Flaking
This commit is contained in:
parent
19f5f728cc
commit
c7867a910f
@ -25,47 +25,36 @@ fp = open(f"{path}/db/test_database.yml", "r")
|
||||
lut_db = yaml.load(fp, Loader=yaml.Loader)
|
||||
|
||||
# Load SLS common database (already in DB)
|
||||
#fp = open(f"{path}/db/machine_database.yml", "r")
|
||||
#lut_db = yaml.load(fp, Loader=yaml.Loader)
|
||||
# fp = open(f"{path}/db/machine_database.yml", "r")
|
||||
# lut_db = yaml.load(fp, Loader=yaml.Loader)
|
||||
|
||||
# Load beamline specific database
|
||||
bl = os.getenv('BEAMLINE_XNAME', "X12SA")
|
||||
bl = os.getenv("BEAMLINE_XNAME", "X12SA")
|
||||
fp = open(f"{path}/db/{bl.lower()}_database.yml", "r")
|
||||
lut_db.update(yaml.load(fp, Loader=yaml.Loader))
|
||||
|
||||
|
||||
def createProxy(name: str, connect=True) -> OphydObject:
|
||||
""" Factory routine to create an ophyd device with a pre-defined schema.
|
||||
Does nothing if the device is already an OphydObject!
|
||||
"""
|
||||
"""Factory routine to create an ophyd device with a pre-defined schema.
|
||||
Does nothing if the device is already an OphydObject!
|
||||
"""
|
||||
if issubclass(type(name), OphydObject):
|
||||
return name
|
||||
|
||||
entry = lut_db[name]
|
||||
|
||||
entry = lut_db[name]
|
||||
cls_candidate = globals()[entry["type"]]
|
||||
print(f"Device candidate: {cls_candidate}")
|
||||
|
||||
try:
|
||||
if issubclass(cls_candidate, OphydObject):
|
||||
ret = cls_candidate(**entry["config"])
|
||||
if connect:
|
||||
ret.wait_for_connection(timeout=5)
|
||||
return ret
|
||||
else:
|
||||
raise RuntimeError(f"Unsupported return class: {schema}")
|
||||
except TypeError:
|
||||
# Simulated devices
|
||||
if issubclass(type(cls_candidate), OphydObject):
|
||||
return cls_candidate
|
||||
else:
|
||||
raise RuntimeError(f"Unsupported return class: {schema}")
|
||||
if issubclass(cls_candidate, OphydObject):
|
||||
ret = cls_candidate(**entry["config"])
|
||||
if connect:
|
||||
ret.wait_for_connection(timeout=5)
|
||||
return ret
|
||||
else:
|
||||
raise RuntimeError(f"Unsupported return class: {entry["type"]}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for key in lut_db:
|
||||
print(key)
|
||||
dut = createProxy(str(key))
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -11,79 +11,78 @@ from ophyd.pseudopos import pseudo_position_argument, real_position_argument, Ps
|
||||
|
||||
|
||||
class DelayStatic(Device):
|
||||
""" Static axis for the T0 output channel
|
||||
It allows setting the logic levels, but the timing is fixed.
|
||||
The signal is high after receiving the trigger until the end
|
||||
of the holdoff period.
|
||||
"""Static axis for the T0 output channel
|
||||
It allows setting the logic levels, but the timing is fixed.
|
||||
The signal is high after receiving the trigger until the end
|
||||
of the holdoff period.
|
||||
"""
|
||||
# Other channel stuff
|
||||
ttl_mode = Component(EpicsSignal, "OutputModeTtlSS.PROC", kind=Kind.config)
|
||||
nim_mode = Component(EpicsSignal, "OutputModeNimSS.PROC", kind=Kind.config)
|
||||
polarity = Component(EpicsSignal, "OutputPolarityBI", write_pv="OutputPolarityBO", name='polarity', kind=Kind.config)
|
||||
amplitude = Component(EpicsSignal, "OutputAmpAI", write_pv="OutputAmpAO", name='amplitude', kind=Kind.config)
|
||||
polarity = Component(EpicsSignal, "OutputOffsetAI", write_pv="OutputOffsetAO", name='offset', kind=Kind.config)
|
||||
polarity = Component(EpicsSignal, "OutputOffsetAI", write_pv="OutputOffsetAO", name='offset', kind=Kind.config)
|
||||
|
||||
|
||||
|
||||
class DummyPositioner(Device, PositionerBase):
|
||||
setpoint = Component(EpicsSignal, "DelayAO", kind=Kind.config)
|
||||
readback = Component(EpicsSignalRO, "DelayAI", kind=Kind.config)
|
||||
|
||||
|
||||
|
||||
class DelayPair(PseudoPositioner):
|
||||
""" Delay pair interface for DG645
|
||||
|
||||
Virtual motor interface to a pair of signals (on the frontpanel).
