First EPICS devices from controls repo

This commit is contained in:
mohacsi_i 2022-09-21 15:02:12 +02:00
parent a8a2637d07
commit d6da41f5e6
3 changed files with 352 additions and 0 deletions

View File

@ -0,0 +1,154 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 9 16:12:47 2021
@author: mohacsi_i
"""
from ophyd import Device, Component, EpicsSignal, EpicsSignalRO, Kind
from ophyd import PositionerBase
from ophyd.pseudopos import pseudo_position_argument, real_position_argument, PseudoSingle, PseudoPositioner
class DelayStatic(Device):
""" Static axis for the T0 output channel
It allows setting the logic levels, but the timing is fixed.
The signal is high after receiving the trigger until the end
of the holdoff period.
"""
# Other channel stuff
ttl_mode = Component(EpicsSignal, "OutputModeTtlSS.PROC", kind=Kind.config)
nim_mode = Component(EpicsSignal, "OutputModeNimSS.PROC", kind=Kind.config)
polarity = Component(EpicsSignal, "OutputPolarityBI", write_pv="OutputPolarityBO", name='polarity', kind=Kind.config)
amplitude = Component(EpicsSignal, "OutputAmpAI", write_pv="OutputAmpAO", name='amplitude', kind=Kind.config)
polarity = Component(EpicsSignal, "OutputOffsetAI", write_pv="OutputOffsetAO", name='offset', kind=Kind.config)
class DummyPositioner(Device, PositionerBase):
setpoint = Component(EpicsSignal, "DelayAO", kind=Kind.config)
readback = Component(EpicsSignalRO, "DelayAI", kind=Kind.config)
class DelayPair(PseudoPositioner):
""" Delay pair interface for DG645
Virtual motor interface to a pair of signals (on the frontpanel).
It offers a simple delay and pulse width interface for scanning.
"""
# The pseudo positioner axes
delay = Component(PseudoSingle, limits=(0, 2000.0), name='delay')
width = Component(PseudoSingle, limits=(0, 2000.0), name='pulsewidth')
# The real delay axes
ch1 = Component(DummyPositioner, name='ch1')
ch2 = Component(DummyPositioner, name='ch2')
def __init__(self, *args, **kwargs):
# Change suffix names before connecting (a bit of dynamic connections)
self.__class__.__dict__['ch1'].suffix = kwargs['channel'][0]
self.__class__.__dict__['ch2'].suffix = kwargs['channel'][1]
del kwargs['channel']
# Call parent to start the connections
super().__init__(*args, **kwargs)
@pseudo_position_argument
def forward(self, pseudo_pos):
'''Run a forward (pseudo -> real) calculation'''
return self.RealPosition(ch1=pseudo_pos.delay, ch2=pseudo_pos.delay+pseudo_pos.width)
@real_position_argument
def inverse(self, real_pos):
'''Run an inverse (real -> pseudo) calculation'''
return self.PseudoPosition(delay=real_pos.ch1, width=real_pos.ch2 - real_pos.ch1)
class DelayGeneratorDG645(Device):
""" DG645 delay generator
This class implements a thin Ophyd wrapper around the Stanford Research DG645
digital delay generator.
Internally, the DG645 generates 8+1 signals: A, B, C, D, E, F, G, H and T0
Front panel outputs T0, AB, CD, EF and GH are a combination of these signals.
Back panel outputs are directly routed signals. So signals are NOT INDEPENDENT.
Front panel signals:
All signals go high after their defined delays and go low after the trigger
holdoff period, i.e. this is the trigger window. Front panel outputs provide
a combination of these events.
