0kz1lDRyHA5O9prtTJyiyvDkNOt5e4bjrURXfAbtp0UF6WX7isxRISwpzs9Qq0Iw0HQVpAzZsxAXFzkQsUEobFBrS3i13+P1N+vhqkiH40BCS+vf5sl1bdbjpvQhGEPGc3lxlAwrNEQl4o3ak/E2jhHG8eY3Qthgwmx2/5GxpdHIW71l8r7HWoS50/EGMtMWGxRuD/uTsyx9g9KHmqwRPe8rQXqd68cao8VuXEZBQR7Svk3eTXpq65XThLap9W/Qj4JaPJUksfZXyOVv+HlLAKNYbkOT3fdPt3hzOeu0zZM85i6q9DNnm4uYucpzJlFtztP94GdMzDl0gNwy2HdA27dpfp0m8woPuIlWDoeipjaCnwQ+7QS3jQPaIxGj2swPN2u1fz99fCGi3aaR53mGOVN81hC6unWDEauuCv+Z1at9uoWUyvQqpc3Z093wLPv8MMPrxNGXlZWhqKiItx5553BHJsgNFnMxduRPPsJ9bj04HtgS8hEY/J0i+j2D+MCQbzcQnPxdJOIkHSwugtH46K0YvDlqOo8Hil/3YbY3HlInX4rLBt+QPnQa1Dd/mDqlxOSsVBLpP1Lf8IT5SdhNsjDXROUissNgeYKF+Gbq4nuIR3CW8zNa/VyTWRQYTfuG9zQ0HKCPuuzC4e77WPteVzuexC7wkLIGJbr6unm8HISj9z+KVz53E5twwyt64wY+8i7y5s3eur1lmEehF/HjIR6VfjnnG7qU1907Hso+/w8dCmer4T3xZY7UVVzsMqRD25Ot3M1f3883eGEjjHNHfIc5xZVGiqIh8DTrV2HxqgCt8YHl/OeEhetGwUYTn2KZFeEUBPwGaDq5MYva3pMLcUGDBiAzp07B3t8gtAkSZrzJEw15bC0HYnKAReisVCjFWIJZq/G5oyxL7fkcwtNHV7wSmi5++Pi6gmypndF0UmTkbDkTSTNm4jYbTPUT2X341Ey4c2Gb9haC3PxNuVNV98T5ihYk1rj4davYfrGQlrVq7dF2tNNsOhetL1Q/T20fWpEx8PiiQzIvEgnkUx5wdSrOxiiuz7Xir/VyznHmMWoO083edpptU3f2juL7KHCSWEUcRwy7imnm6rE87ng4m/ucuKLDIXUGtIj212FfyfhG52Azzo/gTFLbsKYqBVKeO/NHQ50Hu6oXh7UQmq1jdLTzSHmJLp3FlWE1NP9//buA7yt8vof+NGwJA95J47jJM4O2RMSIEAIhLITZilQ1g8CLVD6p4yyCrSFltGWUkYpEAplNuwRAqSsQCATsgPZieM43kuytv7PeXXf6ytZtqVEy/L38zyOZUm2bqTra517znuOPJErKzH4sd7feIBOH1sijqv2TgL+XIuR9jUF/57IqQjp/Pcp6r3v7LPPJrfbLTLbeXl5IuAGgHb6lkoyb/9AXG499g+i9ClVeJVSKwOyXFGXl6NzOaRLY8B0flNzKG8cw80Q5kC4bcq15Bp6CmWufZYsWxaKaRQqnkjBx9MIj/M6WzVZflhI5u2LyFi3hXTeQODiz8gm5+jAxGGjMfj1iUWgEKtAo80dCHImliU30y3HlfXPswStceYyZw66uWv00E46bsdTpOXlLWHKy51KYCqfaz6JwNlizgBWNDoSHsTJRnly3nkoWVoebj23dla3yHSrc7pjs/1yTbfs6C41uo10lfs39DT9hUw6DxnNgyhH83zHamRYd43UkpnpliXmG/a3iJM18c10B36mDK5fWlVBz3y7Rzzu1UeVixNG4R7bau7YwVxmulFernj55Zdp4cKFtGVLoEkBGzVqFJ1//vl04YUXxmP7AHqczA3Pk87vJVfZUeQtHkOppD3TjaA7Eto3CCgvh54uO2QUEVBQsN1VQODNH0qtx91Hthm3kN/Qvn7VsuW/lLnuObJNv5lcg0/stOycOyxnL7uPTLuWiL8PEv8sT9FhYnyZlBFyrInFOtRYBTmMA1q53jdZxpVaaf5R5WIkWGiGb21lM80aXpyUJRTyteq+vNzbeaZbc7K3QA2628TX2UnIdHcWdMu13n062ReC1nQrJ2tiFnRr13RrcMaVR4lx4K0nPz3uV9b7O7bTeP1uyssYm9CRYcnqnSGbqXHwm4g13fL/u73OLj6v3NNAF00tU3uIhL5/yg35PeElHGr38jQ+KRzRby/P4v7FL35Bq1atEpnuq666SmS5q6uraf369fTAAw+IRmpPPvkk6fV4Ywq9mKeNLBtfEhfbJlxBqcaDTHdUtCVz4crnAHoSGWwncz52KuqfZ1azpt3xmzUZXr+fMtc9KzLWeYsuJ0/RGPLkDyW/KZvIYCavtUxkycVdM7LVgNvdbyo5Rv+U3P1nkDe3XGTTw61XlVKlvFyalOTScsbZ7auO7Lik8Yrpg0S2+9IjBiZlu2T3ch4ZxoFEuMCfG5rKcmu7y9dpeTnL59/ZekpqppsDI+7ULQPd0M7lfTo5nsg13fxcyLXr2gkKh6LDmu6QkxkceAe+DrwOZ3sW0QWmT8m1+C2yn/SI+N2LZ9DdXl6evEw34zXdcjvj0708eGTYPuXk0PZau7okIty4Pauc1a2p+JCNftO5EiuiV+D555+nbdu20QcffEClpaVBt5111lkiCL/00kvphRdeoMsuuyxe2wqQ+gxmajnx72Te9i65Bs+hVINM98GXlyPTDT3dORNLRcby1LGBmcIQcOa4flSWZ4m+ZFqno8Z5Cynruycpc90CMtZtEh+Su+9ENejmtdqtsx4gd78p5C0cGXFWmSW7kVrHoDu5peVdKS/MomuPGZK0x5fl5V4lsM4OE3DYNCW1drenQ3l5aKabJSPTzdlIzlJyCTc3UysNmTNdE0WmWwZ+cV3TrVlbLLU4A83edvpKqEpfQP1sFZTx1nnUNvEqUbVCRkucG6klP9Mtl8bFJ9OtjAxzecXJDRlos6921Hd6osiqzOqW3ctllptPyqRzgiOi39633nqLbr755g4Bt8TX8+2PPvoogm7o3XR6cg0+QXykIqzpjg66l0M64XWwlyQpA5jK+A38jMEHN2GCy8JtR95O9olXkWnvF6RzNpPeZSPyOsln7R90X8eYCyLeHi2rkj1NJksPCbqTjf9OcBbW5fWLLF52mCBZu45VrnXuLNMtq1PkbYnMdHOWnrPdVS1Oqmp20uvfV9L6ymZ6cO5YEVDXKGXnPFatq6CbO6/LaXuxLi8PXdMtg11usMeZU8448+vwlPcMesV3Ii2ftIQyN79CWWv/RabdS6h11p8D0wiiYM7oAZlupWpnf7NDPSkSj22Rryc/71zRoO1RsHR7XaePm6tmugPBdr3SIV9Udkg+L1m2vEaOkWeJJnnpIKJXYM+ePTRhAo+u6Bx3L9+7d2+stgsA4sCjlGIh030Q5eUIugGgE/6sPuQcdW5MflZoeXlqZLoDx0Jeyz1AyaJB+ECVT5LwOmgOQvrldh6QdZjTrax71ma6ZYl2aOOqRK7r5qD7t+9tUrtLf761luZNKKVapby8OMyMbm3WX/t/jHUjtdA13fK57Ws1i9Jq/lpmU/WWXGqd/RC5hv6Ecj67lYyNOyj/7fOp+aTHyTli7kHM6fambKa7xGohPozwSQnZzT/ea7plabm0u6Gt033WGrKmW22iptnfzVvfIetnt4gGlg0XLInbmMZEiuhdpNVqpQMHDnR5n8rKSiosjO5MsdPppNtvv52mTZtGM2fOpAULFnT7PRUVFTR58mRavnx5VI8FEG85n/+WspY/RDp7LaUqZLqjo11/hkw3ACRCaKY7J4XWdPOoMMx471puNx3MgzLdSkk5l+Y6lCBOe4I3tKlU6LzjeJPzt2XAzdZVNgeVl/OYtnA4sNKH7CqxXtPNa835uQsNdvsp68xlpltsj1IlwA0PGy78lNrG/py81oHkLD9R/X59c4Xo1RDNmm4eo/eXz7arc9bl4yYz082Zfjm/vrMO4rGc081LJmRpOS/V6W6fzQ3pXq42UZOZbr+fstY8Li46R8xLi4CbRfQu8vjjj6fHH388aMfW4uufeOIJmj17dlQP/uCDD9KGDRvEmvG7776bHnvsMVq8eHGX33PPPfeQ3R7ojgeQKvTNe8my6WXKXvV30jsC61hSEdZ0H8rIsPRdZwQAqUO7ppszSfwGOtlkCfER5e1d1qG7sWHhO5jzOmOJy9C5Ao0zkkofKbWqIFzQnehMN3eqZ8OKs+jG44eJy9wd3uf3q+XlMjAP1+xOzupmuhievJYnpvzK+vnQYFc2i+TGauqMbs22cEPE1ll/ooYLPiHixofiSh/lvXsB5b9+OmXs/bLT4Ds06H586S56dc0+WrarQXzNr6e8LVmZ7nDBb1wy3RlGdfnDHiWzPWlAXtBj50SQ6W4IzXTrdNR0yjPixEjbhPRZthzRb++vfvUrOu+88+iSSy6h+fPni1Jy7l5eU1NDGzduFAE3z+1+6KGHIn5gDpx5/NjTTz9NY8eOFR9bt26ll156iU4++eSw3/Puu++SzWaL/H8HkNAxYT5yDTim2yY5yST/OCHTfTDdy5HpBoD4044MS4UZ3ewXMweLgPuYYUXJ3pSUp+1gHo62vJxxwzWdCEk7/q0JWuOahEz35dMH0bjSXJoxuEBklf/62XYRXO2qt6vvJzoLulleplENqLi0PFZVEtrgnU9c8HkK3j6+zPrlKkG3qz3THW6Zht/EU7wD9E27yWCrJl3TLsp/98LANIKiUeTNGyIaIYppAwXDOszprmx2BI1Q05bTJzPo1k5j0MWwtF9L+zN/rAnEZxxw8+Op3cu7WtPt9AQ1CtR2wvflDxEnRtJJRO8i+/TpQ6+++qooM+eg+6ijjhJB8qxZs+j666+nsrIyESxHU17Os749Ho8oFZemTp1Ka9euJZ+vY3OChoYGEdT//ve/j/gxABLCbSfLpldSdkyYlhzJYAwpX4Tw0EgNABJNu6Y7FcaFyUDy+BHFKZF17zHl5Uqw2W3Q7eIO24FAjV967XOc7Ew3B0z8uvPfQl5fPqQwS1z/vx8Dy+gKszK6fD+hHf8Uy6BPuwRDruvm51GSmW4OuOWa7u7KqznIq/v5MrJPvJL8epOYRGD58S3KXvlXsn5+K2XsX96hezkH+nKOeWObSw305TKBZL7X0mab+bnnyoNY44Z28nj1Y3Wr+riTB+R1eaLIag7OdG+sahGfx5TkEHnaO6Cnm4h/e/v16ycy2nV1dSK7zZltznZz1jvatdyMs+QFBQVkMrWfISsuLhbrvBsbGzv8zD//+c9iPNmIESPoUKR6gk9uX6pvJ7Qz//gm6Z1NYt6qe/DshL520e4vck03/1HHPta9LFPwyLCe/pzh+ALRwP6S/PJyDuB6yvOP/SW4vJyzeOGei9Cgm9d1yyCSq6v0mqC7MDs46OZ1ycl8fieW5dLOejt9qgTdfXLMXW6PNujmwF1730PZX3iJHMd6nNjmWd38M2zK+DVeFibL2jnrLDtk52ZG8LuUXUz2Y+4hx+RryFi1mgxNu8jQtJN09jry5g8R38+VCMfo11GJI59qbO2VjY1tgddbBv98giSZr5UcGyZPOMRrW7JMRnK1udXM9sCCTHEyRn3sMMewvEyjeuKiyeGmnXWBZcMTCv1U+Mps8pRMJtvRd5Ivp7RHHF8i3aaoT5kVFRXRscceS4eqra0tKOBm8muXK3C2SFq2bBmtXr2a3n///UN+3KIiK/UEqbad3CDinnc30omjS+jEMZjxquIgduPz4qLhyGuouG9+Su8vlszA71h2ZgYVF6fWPpaKcjUjQYrys9LmOUu14wukNuwviVVUEGhUxYpzLT3uuNPb95fSosAaYRfpwr52bl1w9tOUbVErqTJNxqDvyc1X1hsrBpbmUbE1ed3jjxrVl95eX0XbapVS4sKu/y6W5HNmPDA6Kjcr/PuOg91fzBkGEeDm5GZRcVEWVTl96trt/n0DP7ON18zrA89tSUEUf8P5foODk3yy8Ll892Z6POPvlNnqpurvdlIhTaZ6yiW7zy9+/vbmQAyT18n/N1HGlrdn/vOzTHHbltzMDLX7OBs/pFh0ve+Xa6GqZof4fQh97EKfXwSq/BZ6S4ND9DMozbPQyA33EzXvIYNBT2YeU22O3f6SCpJWt2Q2mzsE1/Jri6X9gOJwOOh3v/udaLSmvf5g1dW1dNeYMKl4J+QdKtW28+sd9fTqyr20bk8DTeobKC8CooydSyivZjP5M7KoftBc8tcGSmRSdX9pVNYeedxeqk3wtvZUct6nx+nu8c9Zqh5fIDVhf0kOhz0w4oeZddRjjjvYXwKMyhLJA41tYV+7msbgZsCV1c3qUiazQdfhe3g2NzcEY65WB9U6w5etJ8Kw3OBkWZ5J3+X+adGcXzDpgv9vh7q/ZCgVAQdqWyjL76WKA4GTVVkZevI7lZJvm5OqG+zq6xKL36UmyqelvvF0mmEFlW18ir4ym+k/3hPp67pLxM+vrAk8hsXQ9XMTb9n+9qA73H4VKxbNchjRed/hpDqni04Z3Uc0mCvPMYV97ByTUVSDfLJ+v/j6suzlROsXkl9noKYT/k4e/paW2O0v8SS3LWWD7pKSErFOm9d1G41GteScA+vc3PbBhuvWrRPzv7mZm9ZVV11F8+bNi3qNN79QqfZi9YTtlOVQjQ5PSm1Xsnn6jKe20ReQP7OYfKbc9tkMKbq/qI3U9Dq8jhHiN0P8h8Fs0KfNc5ZqxxdIbdhfEitDycwxqzmjxz33vX1/aV+v6g77PGi7l4euReaMd+j38LpuDrr57zYvPUjmczswP1OUjMvMJjdR62p7ZKm9/Fsa7r4Hu7/Iknynm8eGBTqVs2yTUe2qzdfJdcNcYh2L5y7DnENXuG+gTzPW0U2Wd6jUvoWuNn5A59d/RYYtv6dW70xlO8L/fxOFS+x5RBs36uMTN/HaFm2zuEBJe+D95S9nDqH5R5aLde3hHttqCQTd3+ysp4G6A3RZ02Pievvh/4/cJVM7fT/dk48vSQu6R48eLYLt77//XszpZlxCPn78eNJr/uBMmDCBPv7446DvPemkk+iPf/wjHX300Qnf7t5KzpIMXYvU23FHy9bZD/eYI4BHOQOPZjiR4/VhLc7gTuYAAIlY02214LjTc+d0dzYyrGP3ctnkKtzfGQ5y9zY6REOqZM9I58ef0D+Xvtxep67p7go3X5Ni3T1bndWtNFKzKQ3MOMDkD3ldcxfdyw9GoJGajj7xTSVv/5OocdNiutP4Eg3XV5L/fzeSYfJrynYYk/5acQdzXgqQbYrftmib+5XlBUbMSV01kss1G6mSX0dbBb2ccT+ZvTZylx5O9qnXUbpKWlu9zMxMkanmuduczV6yZAktWLBAjCWTWW8uLefMd3l5edCHzJTz+nJIjDa3Tw26eT5jr+cP6bCfip0dush0I+iOnHwThO7lAJAIGUZN93JzcCMt6EEjw7rpXi5KcdXu5b5O/87IZmSJ7lzeGQ66Q+e3R9S9PMYnrrlztjbo1ma6ZcDLb3mqW50xnQSgndN9oNVFn/sm0ymuP9NDnp+Sfcq1VGkoU7bDQFnLHxYN2ZLdwVyehIgH7es6QNO8rTtWi5H05KNnMx6mgfoacucOoeaTniDSp8Z+Hg9JfRd52223idFjl156Kd17771i/BhnsdnMmTNp0aJFydw8CJPp5gOYthSqt8pa/hDlfnAFGRp3UE8iR4ZxmRpERr6pKOpiFikAQLy6l0PPEjqDuLOgW4614vdUTmVkmAzEtQqUTtCJntHdmYnaoDu760x3UPfyGG+/LC/n7uWhmW4OjGVyoZpL1WI4814bdFc1B362m4z0uGcuHZh0o/r6HubbStmrHqGCN+ZS3tvnkfHA95Ro5YWBzHNBVvzev2RrAnrtmLJIfk98pKfb3FfSJv0Iaj779aBu5ekoqUdzznY/8MAD4iPUDz/80On3dXUbxIc8C8v4gJLssplk0rdUUtb3/yKd10mO0T8lb/5Q6inUOd0IuiN2+5yRtOVAC40v7bkdMwGg59DOIE6VOd0QOTmuiisEeY6zzMhKMhjvazXT7oY2EXTLRmrhy8uVqSMp8r5rdD+rWHbl8vqpX2435eWa/ZcbnMXj5JTT4++Q6ebSan6fymvPeaxYLE9gaasRKpragm5raHOLMWXMZykSPX8sP7xBpn3fUMabZ1Prsb8nx9iLKVEunDpAnGw4Y1y/uD1Gtqnz8vKuWJX9eY1/JD1e/gTdk53+k5FQLwkRjwyTOjt721tkf/tnEXC7+s8g15BAZUZPgfLy6A0qyKSTDuub9LV0ANALM90pEmhBdJk/GVBsrWkNuo2X59mU4FDNdLvby8u7ynRrG