|
||||
It offers a simple delay and pulse width interface for scanning.
|
||||
"""Delay pair interface for DG645
|
||||
|
||||
Virtual motor interface to a pair of signals (on the frontpanel).
|
||||
It offers a simple delay and pulse width interface for scanning.
|
||||
"""
|
||||
# The pseudo positioner axes
|
||||
delay = Component(PseudoSingle, limits=(0, 2000.0), name='delay')
|
||||
width = Component(PseudoSingle, limits=(0, 2000.0), name='pulsewidth')
|
||||
width = Component(PseudoSingle, limits=(0, 2000.0), name='pulsewidth')
|
||||
# The real delay axes
|
||||
ch1 = Component(DummyPositioner, name='ch1')
|
||||
ch2 = Component(DummyPositioner, name='ch2')
|
||||
|
||||
ch2 = Component(DummyPositioner, name='ch2')
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
# Change suffix names before connecting (a bit of dynamic connections)
|
||||
self.__class__.__dict__['ch1'].suffix = kwargs['channel'][0]
|
||||
self.__class__.__dict__['ch2'].suffix = kwargs['channel'][1]
|
||||
del kwargs['channel']
|
||||
del kwargs['channel']
|
||||
# Call parent to start the connections
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
|
||||
@pseudo_position_argument
|
||||
def forward(self, pseudo_pos):
|
||||
'''Run a forward (pseudo -> real) calculation'''
|
||||
"""Run a forward (pseudo -> real) calculation"""
|
||||
return self.RealPosition(ch1=pseudo_pos.delay, ch2=pseudo_pos.delay+pseudo_pos.width)
|
||||
|
||||
@real_position_argument
|
||||
def inverse(self, real_pos):
|
||||
'''Run an inverse (real -> pseudo) calculation'''
|
||||
return self.PseudoPosition(delay=real_pos.ch1, width=real_pos.ch2 - real_pos.ch1)
|
||||
|
||||
|
||||
"""Run an inverse (real -> pseudo) calculation"""
|
||||
return self.PseudoPosition(delay=real_pos.ch1, width=real_pos.ch2 - real_pos.ch1)
|
||||
|
||||
|
||||
class DelayGeneratorDG645(Device):
|
||||
""" DG645 delay generator
|
||||
|
||||
This class implements a thin Ophyd wrapper around the Stanford Research DG645
|
||||
digital delay generator.
|
||||
|
||||
Internally, the DG645 generates 8+1 signals: A, B, C, D, E, F, G, H and T0
|
||||
Front panel outputs T0, AB, CD, EF and GH are a combination of these signals.
|
||||
Back panel outputs are directly routed signals. So signals are NOT INDEPENDENT.
|
||||
|
||||
|
||||
Front panel signals:
|
||||
All signals go high after their defined delays and go low after the trigger
|
||||
holdoff period, i.e. this is the trigger window. Front panel outputs provide
|
||||
a combination of these events.
|
||||
Option 1 back panel 5V signals:
|
||||
All signals go high after their defined delays and go low after the trigger
|
||||
holdoff period, i.e. this is the trigger window. The signals will stay high
|
||||
until the end of the window.
|
||||
Option 2 back panel 30V signals:
|
||||
All signals go high after their defined delays for ~100ns. This is fixed by
|
||||
electronics (30V needs quite some power). This is not implemented in the
|
||||
current device
|
||||
"""DG645 delay generator
|
||||
|
||||
This class implements a thin Ophyd wrapper around the Stanford Research DG645
|
||||
digital delay generator.
|
||||
|
||||
Internally, the DG645 generates 8+1 signals: A, B, C, D, E, F, G, H and T0
|
||||
Front panel outputs T0, AB, CD, EF and GH are a combination of these signals.
|
||||
Back panel outputs are directly routed signals. So signals are NOT INDEPENDENT.
|
||||
|
||||
Front panel signals:
|
||||
All signals go high after their defined delays and go low after the trigger
|
||||
holdoff period, i.e. this is the trigger window. Front panel outputs provide
|
||||
a combination of these events.
|
||||
Option 1 back panel 5V signals:
|
||||
All signals go high after their defined delays and go low after the trigger
|
||||
holdoff period, i.e. this is the trigger window. The signals will stay high
|
||||
until the end of the window.