Option 1 back panel 5V signals:
All signals go high after their defined delays and go low after the trigger
holdoff period, i.e. this is the trigger window. The signals will stay high
until the end of the window.
Option 2 back panel 30V signals:
All signals go high after their defined delays for ~100ns. This is fixed by
electronics (30V needs quite some power). This is not implemented in the
current device
"""
state = Component(EpicsSignalRO, "EventStatusLI", name='status_register')
status = Component(EpicsSignalRO, "StatusSI", name='status')
# Front Panel
channelT0 = Component(DelayStatic, "T0", name='T0')
channelAB = Component(DelayPair, "", name='AB', channel="AB")
channelCD = Component(DelayPair, "", name='CD', channel="CD")
channelEF = Component(DelayPair, "", name='EF', channel="EF")
channelGH = Component(DelayPair, "", name='GH', channel="GH")
# Minimum time between triggers
holdoff = Component(EpicsSignal, "TriggerHoldoffAI", write_pv="TriggerHoldoffAO", name='trigger_holdoff', kind=Kind.config)
inhibit = Component(EpicsSignal, "TriggerInhibitMI", write_pv="TriggerInhibitMO", name='trigger_inhibit', kind=Kind.config)
source = Component(EpicsSignal, "TriggerSourceMI", write_pv="TriggerSourceMO", name='trigger_source', kind=Kind.config)
level = Component(EpicsSignal, "TriggerLevelAI", write_pv="TriggerLevelAO", name='trigger_level', kind=Kind.config)
rate = Component(EpicsSignal, "TriggerRateAI", write_pv="TriggerRateAO", name='trigger_rate', kind=Kind.config)
# Command PVs
arm = Component(EpicsSignal, "TriggerDelayBI", write_pv="TriggerDelayBO", name='arm', kind=Kind.omitted)
# Burst mode
burstMode = Component(EpicsSignal, "BurstModeBI", write_pv="BurstModeBO", name='burstmode', kind=Kind.config)
burstConfig = Component(EpicsSignal, "BurstConfigBI", write_pv="BurstConfigBO", name='burstconfig', kind=Kind.config)
burstCount = Component(EpicsSignal, "BurstCountLI", write_pv="BurstCountLO", name='burstcount', kind=Kind.config)
burstDelay = Component(EpicsSignal, "BurstDelayAI", write_pv="BurstDelayAO", name='burstdelay', kind=Kind.config)
burstPeriod = Component(EpicsSignal, "BurstPeriodAI", write_pv="BurstPeriodAO", name='burstperiod', kind=Kind.config)
def stage(self):
"""Trigger the generator by arming to accept triggers"""
self.arm.write(1).wait()
def unstage(self):
"""Stop the trigger generator from accepting triggers"""
self.arm.write(0).wait()
def burstEnable(self, count, delay, period, config="all"):
"""Enable the burst mode"""
# Validate inputs
count = int(count)
assert count > 0, "Number of bursts must be positive"
assert delay > 0, "Burst delay must be positive"
assert period > 0, "Burst period must be positive"
assert config in ['all', 'first'], "Supported bust configs are 'all' and 'first'"
self.burstMode.set(1).wait()
self.burstCount.set(count).wait()
self.burstDelay.set(delay).wait()
self.burstPeriod.set(period).wait()
if config=="all":
self.burstConfig.set(0).wait()
elif config=="first":
self.burstConfig.set(1).wait()
def busrtDisable(self):
"""Disable the burst mode"""
self.burstMode.set(0).wait()
# pair = DelayPair("DGEN01:", name="delayer", channel="CD")
dgen = DelayGeneratorDG645("X01DA-PC-DGEN:", name="delayer")