1YlEwed/zhnPP113tigNdvdlpfHeF2xPJkRmumWzxPPNNeKVaZb+xq5lYheVsI12F1qptubO1D0/Km/+GtyDvkJ6Xwusn7+W8r57GYib/uEgnji7bps+qC4Vupp1+pHlOn2usj6yfU00t9eKTqmNI96AwTdEFV5eW8Puo3V68jy45visu3o3/WYtdwSyssBAFJbhmYEDzLdPQ83RZs6MBBErNjTGHQbB9yyK05fZekSv7+SiQ1LmGzw0UMKaUhhFp10WB9KFRPL8uioIYWRrdtVdmeZzY9XIzUZ7MpKzNCKzFhVaHJzMM2vqDixIE+gNLZ51Ey3DP591v7UfMoz1Drjt+QnHWVueoVyF19N6UL+P/kp4VnbXfL7KeeL28jy41t0ye5byUyB0W5j++VQb4CgG6JqpMZaHL10TbffT9lfB0bUOUaeTZ6+E6inaS8vx68+AEAqwprunu/wQQVhg26ZtOBsscwSaxupWURn7GBDirLov5dPo1NGl/TIExCysVyWSR+XZRhcws9Cg11tOT5fF8tkQ6CDeUA/q1mMdWONba4OGXdBp6O2qddR0xn/IZ+lgNrGX0bpQv4/uf9Ndw1nzT++RZmbXyO/Tk9fjriTnGQSlZcj+iDoBghbXt5bx4aZdn5MpspvyW8wk23GrdQTaed0AwBA6uFyTT5Ec8Y7ViWxkFhHlOeLz+v2NYV9/8RZV9n1WQTdXWS6e7r8TGN8upfLoFsp8ZZBt5rp1gS9sT55pQ0ueV17vrIEoMHuVteWh8usuwfNovqffyM+S9lf3UOZa58hY9UaIl/PS2oVK830hhZld3k/va2Kcpbepc7itg88Xlw+rCSnQ9+DdIWjOUTEoc1099KgO3Pt0+Jz28SryGcNjIToadBIDQAgtfGb9d/9ZJR4Y69tqgY9R3lBpigfr2510drKZppeXhD0/onXG8u1sMFrulNj3XYsTeyfR/uaHDQ8xtnM0DXd8oSG7KatPWEV65NX2iCRS8tl9WCgvDxMplvDb2p/HnSOBspa+4z6tc9SSK5Bs8gx9kJy959BPcH0wQV0x5wRNGVg4ERTp2Xln91CemcTuftMIPuU6+hIv4GuObo8omUK6QJBN0QEa7pJlAVZtiwk54h51FN5lDPCyHQDAKSu08b2vFJiaMeNNw8vL6APNh6glXsa1aBbBoYcBKpBtxgZ1vmc7p7ujpNG0K9nDY351JvQNd1qpltp2KZ9vFj3RjCHBN1KPkOUl3eV6e6AG+sd8RsyVq+njMpvSe+oF32DzFvfptZj7yfHuMR1Oj9YnMSZN6HrUV+Wza+Refen5NebqOWEvxEZMog7GvzfjHLqTRB0Q9RBd28tLydjJjnGXUI9mdePTDcAAEC8HTEoXwTdK3Y3EB0zJChpwQGZbCzWXSO1nk6O74q1Dmu6QzLdPK87Xpnu4PJyC7UpAX9gZFjXmW4tf2ahKLUWvG7KOLCaLBv+Q5at75D1i9+SL6cfuQafSD1dxv4V4rNt+k3kLRpFvRWCboh6TneLo3cF3bq2evJb8ol0Pf+PoUc5I4xMNwAAQPwcPihQbrvlQCs1tblF47QWJQsamulO5/LyeJGBL6/p9vv91Ko2UuuY6Y71mm7t2DBupFZvd4vL1S0udYxY1CcaDBmipNxdOp28BcPJWLuJXIMC6557upbZD5O7ZAo5xvyMerOeH0VAQvTmOd25n1xHBa/MJmPVaurpkOkGAACIvz45ZjHqi//qrq5oEte1KkkLLndWG6m5veRM40x3vMhMN6/p5vJ82ShWZri1QW+sM+2hjdTkLPV9TW1h51dHRacT2e/mk58i0vfckzA6ZzORX0nY6fSBUvke/P+JBfx2Q9Qjw3pTeTnP5Tbt/ZIMjTvJl9WXejqs6QYAAEhsF3NRYq5JWmSbgjPd8j0WMt0Ht6ZbZrn5Glm2H89MtxwZxu+lCrNM6sgw+TpyaTmPSzsksrrS66bsr/9Axpr11FPoXK2U985PybrkBiJvYBY3IOiGg2qk1vNGGhwUn5eyl/1RXHSOmEu+3IHU0yHTDQAAkNgS81XKvO7WMN3LOUHb7AiUJyPTfXBrurXruWWwy8+xZDUHguJYZ7pLckwi8M5Xgm4pkvXckcpa+TfK+v4pyv1wPuna6ijleV2Uu3g+ZdSsF0krva062VuUMvDbDRGtA5ajpnpTeXnWmifItG8Z+Y2ZZD/815QOZKbbiDE0AAAAcTWxLE983t3QRo1t7vaRYZb2RmpMrgnWrhWGSNd0t2e6s5X13PHPdCtBd65FeSxDUDIjO4bl7G2T5pM3t5wMLXup8JUTybTtfdH1PCX5fWT99CYRbPuNWdR0+gvkyx2Q7K1KGfjthqhKy3tLeblx/0rKWvGwuNxy3P3kzR9K6UBmug2HWvYEAAAAXeIM6KCCTHF5Y1VL0MgwzshmKplt2UhNli1DNGu6/WqmW9uxXI4Oi2f3cm6iJju0a7Pd2sc+VNzIt+m058hTMJz0bTWU99E1lPvBpWRZ/2/SN+2iVGGo/5Hy3rtYjDzz643UdPJT5Ok7MdmblVIQdEO3HJ7gcnL+o+FL1bNsMaBzNFLux9eRzu8lx8izyTnqXEoX7ZluBN0AAADxNr5/rvi8vrJZXZ4ns7DabDdDeXnkZFVARWObejIjOyjTrSkvj3GmuzCbp0wTlRcGTqgwbdAtx5bFirdwJDWcv5hs024QAS3PvLZ+eSdl7F/Vfqckvi+3bHqVCl6dE8hw8yzu2X8hd3l6dF6PJYwMg4gz3dy0gkczcKU5N/6Ix9zFVKDzOshTdBj5DRnUetz9opNkulDXdKfR/wkAACBVjS+1inndG/Zz0N2e6Wa8rluWljOUl0fuiPIC8Xz9WGOjl1fv67CWOqi8PMbvVy+cUkb9c810wsg+6nX5SgfzWGe6VUYL2affTM7hZ5Llx7fIUL+FPH3GqzdbNr9G5q3vUNvE/yNX+eyEjrl19z9CPJ5z8InUevRd5MsbnLDH7knSM2qCuDRRy7VkiGYfHHjzWcV0Dbp92f2o+bR/k87ZRH5TDqUTZLoBAAASZ1xpINO9YX+Leg5fDbo7ZLpRXh6pEquZfjFzMP3t8x20trJZXKd9X8rl54MLM6nO5qaS3EAZeKzwzPW540uDrpMdzOOR6dbyFo0i25G/7XA9l5tn1G4gU8VS8uQNJudh55Fz8BzyFo3uPHnk95O+tZLI7yVfTn8ifWTv6w2NO8RUH9fgEwLblD+U6i/8DMF2N9IzaoK4zOjmtUc+v1GcleWztf0ozXAWWB6YdDqxjibdYE03AABA4gwrzhbvn2xKsy+Wo5Q7h85yRqY7Oj+dXEYfbamhTVUtYbuG//uiyeT2+DuU8cdDUHl5DLuXR6r5lGcoc/1zZNn8KhmbdpFx+UOUvfwh8uaUkXPoT8h2zO8Dd/T7KGvV30XgnFG5nAwcdPPVOoMIvJ3DTyfbUXcE/3Cfl4wHviPzzo/ItPNjMjZuJ79OT03zFpK7//TAXRBwdwtBN0Sc6eYzsNz4Qwbd6SZr9WNkaNpJrUfdSf7MQkrXTvQMmW4AAID4467WY/pZafXeJvW6HCUo0wbdPHoKk0Wiw8/ZHXNG0CUvriEu5AutwMzmMu/A8uu402a6k1EJyl3CbUffRbbDbyTLtvdEcGyq+JIMrfvI0BIovw/QUdaKv5KOAkkYXiPOLb50PpfokE5eZ1BT4Zyv/0CG5j2kb6tVr/frM8hddpSYxw2RQ9AN3XIoa7otRoPasbHFEd9Z3XU2F13x8nd0/Ig+9OtZ8e8crm/aTVmrHiGd10mugceSc+Q8Skdy9Bv/oQIAAIDElJjLoDvDoFPfS2nLy5HlPjgj++bQ/KMG05Nf7xLr55NFu6Y7GZlulSmbHGMuEB/kbqOMqlVi9K1KpyPH+EvJZ84XWWp3v6livbjeXk2Gui1B03p0njbKOLBGXPaZcslVfjy5hvyEXINmkd8cWDYBkUPQDd1qU7qXc3mUXgnW4j02bPXeRqpsdtLLqyto3vh+NLgoK66Pl/PNfYGAe8BMco6YS+lKBt3aeZIAAAAQP+OVdd1yPTePmGLasmes5z54V8wYRD+d0j+oe3miBY0MS5WeRxmZ5B54TIerW4/9Y9h+Rvyh5SkeS02nPEs+SwF5SiYRGRJUNpCmcFoNIu5ezn8cZPOP5jgH3fubA+UtHCI+v3JvXB8ro/JbMm9fJNantM68J626lYfyItMNAACQUOM0GVhtQKYtL5fZbzg42UkMuDuUlycz0x1D/swicg39CXm4OzkC7kOG33CIuJEaz4+UQXerI75Bd1WzQ7384eZq2q/5Oqb8Psr+6l5x0THmIvIWHUbprD3TjV99AACARCjKNlH/PIu4LN9HhQbdKC/v2YLLy1Mk0w0pBb/haWBHnY1ueHO9mAEZ70Zq8gxtvBupVbU41TJozs7+Z2VFXB7HvOV1yqhZTz6TlWzTb6J0176mO9lbAgAA0HvI9cZBQTfKy9NGcHk5XkvoCG+908CiTdW0bGcDvb52f1wbqQXKyw0JCbplZvvCqQPE53fW76damyu2D8JjE9Y8Ji7ap90gymjSnSwvR6YbAAAgcaYMDIwh7WttL9NFpjt95Ctj4Fg2Mt0QBvaKNNBgDwSj+xrb4prp5kZqVuWgEu9GalXKmu7Tx5bQdxWNtH5/C725tlJ0qIwZnZ4az3mHLJtepbYJl1O68/v96F4OAACQBGeMLSGzQU/TBxeo1wU3UkPQ3ZPxuLcpA/KosslBpcpSAgAtBN1poMHuFp8rGh0JyHTHv7y8xeEhmysQ6PfLNdOJo/qIoHt3fexPKvgtBdQ25RfUGyjxtoDu5QAAAImTYdDTaWNLgq7TjpbisazQsz15/gRRUcivNUAo7BVpoLEtEHRz+bVsehb3Nd1xbKQmS8t5fQwH+nKdTJMj8P+MBZ2jgXobmeVmCLoBAACSK1MbdCPT3ePpdToE3NAp7BlpoEEJullFU+yz3Q6PT11vpHYvj2OmWzZRK801i895lkDQ3dgWo8f0+yj/zbMp/82zyNC4g3oLuZ6bIegGAABIrqBGash0A6Q1BN1pVF4er3Xd7Wu6teXlsc+oh44LK7EqQXdm4DGbNCcXDoVp50dkbNhKhrofyJfVh3oLjy9w8oQh6AYAAEguzOkG6D3wG97DuTw+df1zvNZ1OzSN1HI0jdR8fs0i4Tg0USvNtQRlumNSXu73U9bqQMfytvGXkd8UGOHR2zLdaKQGAACQXGikBtB74De8hwsNRCvikulWyss1mW4O3+yaYD+W9itBNzdRY3JNN28Hn2Q4FKbd/6OM6rXkN2ZS28T/o95E7VyuI9LpEHQDAAAkExqpAfQeCLrTqLQ8Xmu6teXlXP5k4qgtjh3Mq1oC/4d+SqY7x2wQgeIhZ7s5y73ir+1Z7l4wlztcphtZbgAAgORDphug98BveBo1UYvXmm5tIzUW7w7m7eXlgUw3Z2VzZYn5ITRTE1numnXkN2aRffI11NvITLdRj197AACAZONEhkwqyPdYAJCe8BvewzUqme6B+YGscGWzM2g0VGzXdAfOyMZzVjeXj/PoM9ZPaaSmbaYmx6MdDPMPb4jPbRN6X5abebzIdAMAAKQKTirIsWG8hA8A0lcgkoEen+ke0SeHDrQ4yeX104EWB5XlZcbk5/v9fk15eeAcjVXTTC3W+P8gz/7KtdztzdTaDqm8vGXOY+QaPIdcg46j3sijNL5D53IAAIDUGRvW6vQi0w2Q5vAbniZBd2FWBvXPs8S8gzkH8TJxLs/CquXlcQi61fXcVnNQs688JQA/pLFhegM5R52dtlluPkHSFS8y3QAAACk5NsyMRmoAaQ1Bd5qUl3NWeEB+ZtTrurvrQC6z3NqgO56zuveHjAuT8uWs7mjXkfv9ZFn3HOlcrZTOXl2zj4559Gtavquh0/sg0w0AAJBajh9RLHrYjOmXk+xNAYA4QtCdJpnugqwMKosi083B9u8WbaHj/vE1/fe7fd2u584w6NRgTQbdrXFopFbVLDuXt6/n1s7qjnZNt2XjS2Rdehflv34mkTcGc75T1Nvrqsjp8dE/lu7sNOPt8QYa4iHTDQAAkBp+OXMIvXPlEVSQZUr2pgBAHCHo7uEa7a4Ome7uxoZtq7HRJS+uoQ83V4uvn1+xVx0nFcqhzOjWjrWIa3l5yIzuDuXlUQT6hrrNlPPV3eKyY/RPiQzta8TTSW2rk7bV2sTlH6pbaVkn2W4vMt0AAAApR7ucDgDSE4LuNMp0D1A6mFd0UV6+vdZGl738He1uaKO+OSbKtRiputVF3+4OH6i1eQKZbm2DD56bzWyu2Afd+1vCl5fnKc3bIl7T7W6j3I9+STqvk5yDjqe2SVdRulq2vS7o638v3xP2fuheDgAAAACQeAi6e7hGZW51QaaJBigdyyubHJ2WGD/77R5Rhjyxfy69+PMpdOqYEnH9O+urwt6/vXO5ocPa7jYlCx5LB5Ty8hLNuLCDaaTGGW5jw1byZpVQywl/I9Kl766+bFut+PyTw/qIZQDf72umNRWNHe6HTDcAAAAAQOKlbyTSC3BJuAxC85Xu5RxO2VzesGufd9fbackPNeLyrScOF+uH5o7rJ77+cnsd1Sul6loysNYG3ZlK1lvbZK2rEWBnPr2cHl+6s9v7+vx+quos0x1FIzXz1ncpc9PL5Ccdtcx5lPxZxZTOvt4eCLpPGV1CZyqv53PL93aa6TYa8GsPAAAAAJAoePedQhrsLnpu+R4129udZoebZD4732Ikk1FPfZUMcbhmai+s3Cvuf8zQQjHXmw3vk01j+1lFAL9oU2CNt5ZTCawtyoxubQAum6x15dOttaIj+QebDnR73x21dnJ7/SITy6XvWvmRZrr9fspc87i4aJ/2K3IPOJrSGXeq31vfJkrGJw/Io58fPoAMOqJvdzWo67wluW7fgLVjAAAAAAAJg6A7hXywqZoeX7qL/vXljqjWc/O6bJm9lOu6N1S1dOgKzj+fXT59UNBtZ44PZEffXV/VoSxdZrplSbn2sj2C8vJ1+5rE55pWF7V0k6V+f2MgMJ85tLBDNlZ2L292eDpt+ibodNR0xovUNv5Ssh/+/yjdrdwTKCMfV2oVsz7L8jLpyCGF4rqlIWu9PcrzZuSoHAAAAAAA0j/odjqddPvtt9O0adNo5syZtGDBgk7v+/nnn9PcuXNp8uTJdMYZZ9D//vc/SjdmpWx7b709ovs3aGZ0S7NHFKvNtFo13cVfXFUhgtVpA/NofP/coJ9z0qg+olHazno7rd/f0u2a7ixTZOXlHMDz+mJpR11w5jV0nNWHmwNB9+ljAycBwjVS47AxbPCuOVngz+pDrcfeR6QPfE86W6EE3YcPzFevO1oJur/ZWR8+04013QAAAAAAvSPofvDBB2nDhg30/PPP0913302PPfYYLV68uMP9tmzZQtdddx2dc8459Pbbb9MFF1xAN9xwg7g+nfTJNqnroCMh121rg+6zJ5RSeUEm1dvd6rre7yua6G2lUVpolluOADteCdY/3xpYH9wx6I6+vHxfk4Nqbe3rxLfX2YNK45fvblADwa93NohtLszKoKOHFHT4WZz5zjYFHrfREVJi7vdT7kfXkHnL69Sb8EmNVTLoLm8Puo9Unr91lc1BJ17UTDeCbgAAAACA9A+67XY7LVy4kO644w4aO3YszZkzh6688kp66aWXOtz3/fffpxkzZtAll1xC5eXldNFFF9H06dPpww8/pHTSR1nHXBPhmm6Z6S7QBN0cnN5w3FBx+ZU1FbR4czXd8OYG0bGcy7YPH9QenGnxbWzZruDsqMPjO+ju5Ws1WW62Q7PG+C+fbafrXl9PD/xvqwge398YOClw8ui+nTb66qyDuWXzK2Te/gFZP7+V9LbwXdhjiRu+XfHyd3TWsyvomW92R3ySJNa219rFiQpebz++tL16gUvM+cQL901boRkFJ09wIOgGAAAAAOgFQTdnqT0ejygXl6ZOnUpr164lny84mDvrrLPopptu6vAzWlqCS6F7uuKcQBO06hanCOwiXdPNnctDA+gjBuWLpmR3LdpCdreXpg3Kpz+dPpp0nTTRml5eQByLcSDH678lmc2Wpe/arHd35eVrKwPruTl7zXYqmW4OsrnRF3trXRU9+uVOWrojEOyfoXTfDked1a0pL9fZqil72X3ism3GreTL7vz7Y6Xe5hJl+Nys7qllu0V39qeX7aZEW/h9pfh8+OBC0URPS67rXqY8z8yj/F4h6AYAAAAASJykLXqtqamhgoICMpnau1QXFxeLdd6NjY1UWBgIGtiwYcOCvnfr1