ophyd_devices/ophyd_devices/sim/sim_positioner.py

271 lines
10 KiB
Python

""" Module for simulated positioner devices. """
import threading
import time as ttime
import traceback
import numpy as np
from bec_lib.logger import bec_logger
from ophyd import Component as Cpt
from ophyd import Device, DeviceStatus, Kind, PositionerBase
from ophyd.utils import LimitError
from typeguard import typechecked
from ophyd_devices.sim.sim_data import SimulatedPositioner
from ophyd_devices.sim.sim_signals import ReadOnlySignal, SetableSignal
from ophyd_devices.sim.sim_test_devices import DummyController
from ophyd_devices.sim.sim_utils import LinearTrajectory, stop_trajectory
from ophyd_devices.utils.errors import DeviceStopError
logger = bec_logger.logger
class SimPositioner(Device, PositionerBase):
"""
A simulated device mimicing any 1D Axis device (position, temperature, rotation).
>>> motor = SimPositioner(name="motor")
Parameters
----------
name (string) : Name of the device. This is the only required argmuent, passed on to all signals of the device.\
Optional parameters:
----------
delay (int) : If 0, execution of move will be instant. If 1, exectution will depend on motor velocity. Default is 1.
update_frequency (int) : Frequency in Hz of the update of the simulated state during a move. Default is 2 Hz.
precision (integer) : Precision of the readback in digits, written to .describe(). Default is 3 digits.
limits (tuple) : Tuple of the low and high limits of the positioner. Overrides low/high_limit_travel is specified. Default is None.
parent : Parent device, optional, is used internally if this signal/device is part of a larger device.
kind : A member the Kind IntEnum (or equivalent integer), optional. Default is Kind.normal. See Kind for options.
device_manager : DeviceManager from BEC, optional . Within startup of simulation, device_manager is passed on automatically.
sim_init (dict) : Dictionary to initiate parameters of the simulation, check simulation type defaults for more details.
"""
# Specify which attributes are accessible via BEC client
USER_ACCESS = ["sim", "readback", "dummy_controller", "registered_proxies"]
sim_cls = SimulatedPositioner
# Define the signals as class attributes
readback = Cpt(ReadOnlySignal, name="readback", value=0, kind=Kind.hinted)
setpoint = Cpt(SetableSignal, value=0, kind=Kind.normal)
motor_is_moving = Cpt(SetableSignal, value=0, kind=Kind.normal)
# Config signals
velocity = Cpt(SetableSignal, value=100, kind=Kind.config)
acceleration = Cpt(SetableSignal, value=1, kind=Kind.config)
tolerance = Cpt(SetableSignal, value=0.5, kind=Kind.config)
# Ommitted signals
high_limit_travel = Cpt(SetableSignal, value=0, kind=Kind.omitted)
low_limit_travel = Cpt(SetableSignal, value=0, kind=Kind.omitted)
unused = Cpt(SetableSignal, value=1, kind=Kind.omitted)
SUB_READBACK = "readback"
_default_sub = SUB_READBACK
# pylint: disable=too-many-arguments
def __init__(
self,
name,
*,
delay: int = 1,
update_frequency=2,
precision=3,
limits=None,
parent=None,
kind=None,
device_manager=None,
sim_init: dict = None,
**kwargs,
):
self.move_thread = None
self.delay = delay
self.device_manager = device_manager
self.precision = precision
self.sim_init = sim_init
self._registered_proxies = {}
self.update_frequency = update_frequency
self._stopped = False
self.dummy_controller = DummyController()
self.sim = self.sim_cls(parent=self, **kwargs)
super().__init__(name=name, parent=parent, kind=kind, **kwargs)
self.sim.sim_state[self.name] = self.sim.sim_state.pop(self.readback.name, None)
self.readback.name = self.name
if limits is not None:
assert len(limits) == 2
self.low_limit_travel.put(limits[0])
self.high_limit_travel.put(limits[1])
if self.sim_init:
self.sim.set_init(self.sim_init)
@property
def limits(self):
"""Return the limits of the simulated device."""
return (self.low_limit_travel.get(), self.high_limit_travel.get())
@property
def low_limit(self):
"""Return the low limit of the simulated device."""
return self.limits[0]
@property
def high_limit(self):
"""Return the high limit of the simulated device."""
return self.limits[1]
def registered_proxies(self) -> None:
"""Dictionary of registered signal_names and proxies."""
return self._registered_proxies
# pylint: disable=arguments-differ
def check_value(self, value: any):
"""
Check that requested position is within existing limits.