|
||||
Option 2 back panel 30V signals:
|
||||
All signals go high after their defined delays for ~100ns. This is fixed by
|
||||
electronics (30V needs quite some power). This is not implemented in the
|
||||
current device
|
||||
"""
|
||||
state = Component(EpicsSignalRO, "EventStatusLI", name='status_register')
|
||||
status = Component(EpicsSignalRO, "StatusSI", name='status')
|
||||
@ -94,7 +93,7 @@ class DelayGeneratorDG645(Device):
|
||||
channelCD = Component(DelayPair, "", name='CD', channel="CD")
|
||||
channelEF = Component(DelayPair, "", name='EF', channel="EF")
|
||||
channelGH = Component(DelayPair, "", name='GH', channel="GH")
|
||||
|
||||
|
||||
# Minimum time between triggers
|
||||
holdoff = Component(EpicsSignal, "TriggerHoldoffAI", write_pv="TriggerHoldoffAO", name='trigger_holdoff', kind=Kind.config)
|
||||
inhibit = Component(EpicsSignal, "TriggerInhibitMI", write_pv="TriggerInhibitMO", name='trigger_inhibit', kind=Kind.config)
|
||||
@ -112,15 +111,14 @@ class DelayGeneratorDG645(Device):
|
||||
burstDelay = Component(EpicsSignal, "BurstDelayAI", write_pv="BurstDelayAO", name='burstdelay', kind=Kind.config)
|
||||
burstPeriod = Component(EpicsSignal, "BurstPeriodAI", write_pv="BurstPeriodAO", name='burstperiod', kind=Kind.config)
|
||||
|
||||
|
||||
def stage(self):
|
||||
"""Trigger the generator by arming to accept triggers"""
|
||||
self.arm.write(1).wait()
|
||||
|
||||
|
||||
def unstage(self):
|
||||
"""Stop the trigger generator from accepting triggers"""
|
||||
self.arm.write(0).wait()
|
||||
|
||||
|
||||
def burstEnable(self, count, delay, period, config="all"):
|
||||
"""Enable the burst mode"""
|
||||
# Validate inputs
|
||||
@ -139,16 +137,12 @@ class DelayGeneratorDG645(Device):
|
||||
self.burstConfig.set(0).wait()
|
||||
elif config=="first":
|
||||
self.burstConfig.set(1).wait()
|
||||
|
||||
|
||||
def busrtDisable(self):
|
||||
"""Disable the burst mode"""
|
||||
self.burstMode.set(0).wait()
|
||||
|
||||
|
||||
|
||||
# pair = DelayPair("DGEN01:", name="delayer", channel="CD")
|
||||
dgen = DelayGeneratorDG645("X01DA-PC-DGEN:", name="delayer")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Automatically connect to test environmenr if directly invoked
|
||||
if __name__ == "__main__":
|
||||
dgen = DelayGeneratorDG645("X01DA-PC-DGEN:", name="delayer")
|
||||
|
@ -2,13 +2,13 @@ from ophyd import PVPositioner, Component, EpicsSignal, EpicsSignalRO, Kind
|
||||
|
||||
|
||||
class InsertionDevice(PVPositioner):
|
||||
""" Python wrapper for the CSAXS insertion device control
|
||||
|
||||
This wrapper provides a positioner interface for the ID control.
|
||||
is completely custom XBPM with templates directly in the
|
||||
VME repo. Thus it needs a custom ophyd template as well...
|
||||
"""Python wrapper for the CSAXS insertion device control
|
||||
|
||||
WARN: The x and y are not updated by the IOC
|
||||
This wrapper provides a positioner interface for the ID control.
|
||||
is completely custom XBPM with templates directly in the
|
||||
VME repo. Thus it needs a custom ophyd template as well...
|
||||
|
||||
WARN: The x and y are not updated by the IOC
|
||||
"""
|
||||
status = Component(EpicsSignalRO, "-USER:STATUS", auto_monitor=True)
|
||||
errorSource = Component(EpicsSignalRO, "-USER:ERROR-SOURCE", auto_monitor=True)
|
||||
@ -24,20 +24,3 @@ class InsertionDevice(PVPositioner):
|
||||
# (NA for important devices)
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -2,15 +2,16 @@ import numpy as np
|
||||
from ophyd import Device, Component, EpicsSignal, EpicsSignalRO
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
class SpmBase(Device):
|
||||
""" Python wrapper for the Staggered Blade Pair Monitors
|
||||
|
||||
SPM's consist of a set of four horizontal tungsten blades and are
|
||||
used to monitor the beam height (only Y) for the bending magnet
|
||||
beamlines of SLS.
|
||||
|
||||
Note: EPICS provided signals are read only, but the user can
|
||||
change the beam position offset.