q30zTffiDLzaKVy4+bi7Awx8ovLgDmbyyO9Iikv56BW+//iwPrG44fRhS+sJk5uTh2YR3+bN5YylfLscDhwH1eaK0qSv9nVQGdPLA3KZmdlGNTH4MuMs+d+8pO+kydVZrrnju8nSt131NnFz+Cyc87QatebszElOTSiT3an2ygz+lyaLh/S+tXvSO9sInefCeSYeEVCXt9mpWSb18EfVpIj1q2/sW4/zT+6nBKFKxjeXLdfXL7ymKEd/t9cov/qmn3Kum6/2Cc8mjXdqfx7APEjX3e8/hAJ7C8QDewvEA3sL5Au+0uk25S0oLutrS0o4Gbya5er47xoqb6+nq6//nqaMmUKnXDCCVE/blGRlVJZUY6Jaltd5DIaqbi46221K3OXy4pzOtyXv374vIm0eX8z/frEkZRt7v6lnjO2nwi6V+1rpvknjBTX+ZVS76L8LPUxsnLbM83ZuVlhf3aDzSWCbHbFccNF0M3ruzOyLLRtdyADPmVQPk0eVEDPfhWY4X3BjPIu/8998zP5J5NHbwjc74cPiba9T6QzUMbZj1Nx345rweNhR0vghEFpfia9NP9IGnv3R1Rnc5E+00yFyrr8eNpW3UL3f7JVXL7u+OF03Mg+He4zJy+LzO9soupWF9V7dTSqn5UsWYFKiuxMU7f7FqS3VD8OQmrB/gLRwP4C0cD+Ar1lf0la0G02mzsE1/JriyUw9ipUbW0tXX755aI8+dFHHyW9Pvrq+Lq6Fm2j65RTlJUhgu7t+xqpROkS3pnqxjbx2eT3UW1tx1L7YwfliY+2ljZqi6ASf1JJIMv8Fc/WPtBEGQY9NbYESs19Lrf6GNrS94qqJioKE2h+qYyrGlyYSZk+L5VYzWLt88ofD9DXPwS6lI8tyaGrpw+ghhYH7ayziW0N9/+QLMrTsa+2lWoP1FLB+zcR59ztk+eTPWMIURffG0t7DgROGmRn6MVzW5ZnEdn7FT8cEGX88cTVBfP/s4bsLq9Yn3/JlNJO92uucFi2s4E+WLOXio4YSE3Ngf3F4/Z0+TxD+uKzsfwHK9WPg5AasL9ANLC/QDSwv0C67C9y21I26C4pKaGGhgaxrttoNKol5xxw5+YGj7RiBw4cEI3U2AsvvBBUfh4NfqFS7cXSKs420w9ko+pWZ7fbqa7pzsyIyf9pZN8cUarOpd/fVzSLAFI2UuPmafIxdKQTpdV8Gwd/hVkdfxZ3TGcTy/LE9w0tyhJBN3cwl2PEJvbPFT/rthNHqN/X1f8jV5nVzWX1GXuWkqGlgrzZJWSbdmNglliCNLV51PnovL3Di7NF0L2txkZTNaO74oG7lXMFAZfa/+HUw9TS/nD79ZGDC0XQzeu6f374wKDu5an8OwDxl+rHQUgt2F8gGthfIBrYX6C37C9Ja6Q2evRoEWx///336nWrV6+m8ePHd8hgc6dz7mzO17/44osiYE9XsoM5Z7sPpnv5oeAA7sjBgRLtr5UZz7JZGgfZWu1jw3xdrueeVBY4gTK0KFsNxmVDtQkh88K7k6cE3dxIzTX4RGo49z1qnfUgUQaXnSeOnBMuTwIMU9ahb9N0Z4+XXcoM98kD8sJWGGgdpTRT4+fc7fUFrekGAAAAAIA0D7ozMzNp3rx5dM8999C6detoyZIltGDBAjWbzVlvhyNQ2vzUU0/Rnj176IEHHlBv4490617OipVAqqaboJtL7MPN6T5UMlBbpgbdHUeGddfB3OXx0aYDgddmYv888XlocSAd/qkyB5xHWnXXKC5UfqbSvVz5f3tKJpNrcPTr+jvDndr5ee0ON3Jjucpa9mFFgf/b9gQE3bvr29Sy/e4MyLe0N+ZzeDQjw5L2aw8AAAAA0Osk9d33bbfdJmZ0X3rppXTvvfeKBmknnXSSuG3mzJm0aNEicfmjjz4SAfh5550nrpcf990XGBWVToplptvWddDd6vSqmctYBt1ydBiXMFc0tqlBdWjQ3T6ru2PQvb/ZIcaVcZdzDvwYl5fLNclsopIBjwbP6baSnUz2wKisWNpRZ6OT//kt3bP4h27vK0eWcXk5G65kunncWiSj3g7F7oZAprs8XE1/mMoFq7KNnJ3XlpcDAAAAAEBiJG1Nt8x2c/ZaZrC1fvihPfhZvHgx9RZ9lFnd3WW65XpuzjjLADgWOLA9orxAzNF+aVWFOqdbZrYlGYTLTLgWr0dn3DxNzgUfogTdksyARyPfkkHzje/TfPsH5P7+dmqbdBXFyvMr9pLN5aX//VhLd8zxdZh7rdUsg27lZMeg/EzKMOjEPPSqZif1zwvfCDAWdimZbq4UiITVbBTby9l5melGeTkAAAAAQOKgzjRl13QHAtfONNhdMV3PrXXZEQPF53c3VKnrxkMDeznzWwblWtUtgW3ra20vH882GamfNXBC4WAz3YXURFcYPiQzucljLaNY4QZvH22pUTPxm5XS+O7Ky/OULLLRoKfBSuY5nuu6W50eMZos0ky3Nhvf4kSmGwAAAAAgGRB0p+iabg6uZGYynP3NgaA8HnOhpwzIo/GlueTy+jXdy0My3UomOFx5ucx091Wy9pJc180nCgZFmKnVGrDlX5Stc9Ja31BqHDCHYuW/3+0Leq5ld/VuM91KQMuGFcsS8/gF3bsbAllubqCWE8HcdZnpltuMTDcAAAAAQOIh6E4xHERzRbbX315CHo7sLj65LPoy7e5wSfgVMwLZbqljI7XA11xSHS5zzPpqMtvaDubctVyWnUdK31JJ1s0vissPeX5KTY6Oj3swbC4Pvbluv7jMc6/Z9/sC485k07bFm6vVLLG4LqR7OeOxYYzHhsXLbqVzeaSl5UGZbrGmO3ACBZluAAAAAIDEQdCdYjggKlYyxHWdrOv2eH309Y5A0H3ssKK4bMfRQwpphNIgrKugO9zIsOpOgu7zJ/en44YV0ZVHDop6e7JWPUI6r5NW0xj6yjeOmpQS70P1zvoq0ZSOA9lrjxmiBt0yK8yN1e5atIU+3lLdsXu5JtMtg+7tdfEPumUpeyRkI7VmJzLdAAAAAADJgKA7BZXkKs3UbOHXdXP5M6/R5a7l46OcdR0pzkTLtd0co5lDGovJcvPw5eWBkwUlIeXlpbkWenjeWDqsxBrVthgad5Bl82vi8n8yeaScTh0bdii40/hra/aJyxdOLaNRfXNEx3UOwrlMnLuwy5MbMuDlwJVv167pZsOU0nludMYzsePaRC2CcWGS1RzIxqN7OQAAAABAciDoTkF9rZYuO5h/ub1OfJ45tDCuWcsTRvah8yf1p2uOHizGT4XvXu7tItMdm/XmhrotRAYTOctnU0XOeHFdY1ugxPtQ1NtcVNnsFCcVTh1TIoJRLn2X2W7Ogsuicvla8MkOyaopL+dO7TlmgwjK5Sztg/Hu+io65Z/f0qaqlkMaFyblajLdHl6zgEw3AAAAAEBCIehO4Ux3bZig2+/30xdK0B2v0nKJg7ObTxhOl0/vWA7eWXk5d/+Wa9FDG6kdLNewU6n+ws+p9Zg/qCXr3XUYj0SjZm227M4+eUBgjfyqvU2ie7tUo3QNl03Usk2GoIwxVwYMU9asH0oHc35MntH+za5Ahl3iYH6v0kgtmjXd2jndXmWGuFGPX3sAAAAAgETBu+8UznRz8BVqe52dKpscZDLoaMbgAkqWzsrLa5TO5RajPmjN86HyWcvIl1cusu9s0abqQy7jliXq2jLxSQMCme7Pt9YGVRrIEyDh1nNLw/scWtDNgfUP1a1BY9ckLnXnbvL8unOZfqRyle7lLQ63munuYgQ5AAAAAADEGN5+p6ASJaiSAazWUiXLfUR5QYfmZonUWXm5tnN5tB3KQ1k2vUIZ+74Juu6oIYVirFpjm1t9Lg6W7EKep5l1PrZfLmUYdGpZ+VFDCoJei3Cdy6WRfXPE5w37ux451pld9XZ1RJscuxY6LmxgQWZU5eFBjdSQ6QYAAAAASDi8+07l8vIwme4vE1RaHnHQrQSJHWZ0h3Quj5a+aRflfHkn5b99Hhn3r1Sv55Lu08eWiMvvaMq/Y5Xp5oZxYzSN3q46sjxwX4dHlM53lemeNjAwcmxdZTM5wqx17462ZF6evOg4Lizy9dza7RSN1LCmGwAAAAAg4RB096BGahzwbdgfCMyOGVpIyZSplJeHBpeyLLok5xCaqPk8lLvkBjEizFV2NHn6TQu6+cxx/cTnb3c1dAhOQ9e/VzU7Oi1DV4NuTaabTRkYWNc9ZUAeje1nVTu319qc1Kw0cNMG6tLAfAv1zTGR2+untZXRZ7s3VwVKy7XN6KTdB9G5nFmV8nJei+5RM90IugEAAAAAEgVBdwpnuuvtLnW2sjYI54BPzvJOFksn5eWdzeiORtaaJyijajX5TFZqmf0X7lIWdDuXWHNAzE/N+xs7z3Z/sa2Oznh6hfh4etluqg0p2VbLy0NKxS+cOoB+Ork/3TZnhCiR53J2ua67uYvycr7v4eWBcvSVexoPKdPN26Y9oSE7l0czozuwnYGgm8vW5c9DphsAAAAAIHEQdKegohyzGGPFQWWDvT3b3eQIn5lN7pruTsrLD/KkgLF6LWWt/Ku43HrsH8iXOyDs/eaO76eO2OJ52+Gs2hsIfOtsLvrXN7tp7jMraL0mA92e6Q7OWvP885tmD1cD3D5K1p5PevDaaNZZk7jDlRLzVVEG3R6vj36sCW7Apq10UDPdUXQuZzlmI8kQu8Ee+P8i0w0AAAAAkDgIulONz0MGey0VKdlVOaqKNamlzckPurPUkWGdN1KLls7ZRNZPfkU6n4ccw04n58hzOr3v7BHFYi42z9nmmdrh7GtyiM8/OayPKP3m7t9rKpq6bKQWTnG2WX0tulrTzaYNylez1ryOOlI76uxizTj/n3hbtScwWp0edX1/NDO6Gc9X58CbcfM5ZjQg6AYAAAAASBQE3SnEtONDKnp6DNHb16glzdpsZ2eZ2VQaGVatbG/JQWS6zdsXkbFxO3mz+1HrrD91KCsPfnwDHac0k/t8a/gu5jxajZ02toSOH1GsZr1Dn8/8bkabyUw3l6fL8vLOTnyUWM00qCBTVCloA/xIS8sP65ujdq+XJzBk53I+ESMD6GhYzYETJDYXyssBAAAAABINQXcK8VkHks5tJ9q7gvpkGTp0MFcDvhQqL3e4faJhGeOGZfXK9va1Rt9IzTHmZ9Ry3P3UdPoL5Ld0P4NcBtKfba1Vt0Hir2XQ3T/XolYOBAXdEZbra8vLZbVBVzPID1ey3bK8PRKbDwSaqI0usapN6OT6+PbO5dGVlkvWkBMEKC8HAAAAAEgcBN0pxFM0mnwZOUTOZhprrBDXNSrrcIOCxG4ys4kMujnU5bJoeYKAvzYZdGJddMQ0AbNj3CXkLR4T0bdNLy8gi1FPVS1O+qG6vfM3a2hzi+ZhHF6WctCdpQTd9ujL9Ytl0K0pL5fzr8ORo8NW7mmgqIPufla1NF9WOcigO9omalLotiLTDQAAAACQOAi6U4neQJ7SqeLiOO9mNXhMxTXdsryc2ZUSc23ncu7kHQnTrv9R7geXks5WfRDbYKCjhhSq2W4tmeXmLLXJqO+Q6ebma+2Z7m7Ky5U13ZGUl2uD7u219qDMeme4QmBrjcx056hN6OSablleHu24MCk3pCTdqMevPQAAAABAouDdd4pxlx4hPo9wrBefw3cvT36mmxt0yfnVcl232kQtwvXcurY6sn56E5l3f0pZ6xYc1HbMGhFY1/1ZyLputbQ8L7A+uj3odqvNyeQ0togz3a3dN1Jj+VkZNKJPtri8OoIS8+21NjHbm39mWZ5FzXSra7rVzuXIdAMAAAAA9DQIulOMu38g6B7Quk4Ub8sxT0GN1FIg0x1ubFhUncv9frJ+dgvp22rIUziKbIf/+qC2YeaQIrFGeWe9nXbVBcqwtZ3L24PuwHPW4vSIcnhZNZCZoReZ8EjWdHMjMq8SqHcVdLOx/axqV/LI13PniAqBvnJNd2tgTvseZUZ37DLdCLoBAAAAABIFQXeK8ZRMItJnUJarhgbqqoPLy9VGasnPdMuAVTs2THYujyTTbdn8Kpl3fkR+fQY1z/kHkTEQHB9MFlc2LvtsW3uJubaJmrif2UgZyqisertLsz6++xMY2SajOswGi2EAABxOSURBVCKNcYafS9u7MiA/M2g7uiJPEMg12/KkBTelq2hsE6POeJ08r00/GMh0AwAAAAAkD4LuVGPMJDriKto99lfk8JuCM90RrCdOJBl4toWs6S7ppnO5oW4z5Sy9S1y2Tb854sZpnZml6WIuyWC3VMl0cwZZbaZma+9CHmkneFliHkmWm3GZuDag7oq6Fl45WcFN6PgEgV9Tnj6wIPOgg+XQ7UWmGwAAAAAgcRB0p6KT/0QtU39FNVQgMt08/oo/ZHl5JEFfMsrLZeOvrjLdOlcL5S6+mnQeB7kGHUdtk6855O2Q87q5TJuz2Gx/syMo+GXaZmrRdoKXJeaRPv/9owm65fOmZLh5vXwf5TlcsafxkNZzyyy/FoJuAAAAAIDEQdCdogqUrCyv6eV1yNwh3KN0/opqHFciy8sjWNOts9eK9dzenFJqPvEfRLpD3wU5mB5eHGhc9l1Fk3jO9jc7g4JfeT8ZdDfK9fGRZrqV72W5EVQayGCfH0s+P52Ro8G0gb2c1b1KBt0HuZ47sL0IugEAAAAAkgVBd4qyOGvoLNNKyqVWUWIuy6EjWU+c+Ey3lzxenxo8lnQRdPvyh1Dj+Yuo6fQXyZ8ZGPcVC1MH5onPq/c2UU2rU5yg4HJsbdZdNlPjDubtpfqRZrrbf04k38OBbo7Z0G22mysYZAM67fMmT1zI7TzYGd3MGnKSAGu6AQAAAAASB0F3isp750L6m/5vdKx+vcjKRlsOnejy8hqbS6xB5oZfBVkdM8F6W5V62W+ykrdoVEy3ZcqAQNC9pqKRKpXS8n5Wc1CAqa7p5kZqSqY70qoBbRY6tFw7HF5DXpbXsZkaZ+E50JZ47jd3Uw88hiboDinRLy84hEw3yssBAAAAAJIGQXeKcg0+UXz+qeEzqre7qTnKxl+JLC/nTHeVUs7NGVpek6yVsecLKvzP0WTZ8ELctmWyEnRvr7XTpqrWDqXlHdZ0R9tILcrycu3jy0w3VwNc9J/VdPF/1ojgm8nqAD6ZIueesz4h1QLlh5TpRvdyAAAAAIBkQdCdohzjLiYf6egYwwby1W1N6Uw3r1muamnPLmsZajdR7uL5pPM6KaNyuVjPHa818MOKA4HpBxsPdB90y+cz8yDKyyP8ntAO5ltrbeKkwI81NrWk/EBIE7XQNd1yu3MiyK5H3kgNv/YAAAAAAImCd98pypc7kDZmzRCXh+/9LzUqmdlIs6yJHRnmowNKprtEM0ta52ikvA+vIr3bRq6yo6nlhL9y3XXctmfKgMC87m21tg6dyztmuiOf030w3cu1j7+vsU183ri/Rb1tT4M9ZMxacNCtDcIPpbRcZrazTe19AFBeDgAAAACQOAi6U9h3JeeIz+NqF5Hd1hRVljXh5eWhwaPPS9ZPridD827yWgdS88n/JDJ03mAtls3UpP6aEwDaRmq1ItMd//LysvzgTPfGKm3QHQjEuelbuDXc2q8PpYla+za37zcoLwcAAAAASBwE3Smsoe9RtNNXQhafjYYdWBRVZjbR3ctlubQsL89a+Vcy7/mM/AYzNZ/yNPktBXHfHrmuW+pQXq40UnN5/WqwG2m5Pmf1ZZl2pJluGfRzIzVunhYu6K5u6TguTGxrtokMSmx8KOPCJLnt/CMRdAMAAAAAJA6C7hSWn2WmF71zyEd6ymnbl3KN1GR5uYPLyzWZbmP1Ospe9XfxdcvxD5Knz7iEbE9hlomGFGV1GnTz9soxXkofs6hmnk8syxXNzoZpHqMrpbkWEeQ6PD7a2+igXXWBknK2Wwm6O1vTzYGxLIcvL4hdphsBNwAAAABAYqVOrTJ0wKO3HvLOos35s4iyyjj3nWKN1Dp2L++XayZP0QSyTb+ZyOsi56hAiXyiTB2QRzvr7CI4Lgwzuoyz3a3OtrBrnbvz0NyxZHd5Ii4vNxn1IpjmExL/+7FGjFTrmOlWTlaElJezK2YMouW7G2naoMBa9UMhZ3VjPTcAAAAAQGIh053CCjNN1EpZ9IMjP+oRV4mQaTSoc69bnG7KJIe6pts+7Qayc+CdYDJAHVSQKWZlh5LZY8YnMMLdpzMcsEbbyE42U/t4S03QPPH9TQ5yeXzqyLA+1uDycnbOxP704JljgkaJHeqsbmS6AQAAAAASK3XSptBBvpKpbWxzk4XLmnX7qL+T1/cWUSqt6d7bYKM/GJ+j8YY9lE1HJ3W3mjW8mH45czBNLgte3x0+6I7/CQwucV9T0aR2VJ85tJB+qG4lm8tLW2taqcXpCdtILdbkyDFkugEAAAAAEguZ7hRWoGS1vT4/zbQtpk9Mt9DYjQ9QqrBk6MlAXrpf/xT93LiEJui2kqnym6RuE2dyL58+iCaFNFULG3QnoBN86NiycaW5IgvPVu0NdKTnEvdDmcMdCazpBgAAAABIDgTdKYzXBMs1x0s948hDesqt/pYyKpdTKsgy+OjvGY/TuYYvyePX05P5t5Br8ImUyoo067wTkemWY8MYx7uHleRogu7GsJ3L48GqBN3IdAMAAAAAJBaC7h7QTI1VUjG97j1OXM5a+Tciv7YtVxJ4HDT22xvodMO35PIb6Fr3DbSj5GRKdYnPdLeP+xpWnC1K8mU38u8rmhJSWq5d042gGwAAAAAgsRB0p7iCzPYg8XnD2eTXZ5Cp4isyb/lv8jbKbae8Dy6nvH2fksOfQVe5b6KPfIerTdRSWaLXdGvLy8eUWMVnmenmUWLhxoXFNdNtwK88AAAAAEAi4R14D8l0M1tmf7JNv0lczln6O9I37U7KNultB8hYt4l8xiy6zH0rfeGbqI4L61mZ7vgH3Ty2jJvgsTGlStBd2J79Zn0TUF7OAX9xtommlxfE/bEAAAAAAKAdgu4eFHTzuKq2SdeQq3Q66d02yv3fr4l83oRvky9/CDWe+Qo1nPEyfesbo17f8zLd8S8v55FkPMaMA+/p5YFxZgPzQ4LuBDxv3An/g6un0y0nDI/7YwEAAAAAQDuMDOshHczVIFFvoJYTH6H8t86mtjEXEukSc97EWL2OdB47ufvPEF97iwPBttn4FTmVMul+1uBO3an6fPKyZp8/cTPP7z99NNldXjXg507lfLnO5krYmm6mj2ImOQAAAAAAxAaC7h6U6ZZBoi93INVf/BWRIf7Bmr5pF2V/+yBZtr1LfmMmNZ75MnlKD1dv5wwuB926BJVJHyoemZWfmUH1dndCGqkxbp4mZ5pLvK470UE3AAAAAAD0svJyp9NJt99+O02bNo1mzpxJCxYs6PS+mzZtovPOO48mTpxI55xzDm3YsIF6XdCtLYfWBNyGxh1k/fha0rlaYvfAfj9ZNr1Mha+cEAi4SUfOoaeQL6cs6G4ymCzOMfWYJl0XTCmjaQPz1MZmySCbqbG+1tQ/WQEAAAAAAAcnqVHSgw8+KILn559/nu6++2567LHHaPHixR3uZ7fbaf78+SI4f/PNN2ny5Ml09dVXi+t7VXl5uHJov49yF19Dlq3vUN77lxK52w79QV02si65gayf3UI6r5NcZUdTw/mLqWXOo+Sz9g8bdPeE9dzS5dMH0ZPnTyRLSPY5kcqVoDvDEMi8AwAAAABAekpa0M0B88KFC+mOO+6gsWPH0pw5c+jKK6+kl156qcN9Fy1aRGazmW655RYaNmyY+J7s7OywAXq6KcjqZsSVTk8tsx8inymXMvavoNzF84m8gbLlg+LzUsEbZ5LlxzfJrzNQ64zfUtPcV8jbZ2zYu1syArtQvx4UdKcCmenm0nJutgYAAAAAAOkpaUH3li1byOPxiKy1NHXqVFq7di35fIHGXBJfx7fJ4IQ/T5kyhb7//nvqdY3UwvD0nUhNpz9PfqOFzHs+E1lqLjnnLHhX9K2VZN78X7JseJEMNRuVKw3kHDGXvDml1DTvv9Q29boum7W1Z7pTv4laKuHRXccNK6JLjxiY7E0BAAAAAIB0bKRWU1NDBQUFZDK1Z3KLi4vFOu/GxkYqLCwMuu/w4cGjjoqKimjr1q3Uuxqpdf5ycXOzppOfprxFV5Bl23viw9V/BjWd9bp6n4yKr0lvrya9vYZMOz+ijMoVpCO/uK31yNuoTclm2ydfTW0TriC/Kafb7csyKUF3D5jRnUq4tP3heeGrBwAAAAAAIH0kLehua2sLCriZ/NrlckV039D7RSLVK3nl9snPJqOerGYjtTg9IgDvavs9g4+n5lOfoayVj5CxdhN5C0e039/TRnnvXkg6f/Bcb3e/qeTL6iNmb6v3NZrFRyRP1TkTS8nl9dEJI4tT/rlNR6H7C0BXsL9ANLC/QDSwv0A0sL9AuuwvkW5T0oJuXqMdGjTLry0WS0T3Db1fJIqKktex+mC385fHD6d1FY0047B+3XcIL55HNG0ekddNmS4bZWYqP6d6H1HJGCJLPlFmPtGAw4nGnUMZeQPEzQebpz6r2EpnTR98kN8NsdJT9mtIDdhfIBrYXyAa2F8gGthfoLfsL0kLuktKSqihoUGs6zYajWoZOQfSubm5He5bW1sbdB1/3bdv36gft66uhadhpSw+W8I7lHY7zxvXV3w0Ntii/GkGIpsyRkxfRnTuh8E3u/mJjOGYMUiJ/QWgM9hfIBrYXyAa2F8gGthfIF32F7ltKRt0jx49WgTb3AyNR4Gx1atX0/jx40mvD87m8mzup59+mvx+v2iixp/XrFlD11xzTdSPyy9Uqr1YPXk7ITVgf4FoYH+BaGB/gWhgf4FoYH+B3rK/JK17eWZmJs2bN4/uueceWrduHS1ZsoQWLFhAl1xyiZr1djgc4vLJJ59Mzc3NdN9999G2bdvEZ17nfcoppyRr8wEAAAAAAABSN+hmt912m5jRfemll9K9995L119/PZ100knitpkzZ4r53CwnJ4eeeuopkQk/++yzxQixf/3rX5SVlZXMzQcAAAAAAADoks7Ptdq9SG1t6q0FCF0XUFxsTfnthNSA/QWigf0FooH9BaKB/QWigf0F0mV/kduW0pluAAAAAAAAgHSGoBsAAAAAAAAgThB0AwAAAAAAAMQJgm4AAAAAAACAOEHQDQAAAAAAABAnCLoBAAAAAAAA4gRBNwAAAAAAAECcGKmX4VlqPWH7Un07ITVgf4FoYH+BaGB/gWhgf4FoYH+BdNlfIt0mnd+faiPGAQAAAAAAANIDyssBAAAAAAAA4gRBNwAAAAAAAECcIOgGAAAAAAAAiBME3QAAAAAAAABxgqAbAAAAAAAAIE4QdAMAAAAAAADECYJuAAAAAAAAgDhB0A0AAAAAAAAQJwi6U4TT6aTbb7+dpk2bRjNnzqQFCxYke5MghXzyySc0atSooI9f/epX4rZNmzbReeedRxMnTqRzzjmHNmzYkOzNhSRyuVx0+umn0/Lly9Xr9u7dS5dddhlNmjSJTj31VPrqq6+CvmfZsmXie3gfuuSSS8T9offuL3/84x87HG9efPFF9fb333+fTjzxRLG/XHvttVRfX5+krYdEOXDggPibc8QRR9AxxxxDf/rTn8T7FobjC0Szv+D4AqF2795N//d//0eTJ0+mWbNm0TPPPKPelk7HFwTdKeLBBx8UwdLzzz9Pd999Nz322GO0ePHiZG8WpIht27bR8ccfLw428oP/cNntdpo/f744WfPmm2+KA9bVV18trofeh9/U3HjjjbR161b1Or/fL964FBcX0xtvvEFz586l6667jiorK8Xt/JlvP/vss+n111+nwsJC+uUvfym+D3rf/sK2b99Ov/nNb4KON3xCj61bt47uuOMOsQ+99tpr1NzcTLfddluS/geQCHws4ACqra2NXnrpJfrb3/5Gn332GT3yyCM4vkBU+wvD8QW0fD6feB9bUFBAb731Ft1777305JNP0nvvvZd+xxc/JJ3NZvOPHz/e/+2336rXPf744/6LL744qdsFqeM3v/mN/y9/+UuH6xcuXOifPXu23+fzia/585w5c/xvvPFGErYSkmnr1q3+M88803/GGWf4R44cqR5Pli1b5p80aZI4zkiXXnqp/9FHHxWXH3nkkaBjjd1u90+ePDnoeAS9Z39hxxxzjH/p0qVhv+/mm2/233rrrerXlZWV/lGjRvn37NmTkO2GxNu2bZvYR2pqatTr3nvvPf/MmTNxfIGo9heG4wtoHThwwH/DDTf4W1pa1OuuvfZa/9133512xxdkulPAli1byOPxiCylNHXqVFq7dq04AwTAZ4YHDx7c4XreR3hf0el04mv+PGXKFPr++++TsJWQTCtWrKDp06eL7EDoPjJmzBjKyspSr+N9Ru4jfDtXSkiZmZk0duxY7EO9dH9pbW0VpaHhjjfh9pfS0lLq37+/uB7SU58+fUS5J2ebQvcVHF8gmv0FxxcI1bdvX1EFkZOTIzLUq1evppUrV4qlCel2fDEmewOAqKamRpRVmEwm9To+WHHpX2NjoyiXgN6LD0I7d+4UJVhPPfUUeb1eOvnkk0X5Fu87w4cPD7p/UVFRh3JRSH8XXnhh2Ot5H+E/aqH7SFVVVUS3Q+/aX/gEH5+8++c//0lffvkl5efn0+WXX05nnXWWuL26uhr7Sy+Tm5sr1uVKnAzgNbgzZszA8QWi2l9wfIGuzJ49W5SM83LKn/zkJ3T//fen1fEFQXcK4HUv2oCbya+5yQ30bnwAkvsInw2sqKgQ67kdDken+w72G5C620ewD4HWjh07xJvioUOH0sUXXywyDnfddZfIQsyZM0ccd7C/9G4PPfSQaODJayj//e9/4/gCEe8vGzduxPEFOvXoo49SbW0t3XPPPaL5Xrq9f0HQnQLMZnOHHUR+bbFYkrRVkCrKyspEZ+G8vDzxx2r06NHizPHNN98sym/C7TvYb0B7fOGKmc72kc6OP5ytgN5n3rx5IsvAGSh22GGH0a5du+iVV14Rb4o721+4rA96RwDFDV+5OdbIkSNxfIGo9pcRI0bg+AKdGj9+vPjMlb433XSTaLDHgXW6HF+wpjsFlJSUUENDg1jXLXHJBO9UqbrjQGLxHyi5bpsNGzZMHJR47RSfFdTir0PLbaB3H1+62kc6u533Leh9+Dgj3xBLnJXidZgM+0vv9Yc//IGee+45EUhx6SfD8QWi2V9wfIFQ/PouWbIk6DpeNul2u7t9j9vT9hcE3SmAM5dGozFo4T83EuAzPno9XqLebunSpaLhkfZs3+bNm8UfLm4o8d1336njEfjzmjVrxLxCAMb7Apf0cdme9vgi9xH+zF9LvJ9xKSD2od7p73//u5iJGtrsk98Yh9tf9u/fLz6wv6Q3HmP66quv0l//+lc67bTT1OtxfIFo9hccXyAUL5nkMWDyxAvjEcrcz4rf46bT8QURXQrgshku6eM1DDyjkM/4LFiwQAx5B+Cu9lxCc+edd4r1ll988YWY637llVeKhmo8x/K+++4Ts7z5Mx90TjnllGRvNqQIXoLAHWB51ik32PvXv/4ljjPnnnuuuJ3Lt/hEDV/Pt/P9BgwYIE70QO/DpZ+8zvLZZ5+lPXv20Msvv0xvv/02XXHFFeL2n/3sZ/TOO+/QwoULxZvlW265hWbNmkUDBw5M9qZDnHDzqyeeeIKuuuoq8SaYK/HkB44vEM3+guMLhOIEI3ccv/3228X7WH6Py9UR11xzTfodX5I9swzaZ8vdcsstYh4dzzJ87rnnkr1JkEJ+/PFH/2WXXSb2j6OPPtr/j3/8Q53NvXbtWv+8efPErPdzzz3Xv3HjxmRvLiRZ6NzlXbt2+S+66CL/uHHj/Keddpr/66+/Drr/559/7j/ppJP8EyZMEDMwMRO1d+8vn3zyiZjfzceUk08+2f/RRx8F3f+NN97wH3fcceJ4xPNU6+vrk7DVkChPPfWU2EfCfTAcXyCa/QXHFwhVVVUlXuspU6aI97hPPvmk+h43nY4vOv4n2YE/AAAAAAAAQDpCeTkAAAAAAABAnCDoBgAAAAAAAIgTBN0AAAAAAAAAcYKgGwAAAAAAACBOEHQDAAAAAAAAxAmCbgAAAAAAAIA4QdANAAAAAAAAECcIugEAAAAAAADiBEE3AABAivrtb39Lo0aN6vTjzTffFJ8rKiqSup179+6lL774IqnbAAAAkKp0fr/fn+yNAAAAgI5aWlrI4XCIy4sWLaIFCxbQ66+/rt6el5dHTU1NVFhYSAaDIWnb+fOf/5yOOOIIuv7665O2DQAAAKnKmOwNAAAAgPCsVqv4kJc5sO7Tp0/QfUK/BgAAgNSC8nIAAIAeisvKteXlfPnDDz+kU045hSZOnEg33nijKP2+5JJLxNcXXnghHThwQP3+Tz75hE499VRx27nnnksrVqzo9LG++eYbmjt3Lo0fP55OOOEEevXVV9USeP6+xx57TGS82f79++maa64RP3f27NniNq/XK27jkvif/exn9PDDD9PkyZNp1qxZtHDhwjg/UwAAAMmDoBsAACCNPProo/TnP/+ZnnrqKfr4449FgMsfHCTX1NTQ008/Le63ZcsWuvXWW+kXv/gFvfvuu3TmmWfSVVddRbt37+7wMzlg/vWvf00nn3yyCOpvuOEGuvfee2nbtm10xx13iOD5iiuuoH/84x/Eq9auu+46Kioqorfeeov+9Kc/0XvvvUf//Oc/1Z+3fv162rx5M7322mvivvyzvvrqq4Q+TwAAAImC8nIAAIA0ctlll4kMMxs9ejQNGTJEZL7ZSSedJIJt9uyzz9L5559PZ5xxhvias+ErV66kV155RWSvQ9eWNzY2UnFxMQ0YMEB89O3bV5S2c9l7RkYGZWVlUX5+vsiIV1ZWiuy1Xq+noUOHiuD+tttuo2uvvVb8PJ1ORw8++KAIzEeOHCke97///S/NnDkzwc8WAABA/CHoBgAASCMDBw5UL1ssFiorKwv62uVyicvbt28XWWvONktutzts4MvBNGfL77zzTnriiSfo+OOPp3POOUc0cgvFP5cD9KlTp6rX+Xw+0RCuoaFBfF1eXi4CbmncuHFquToAAEC6QdANAACQRkK7mHO2ORwuGedy8nnz5gVdz4F5OPfccw9ddNFFtGTJEvHBwToH4Mcdd1zQ/Twej8hu822hZFM4o9HYYVs6204AAICeDn/hAAAAeiEuO+cGbJx1lh8cSH/55Zcd7strwXndNd+H14C/8cYbNGPGDPr000/D/lwuL+cxZvLn8uPwWnMuK2e8btxms6nfs2HDBlFmDgAAkI4QdAMAAPTStd88+/uFF16gPXv20L///W/xMXjw4A735TJy7nR+//33i/vyGmxeGz5mzBhxO6/n3rVrF9XV1YnydC5pv/nmm+mHH36gVatW0V133UWZmZlqFt5ut9Pdd98tStF5LffixYtFZ3UAAIB0hKAbAACgF5o0aZJoZvbyyy+LsWEc/P7lL3+hww8/vMN9TSaTKBfnQJu7nHMncx4xdt5554nb+fPSpUvpyiuvFIH1k08+KdZxc6O266+/XpSg83pwqbS0VDRh45/xzDPP0EMPPRS0BhwAACCd6Pw82wMAAAAgAXhON8/tDleaDgAAkI6Q6QYAAAAAAACIEwTdAAAAAAAAAHGC8nIAAAAAAACAOEGmGwAAAAAAACBOEHQDAAAAAAAAxAmCbgAAAAAAAIA4QdANAAAAAAAAECcIugEAAAAAAADiBEE3AAAAAAAAQJwg6AYAAAAAAACIEwTdAAAAAAAAAHGCoBsAAAAAAACA4uP/A1KB6ezIe5LNAAAAAElFTkSuQmCC"
},
"metadata": {},
"output_type": "display_data"
}
],
- "execution_count": 27
+ "execution_count": 8
},
{
"metadata": {
diff --git a/notebooks/static_tests_log.csv b/notebooks/static_tests_log.csv
index f3b1154..391b2d9 100644
--- a/notebooks/static_tests_log.csv
+++ b/notebooks/static_tests_log.csv
@@ -31,3 +31,4 @@ day_time,x_std,y_std,x_p2v,y_p2v,pooling,nr of measurements,Comment:
20250721_175607_logn_term_0,0.3301964676496112,3.19571055057788,1.740000000000002,13.552350000000004,0,971,
20250722_165648_logn_term_0,0.3051845471762281,2.463318189260276,2.038375000000002,9.713625,0,1037,
20250718_113013_static_0,0.0353263689337634,0.0586536655624352,0.5269750000000002,0.4961750000000009,0,1000,
+20250718_113013_static_0,0.1413054757350538,0.2346146622497411,1.507899999999978,1.384699999999981,0,1000,