This function has to be implemented on the top level of the positioner.
"""
low_limit, high_limit = self.limits
if low_limit < high_limit and not low_limit <= value <= high_limit:
raise LimitError(f"position={value} not within limits {self.limits}")
@typechecked
def _set_sim_state(self, signal_name: str, value: any) -> None:
"""Update the simulated state of the device."""
self.sim.sim_state[signal_name]["value"] = value
self.sim.sim_state[signal_name]["timestamp"] = ttime.time()
def _get_sim_state(self, signal_name: str) -> any:
"""Return the simulated state of the device."""
return self.sim.sim_state[signal_name]["value"]
def _update_state(self, val):
"""Update the state of the simulated device."""
old_readback = self._get_sim_state(self.readback.name)
self._set_sim_state(self.readback.name, val)
# Run subscription on "readback"
self._run_subs(
sub_type=self.SUB_READBACK,
old_value=old_readback,
value=self.sim.sim_state[self.readback.name]["value"],
timestamp=self.sim.sim_state[self.readback.name]["timestamp"],
)
def _move_and_finish(self, start_pos, stop_pos, st):
"""Move the simulated device and finish the motion."""
target = stop_pos + self.tolerance.get() * np.random.uniform(-1, 1)
updates = np.ceil(np.abs(target - start_pos) / self.velocity.get() * self.update_frequency)
try:
for ii in np.linspace(start_pos, target, int(updates)):
ttime.sleep(1 / self.update_frequency)
self._update_state(ii)
if self._stopped:
raise DeviceStopError(f"{self.parent.name} was stopped")
self._update_state(target)
st.set_finished()
# pylint: disable=broad-except
except Exception as exc:
content = traceback.format_exc()
logger.warning(
f"Error in on_complete call in device {self.name}. Error traceback: {content}"
)
st.set_exception(exc=exc)
finally:
self._set_sim_state(self.motor_is_moving.name, 0)
def move(self, value: float, **kwargs) -> DeviceStatus:
"""Change the setpoint of the simulated device, and simultaneously initiate a motion."""
self._stopped = False
self.check_value(value)
start_pos = self._get_sim_state(self.setpoint.name)
self._set_sim_state(self.motor_is_moving.name, 1)
self._set_sim_state(self.setpoint.name, value)
st = DeviceStatus(device=self)
if self.delay:
self.move_thread = threading.Thread(
target=self._move_and_finish, args=(start_pos, value, st)
)
self.move_thread.start()
else:
self._update_state(value)
self._done_moving()
self._set_sim_state(self.motor_is_moving.name, 0)
st.set_finished()
return st
def stop(self, *, success=False):
"""Stop the motion of the simulated device."""
self._stopped = True
if self.move_thread:
self.move_thread.join()
self.move_thread = None
super().stop(success=success)
@property
def position(self) -> float:
"""Return the current position of the simulated device."""
return self.readback.get()
@property
def egu(self):
"""Return the engineering units of the simulated device."""
return "mm"
class SimLinearTrajectoryPositioner(SimPositioner):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _move_and_finish(self, start_pos, end_pos, st):
acc_time = (
self.acceleration.get()
) # acceleration in Ophyd refers to acceleration time in seconds
vel = self.velocity.get()
acc = abs(vel / acc_time)
traj = LinearTrajectory(start_pos, end_pos, vel, acc)
try:
while not traj.ended:
ttime.sleep(1 / self.update_frequency)
self._update_state(traj.position())
if self._stopped:
# simulate deceleration
traj = stop_trajectory(traj)
while not traj.ended:
ttime.sleep(1 / self.update_frequency)
self._update_state(traj.position())
raise DeviceStopError(f"{self.parent.name} was stopped")
st.set_finished()
# pylint: disable=broad-except
except Exception as exc:
content = traceback.format_exc()
logger.warning(
f"Error in on_complete call in device {self.name}. Error traceback: {content}"
)
st.set_exception(exc=exc)
finally:
self._set_sim_state(self.motor_is_moving.name, 0)
class SimPositionerWithCommFailure(SimPositioner):
fails = Cpt(SetableSignal, value=0)
def move(self, value: float, **kwargs) -> DeviceStatus:
if self.fails.get() == 1:
raise RuntimeError("Communication failure")
if self.fails.get() == 2:
while not self._stopped:
ttime.sleep(1)
status = DeviceStatus(self)
status.set_exception(RuntimeError("Communication failure"))
return super().move(value, **kwargs)