|
||||
"""Python wrapper for the Staggered Blade Pair Monitors
|
||||
|
||||
SPM's consist of a set of four horizontal tungsten blades and are
|
||||
used to monitor the beam height (only Y) for the bending magnet
|
||||
beamlines of SLS.
|
||||
|
||||
Note: EPICS provided signals are read only, but the user can
|
||||
change the beam position offset.
|
||||
"""
|
||||
# Motor interface
|
||||
s1 = Component(EpicsSignalRO, "Current1", auto_monitor=True)
|
||||
@ -21,17 +22,17 @@ class SpmBase(Device):
|
||||
y = Component(EpicsSignalRO, "Y", auto_monitor=True)
|
||||
scale = Component(EpicsSignal, "PositionScaleY", auto_monitor=True)
|
||||
offset = Component(EpicsSignal, "PositionOffsetY", auto_monitor=True)
|
||||
|
||||
|
||||
|
||||
class SpmSim(SpmBase):
|
||||
""" Python wrapper for simulated Staggered Blade Pair Monitors
|
||||
|
||||
SPM's consist of a set of four horizontal tungsten blades and are
|
||||
used to monitor the beam height (only Y) for the bending magnet
|
||||
beamlines of SLS.
|
||||
"""Python wrapper for simulated Staggered Blade Pair Monitors
|
||||
|
||||
This simulation device extends the basic proxy with a script that
|
||||
fills signals with quasi-randomized values.
|
||||
SPM's consist of a set of four horizontal tungsten blades and are
|
||||
used to monitor the beam height (only Y) for the bending magnet
|
||||
beamlines of SLS.
|
||||
|
||||
This simulation device extends the basic proxy with a script that
|
||||
fills signals with quasi-randomized values.
|
||||
"""
|
||||
# Motor interface
|
||||
s1w = Component(EpicsSignal, "Current1:RAW.VAL", auto_monitor=False)
|
||||
@ -42,25 +43,25 @@ class SpmSim(SpmBase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
|
||||
self._MX = 0
|
||||
self._MY = 0
|
||||
self._I0 = 255.0
|
||||
self._x = np.linspace(-5, 5, 64)
|
||||
self._y = np.linspace(-5, 5, 64)
|
||||
self._x, self._y = np.meshgrid(self._x, self._y)
|
||||
|
||||
|
||||
def _simFrame(self):
|
||||
"""Generator to simulate a jumping gaussian"""
|
||||
# define normalized 2D gaussian
|
||||
def gaus2d(x=0, y=0, mx=0, my=0, sx=1, sy=1):
|
||||
return np.exp(-((x - mx)**2. / (2. * sx**2.) + (y - my)**2. / (2. * sy**2.)))
|
||||
|
||||
|
||||
#Generator for dynamic values
|
||||
self._MX = 0.75 * self._MX + 0.25 * (10.0 * np.random.random()-5.0)
|
||||
self._MY = 0.75 * self._MY + 0.25 * (10.0 * np.random.random()-5.0)
|
||||
self._I0 = 0.75 * self._I0 + 0.25 * (255.0 * np.random.random())
|
||||
|
||||
|
||||
arr = self._I0 * gaus2d(self._x, self._y, self._MX, self._MY)
|
||||
return arr
|
||||
|
||||
@ -84,7 +85,7 @@ class SpmSim(SpmBase):
|
||||
#plt.imshow(beam)
|
||||
#plt.show(block=False)
|
||||
plt.pause(0.5)
|
||||
|
||||
|
||||
|
||||
# Automatically start simulation if directly invoked
|
||||
if __name__ == "__main__":
|
||||
@ -101,4 +102,3 @@ if __name__ == "__main__":
|
||||
print("---")
|
||||
spm1.sim()
|
||||
spm2.sim()
|
||||
|
||||
|
@ -4,12 +4,12 @@ import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
class XbpmCsaxsOp(Device):
|
||||
""" Python wrapper for custom XBPMs in the cSAXS optics hutch
|
||||
|
||||
This is completely custom XBPM with templates directly in the
|
||||
VME repo. Thus it needs a custom ophyd template as well...
|
||||
"""Python wrapper for custom XBPMs in the cSAXS optics hutch
|
||||
|
||||
WARN: The x and y are not updated by the IOC
|
||||
This is completely custom XBPM with templates directly in the
|
||||
VME repo. Thus it needs a custom ophyd template as well...