View File

@ -0,0 +1,130 @@
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 13 18:06:15 2021
@author: mohacsi_i
"""
import numpy as np
from math import isclose
from ophyd import EpicsSignal, EpicsSignalRO, EpicsMotor, PseudoPositioner, PseudoSingle, Device, Component, Kind
from ophyd.pseudopos import pseudo_position_argument, real_position_argument
from ophyd.sim import SynAxis, Syn2DGauss
LN_CORR = 2e-4
def a2e(angle, hkl=[1,1,1], lnc=False, bent=False, deg=False):
""" Convert between angle and energy for Si monchromators
ATTENTION: 'angle' must be in radians, not degrees!
"""
lncorr = LN_CORR if lnc else 0.0
angle = angle*np.pi/180 if deg else angle
# Lattice constant along direction
d0 = 5.43102 * (1.0-lncorr) / np.linalg.norm(hkl)
energy = 12.39842 / (2.0 * d0 * np.sin(angle))
return energy
def e2w(energy):
""" Convert between energy and wavelength
"""
return 0.1 * 12398.42 / energy
def w2e(wwl):
""" Convert between wavelength and energy
"""
return 12398.42 * 0.1 / wwl
def e2a(energy, hkl=[1,1,1], lnc=False, bent=False):
""" Convert between energy and angle for Si monchromators
ATTENTION: 'angle' must be in radians, not degrees!
"""
lncorr = LN_CORR if lnc else 0.0
# Lattice constant along direction
d0 = 2*5.43102 * (1.0-lncorr) / np.linalg.norm(hkl)
angle = np.arcsin(12.39842/d0/energy)
# Rfine for bent mirror
if bent:
rho = 2 * 19.65 * 8.35 / 28 * np.sin(angle)
dt = 0.2e-3 / rho * 0.279
d0 = 2 * 5.43102 * (1.0+dt) / np.linalg.norm(hkl)
angle = np.arcsin(12.39842/d0/energy)
return angle
class MonoMotor(PseudoPositioner):
""" Monochromator axis
Small wrapper to combine a real angular axis with the corresponding energy.
ATTENTION: 'angle' is in degrees, at least for PXIII
"""
# Real axis (in degrees)
angle = Component(EpicsMotor, "", name='angle')
# Virtual axis
energy = Component(PseudoSingle, name='energy')
_real = ['angle']
@pseudo_position_argument
def forward(self, pseudo_pos):
return self.RealPosition(angle=180.0*e2a(pseudo_pos.energy)/3.141592)
@real_position_argument
def inverse(self, real_pos):
return self.PseudoPosition(energy=a2e(3.141592*real_pos.angle/180.0))
class MonoDccm(PseudoPositioner):
""" Combined DCCM monochromator
The first crystal selects the energy, the second one is only following.
DCCMs are quite simple in terms that they can't crash and we don't
have a beam offset.
ATTENTION: 'angle' is in degrees, at least for PXIII
"""
# Real axis (in degrees)
th1 = Component(EpicsMotor, "ROX1", name='theta1')
th2 = Component(EpicsMotor, "ROX2", name='theta2')
# Virtual axes
en1 = Component(PseudoSingle, name='en1')
en2 = Component(PseudoSingle, name='en2')
energy = Component(PseudoSingle, name='energy', kind=Kind.hinted)
# Other parameters
#feedback = Component(EpicsSignal, "MONOBEAM", name="feedback")
#enc1 = Component(EpicsSignalRO, "1:EXC1", name="enc1")
#enc2 = Component(EpicsSignalRO, "1:EXC2", name="enc2")
@pseudo_position_argument
def forward(self, pseudo_pos):
"""
WARNING: We have an overdefined system! Not sure if common crystal movement is reliable without retuning
"""
if abs(pseudo_pos.energy-self.energy.position) > 0.0001 and abs(pseudo_pos.en1-self.en1.position) < 0.0001 and abs(pseudo_pos.en2-self.en2.position) < 0.0001:
# Probably the common energy was changed
return self.RealPosition(th1=-180.0*e2a(pseudo_pos.energy)/3.141592, th2=180.0*e2a(pseudo_pos.energy)/3.141592)
else:
# Probably the individual axes was changes
return self.RealPosition(th1=-180.0*e2a(pseudo_pos.en1)/3.141592, th2=180.0*e2a(pseudo_pos.en2)/3.141592)
@real_position_argument
def inverse(self, real_pos):
return self.PseudoPosition(en1=-a2e(3.141592*real_pos.th1/180.0),
en2=a2e(3.141592*real_pos.th2/180.0),
energy=-a2e(3.141592*real_pos.th1/180.0))

View File

@ -0,0 +1,68 @@
from ophyd import Device, Component, EpicsMotor, PseudoPositioner, PseudoSingle
from ophyd.pseudopos import pseudo_position_argument,real_position_argument
class SlitH(PseudoPositioner):
""" Python wrapper for virtual slits
These devices should be implemented as an EPICS SoftMotor IOC,
but thats not the case for all slits. So here is a pure ophyd
implementation. Uses standard naming convention!
NOTE: The real and virtual axes are wrapped together.
"""
# Motor interface
x1 = Component(EpicsMotor, "TRX1")
x2 = Component(EpicsMotor, "TRX2")
cenx = Component(PseudoSingle)
gapx = Component(PseudoSingle)
@pseudo_position_argument
def forward(self, pseudo_pos):
'''Run a forward (pseudo -> real) calculation'''
return self.RealPosition(x1=pseudo_pos.cenx-pseudo_pos.gapx/2,
x2=pseudo_pos.cenx+pseudo_pos.gapx/2)
@real_position_argument
def inverse(self, real_pos):
'''Run an inverse (real -> pseudo) calculation'''
return self.PseudoPosition(cenx=(real_pos.x1+real_pos.x2)/2,
gapx=real_pos.x2-real_pos.x1)
class SlitV(PseudoPositioner):
""" Python wrapper for virtual slits
These devices should be implemented as an EPICS SoftMotor IOC,
but thats not the case for all slits. So here is a pure ophyd
implementation. Uses standard naming convention!
NOTE: The real and virtual axes are wrapped together.
"""
# Motor interface
y1 = Component(EpicsMotor, "TRY1")
y2 = Component(EpicsMotor, "TRY2")
ceny = Component(PseudoSingle)
gapy = Component(PseudoSingle)
@pseudo_position_argument
def forward(self, pseudo_pos):
'''Run a forward (pseudo -> real) calculation'''
return self.RealPosition(y1=pseudo_pos.ceny-pseudo_pos.gapy/2,
y2=pseudo_pos.ceny+pseudo_pos.gapy/2)
@real_position_argument
def inverse(self, real_pos):
'''Run an inverse (real -> pseudo) calculation'''
return self.PseudoPosition(ceny=(real_pos.y1+real_pos.y2)/2,
gapy=real_pos.y2-real_pos.y1)