|
||||
|
||||
WARN: The x and y are not updated by the IOC
|
||||
"""
|
||||
sum = Component(EpicsSignalRO, "SUM", auto_monitor=True)
|
||||
x = Component(EpicsSignalRO, "POSH", auto_monitor=True)
|
||||
@ -21,16 +21,16 @@ class XbpmCsaxsOp(Device):
|
||||
|
||||
|
||||
class XbpmBase(Device):
|
||||
""" Python wrapper for X-ray Beam Position Monitors
|
||||
|
||||
XBPM's consist of a metal-coated diamond window that ejects
|
||||
photoelectrons from the incoming X-ray beam. These electons
|
||||
are collected and their current is measured. Effectively
|
||||
they act as four quadrant photodiodes and are used as BPMs
|
||||
at the undulator beamlines of SLS.
|
||||
|
||||
Note: EPICS provided signals are read only, but the user can
|
||||
change the beam position offset.
|
||||
"""Python wrapper for X-ray Beam Position Monitors
|
||||
|
||||
XBPM's consist of a metal-coated diamond window that ejects
|
||||
photoelectrons from the incoming X-ray beam. These electons
|
||||
are collected and their current is measured. Effectively
|
||||
they act as four quadrant photodiodes and are used as BPMs
|
||||
at the undulator beamlines of SLS.
|
||||
|
||||
Note: EPICS provided signals are read only, but the user can
|
||||
change the beam position offset.
|
||||
"""
|
||||
# Motor interface
|
||||
s1 = Component(EpicsSignalRO, "Current1", auto_monitor=True)
|
||||
@ -48,23 +48,20 @@ class XbpmBase(Device):
|
||||
offsetV = Component(EpicsSignal, "PositionOffsetY", auto_monitor=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class XbpmSim(XbpmBase):
|
||||
""" Python wrapper for simulated X-ray Beam Position Monitors
|
||||
|
||||
XBPM's consist of a metal-coated diamond window that ejects
|
||||
photoelectrons from the incoming X-ray beam. These electons
|
||||
are collected and their current is measured. Effectively
|
||||
they act as four quadrant photodiodes and are used as BPMs
|
||||
at the undulator beamlines of SLS.
|
||||
|
||||
Note: EPICS provided signals are read only, but the user can
|
||||
change the beam position offset.
|
||||
"""Python wrapper for simulated X-ray Beam Position Monitors
|
||||
|
||||
This simulation device extends the basic proxy with a script that
|
||||
fills signals with quasi-randomized values.
|
||||
XBPM's consist of a metal-coated diamond window that ejects
|
||||
photoelectrons from the incoming X-ray beam. These electons
|
||||
are collected and their current is measured. Effectively
|
||||
they act as four quadrant photodiodes and are used as BPMs
|
||||
at the undulator beamlines of SLS.
|
||||
|
||||
Note: EPICS provided signals are read only, but the user can
|
||||
change the beam position offset.
|
||||
|
||||
This simulation device extends the basic proxy with a script that
|
||||
fills signals with quasi-randomized values.
|
||||
"""
|
||||
# Motor interface
|
||||
s1w = Component(EpicsSignal, "Current1:RAW.VAL", auto_monitor=False)
|
||||
@ -75,25 +72,25 @@ class XbpmSim(XbpmBase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
|
||||
self._MX = 0
|
||||
self._MY = 0
|
||||
self._I0 = 255.0
|
||||
self._I0 = 255.0
|
||||
self._x = np.linspace(-5, 5, 64)
|
||||
self._y = np.linspace(-5, 5, 64)
|
||||
self._x, self._y = np.meshgrid(self._x, self._y)
|
||||
|
||||
self._x, self._y = np.meshgrid(self._x, self._y)
|
||||
|
||||
def _simFrame(self):
|
||||
"""Generator to simulate a jumping gaussian"""
|
||||
# define normalized 2D gaussian
|
||||
def gaus2d(x=0, y=0, mx=0, my=0, sx=1, sy=1):
|
||||
return np.exp(-((x - mx)**2. / (2. * sx**2.) + (y - my)**2. / (2. * sy**2.)))
|
||||
|
||||
|
||||
#Generator for dynamic values
|
||||
self._MX = 0.75 * self._MX + 0.25 * (10.0 * np.random.random()-5.0)
|
||||
self._MY = 0.75 * self._MY + 0.25 * (10.0 * np.random.random()-5.0)
|
||||
self._I0 = 0.75 * self._I0 + 0.25 * (255.0 * np.random.random())
|
||||
|
||||
|
||||
arr = self._I0 * gaus2d(self._x, self._y, self._MX, self._MY)
|
||||
return arr
|
||||
|
||||
@ -117,7 +114,7 @@ class XbpmSim(XbpmBase):
|
||||
#plt.imshow(beam)
|
||||
#plt.show(block=False)
|
||||
plt.pause(0.5)
|
||||
|
||||
|
||||
|
||||
# Automatically start simulation if directly invoked
|
||||
if __name__ == "__main__":
|
||||
@ -134,20 +131,3 @@ if __name__ == "__main__":
|
||||
print("---")
|
||||
xbpm1.sim()
|
||||
xbpm2.sim()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -3,11 +3,10 @@
|
||||
Created on Wed Oct 13 18:06:15 2021
|
||||
|
||||
@author: mohacsi_i
|
||||
|
||||
IMPORTANT: Virtual monochromator axes should be implemented already in EPICS!!!
|
||||
"""
|
||||
|
||||
|
||||
|
||||
|
||||
import numpy as np
|
||||
from math import isclose
|
||||
from ophyd import EpicsSignal, EpicsSignalRO, EpicsMotor, PseudoPositioner, PseudoSingle, Device, Component, Kind
|
||||
@ -16,9 +15,10 @@ from ophyd.sim import SynAxis, Syn2DGauss
|
||||
|
||||
LN_CORR = 2e-4
|
||||
|
||||
|
||||
def a2e(angle, hkl=[1,1,1], lnc=False, bent=False, deg=False):
|
||||
""" Convert between angle and energy for Si monchromators
|
||||
ATTENTION: 'angle' must be in radians, not degrees!
|
||||
"""Convert between angle and energy for Si monchromators
|
||||
ATTENTION: 'angle' must be in radians, not degrees!
|
||||
"""
|
||||
lncorr = LN_CORR if lnc else 0.0
|
||||
angle = angle*np.pi/180 if deg else angle
|
||||
@ -30,28 +30,28 @@ def a2e(angle, hkl=[1,1,1], lnc=False, bent=False, deg=False):
|
||||
|
||||
|
||||
def e2w(energy):
|
||||
""" Convert between energy and wavelength
|
||||
"""Convert between energy and wavelength
|
||||
"""
|
||||
return 0.1 * 12398.42 / energy
|
||||
|
||||
|
||||
def w2e(wwl):
|
||||
""" Convert between wavelength and energy
|
||||
"""Convert between wavelength and energy
|
||||
"""
|
||||
return 12398.42 * 0.1 / wwl
|
||||
|
||||
|
||||
def e2a(energy, hkl=[1,1,1], lnc=False, bent=False):
|
||||
""" Convert between energy and angle for Si monchromators
|
||||
ATTENTION: 'angle' must be in radians, not degrees!
|
||||
"""Convert between energy and angle for Si monchromators
|
||||
ATTENTION: 'angle' must be in radians, not degrees!
|
||||
"""
|
||||
lncorr = LN_CORR if lnc else 0.0
|
||||
|
||||
# Lattice constant along direction
|
||||
# Lattice constant along direction
|
||||
d0 = 2*5.43102 * (1.0-lncorr) / np.linalg.norm(hkl)
|
||||
angle = np.arcsin(12.39842/d0/energy)
|
||||
|
||||
# Rfine for bent mirror
|
||||
# Rfine for bent mirror
|
||||
if bent:
|
||||
rho = 2 * 19.65 * 8.35 / 28 * np.sin(angle)
|
||||
dt = 0.2e-3 / rho * 0.279
|
||||
@ -61,37 +61,35 @@ def e2a(energy, hkl=[1,1,1], lnc=False, bent=False):
|
||||
return angle
|
||||
|
||||
|
||||
|
||||
|
||||
class MonoMotor(PseudoPositioner):
|
||||
""" Monochromator axis
|
||||
|
||||
Small wrapper to combine a real angular axis with the corresponding energy.
|
||||
ATTENTION: 'angle' is in degrees, at least for PXIII
|
||||
"""Monochromator axis
|
||||
|
||||
Small wrapper to combine a real angular axis with the corresponding energy.
|
||||
ATTENTION: 'angle' is in degrees, at least for PXIII
|
||||
"""
|
||||
# Real axis (in degrees)
|
||||
angle = Component(EpicsMotor, "", name='angle')
|
||||
# Virtual axis
|
||||
energy = Component(PseudoSingle, name='energy')
|
||||
|
||||
|
||||
_real = ['angle']
|
||||
|
||||
@pseudo_position_argument
|
||||
def forward(self, pseudo_pos):
|
||||
return self.RealPosition(angle=180.0*e2a(pseudo_pos.energy)/3.141592)
|
||||
|
||||
|
||||
@real_position_argument
|
||||
def inverse(self, real_pos):
|
||||
return self.PseudoPosition(energy=a2e(3.141592*real_pos.angle/180.0))
|
||||
|
||||
|
||||
return self.PseudoPosition(energy=a2e(3.141592*real_pos.angle/180.0))
|
||||
|
||||
|
||||
class MonoDccm(PseudoPositioner):
|
||||
""" Combined DCCM monochromator
|
||||
|
||||
The first crystal selects the energy, the second one is only following.
|
||||
DCCMs are quite simple in terms that they can't crash and we don't
|
||||
have a beam offset.
|
||||
ATTENTION: 'angle' is in degrees, at least for PXIII
|
||||
"""Combined DCCM monochromator
|
||||
|
||||
The first crystal selects the energy, the second one is only following.
|
||||
DCCMs are quite simple in terms that they can't crash and we don't
|
||||
have a beam offset.
|
||||
ATTENTION: 'angle' is in degrees, at least for PXIII
|
||||
"""
|
||||
|
||||
# Real axis (in degrees)
|
||||
@ -110,21 +108,16 @@ class MonoDccm(PseudoPositioner):
|
||||
|
||||
@pseudo_position_argument
|
||||
def forward(self, pseudo_pos):
|
||||
"""
|
||||
WARNING: We have an overdefined system! Not sure if common crystal movement is reliable without retuning
|
||||
|
||||
"""
|
||||
"""WARNING: We have an overdefined system! Not sure if common crystal movement is reliable without retuning"""
|
||||
if abs(pseudo_pos.energy-self.energy.position) > 0.0001 and abs(pseudo_pos.en1-self.en1.position) < 0.0001 and abs(pseudo_pos.en2-self.en2.position) < 0.0001:
|
||||
# Probably the common energy was changed
|
||||
return self.RealPosition(th1=-180.0*e2a(pseudo_pos.energy)/3.141592, th2=180.0*e2a(pseudo_pos.energy)/3.141592)
|
||||
else:
|
||||
# Probably the individual axes was changes
|
||||
return self.RealPosition(th1=-180.0*e2a(pseudo_pos.en1)/3.141592, th2=180.0*e2a(pseudo_pos.en2)/3.141592)
|
||||
|
||||
|
||||
@real_position_argument
|
||||
def inverse(self, real_pos):
|
||||
return self.PseudoPosition(en1=-a2e(3.141592*real_pos.th1/180.0),
|
||||
en2=a2e(3.141592*real_pos.th2/180.0),
|
||||
energy=-a2e(3.141592*real_pos.th1/180.0))
|
||||
|
||||
|
||||
energy=-a2e(3.141592*real_pos.th1/180.0))
|
||||
|
@ -1,130 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Oct 13 18:06:15 2021
|
||||
|
||||
@author: mohacsi_i
|
||||
"""
|
||||
|
||||
|
||||
|
||||
|
||||
import numpy as np
|
||||
from math import isclose
|
||||
from ophyd import EpicsSignal, EpicsSignalRO, EpicsMotor, PseudoPositioner, PseudoSingle, Device, Component, Kind
|
||||
from ophyd.pseudopos import pseudo_position_argument, real_position_argument
|
||||
from ophyd.sim import SynAxis, Syn2DGauss
|
||||
|
||||
LN_CORR = 2e-4
|
||||
|
||||
def a2e(angle, hkl=[1,1,1], lnc=False, bent=False, deg=False):
|
||||
""" Convert between angle and energy for Si monchromators
|
||||
ATTENTION: 'angle' must be in radians, not degrees!
|
||||
"""
|
||||
lncorr = LN_CORR if lnc else 0.0
|
||||
angle = angle*np.pi/180 if deg else angle
|
||||
|
||||
# Lattice constant along direction
|
||||
d0 = 5.43102 * (1.0-lncorr) / np.linalg.norm(hkl)
|
||||
energy = 12.39842 / (2.0 * d0 * np.sin(angle))
|
||||
return energy
|
||||
|
||||
|
||||
def e2w(energy):
|
||||
""" Convert between energy and wavelength
|
||||
"""
|
||||
return 0.1 * 12398.42 / energy
|
||||
|
||||
|
||||
def w2e(wwl):
|
||||
""" Convert between wavelength and energy
|
||||
"""
|
||||
return 12398.42 * 0.1 / wwl
|
||||
|
||||
|
||||
def e2a(energy, hkl=[1,1,1], lnc=False, bent=False):
|
||||
""" Convert between energy and angle for Si monchromators
|
||||
ATTENTION: 'angle' must be in radians, not degrees!
|
||||
"""
|
||||
lncorr = LN_CORR if lnc else 0.0
|
||||
|
||||
# Lattice constant along direction
|
||||
d0 = 2*5.43102 * (1.0-lncorr) / np.linalg.norm(hkl)
|
||||
angle = np.arcsin(12.39842/d0/energy)
|
||||
|
||||
# Rfine for bent mirror
|
||||
if bent:
|
||||
rho = 2 * 19.65 * 8.35 / 28 * np.sin(angle)
|
||||
dt = 0.2e-3 / rho * 0.279
|
||||
d0 = 2 * 5.43102 * (1.0+dt) / np.linalg.norm(hkl)
|
||||
angle = np.arcsin(12.39842/d0/energy)
|
||||
|
||||
return angle
|
||||
|
||||
|
||||
|
||||
|
||||
class MonoMotor(PseudoPositioner):
|
||||
""" Monochromator axis
|
||||
|
||||
Small wrapper to combine a real angular axis with the corresponding energy.
|
||||
ATTENTION: 'angle' is in degrees, at least for PXIII
|
||||
"""
|
||||
# Real axis (in degrees)
|
||||
angle = Component(EpicsMotor, "", name='angle')
|
||||
# Virtual axis
|
||||
energy = Component(PseudoSingle, name='energy')
|
||||
|
||||
_real = ['angle']
|
||||
|
||||
@pseudo_position_argument
|
||||
def forward(self, pseudo_pos):
|
||||
return self.RealPosition(angle=180.0*e2a(pseudo_pos.energy)/3.141592)
|
||||
|
||||
@real_position_argument
|
||||
def inverse(self, real_pos):
|
||||
return self.PseudoPosition(energy=a2e(3.141592*real_pos.angle/180.0))
|
||||
|
||||
|
||||
class MonoDccm(PseudoPositioner):
|
||||
""" Combined DCCM monochromator
|
||||
|
||||
The first crystal selects the energy, the second one is only following.
|
||||
DCCMs are quite simple in terms that they can't crash and we don't
|
||||
have a beam offset.
|
||||
ATTENTION: 'angle' is in degrees, at least for PXIII
|
||||
"""
|
||||
|
||||
# Real axis (in degrees)
|
||||
th1 = Component(EpicsMotor, "ROX1", name='theta1')
|
||||
th2 = Component(EpicsMotor, "ROX2", name='theta2')
|
||||
|
||||
# Virtual axes
|
||||
en1 = Component(PseudoSingle, name='en1')
|
||||
en2 = Component(PseudoSingle, name='en2')
|
||||
energy = Component(PseudoSingle, name='energy', kind=Kind.hinted)
|
||||
|
||||
# Other parameters
|
||||
#feedback = Component(EpicsSignal, "MONOBEAM", name="feedback")
|
||||
#enc1 = Component(EpicsSignalRO, "1:EXC1", name="enc1")
|
||||
#enc2 = Component(EpicsSignalRO, "1:EXC2", name="enc2")
|
||||
|
||||
@pseudo_position_argument
|
||||
def forward(self, pseudo_pos):
|
||||
"""
|
||||
WARNING: We have an overdefined system! Not sure if common crystal movement is reliable without retuning
|
||||
|
||||
"""
|
||||
if abs(pseudo_pos.energy-self.energy.position) > 0.0001 and abs(pseudo_pos.en1-self.en1.position) < 0.0001 and abs(pseudo_pos.en2-self.en2.position) < 0.0001:
|
||||
# Probably the common energy was changed
|
||||
return self.RealPosition(th1=-180.0*e2a(pseudo_pos.energy)/3.141592, th2=180.0*e2a(pseudo_pos.energy)/3.141592)
|
||||
else:
|
||||
# Probably the individual axes was changes
|
||||
return self.RealPosition(th1=-180.0*e2a(pseudo_pos.en1)/3.141592, th2=180.0*e2a(pseudo_pos.en2)/3.141592)
|
||||
|
||||
@real_position_argument
|
||||
def inverse(self, real_pos):
|
||||
return self.PseudoPosition(en1=-a2e(3.141592*real_pos.th1/180.0),
|
||||
en2=a2e(3.141592*real_pos.th2/180.0),
|
||||
energy=-a2e(3.141592*real_pos.th1/180.0))
|
||||
|
||||
|
@ -2,20 +2,14 @@ from ophyd import Device, Component, EpicsMotor, PseudoPositioner, PseudoSingle
|
||||
from ophyd.pseudopos import pseudo_position_argument,real_position_argument
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class SlitH(PseudoPositioner):
|
||||
""" Python wrapper for virtual slits
|
||||
|
||||
These devices should be implemented as an EPICS SoftMotor IOC,
|
||||
but thats not the case for all slits. So here is a pure ophyd
|
||||
implementation. Uses standard naming convention!
|
||||
|
||||
NOTE: The real and virtual axes are wrapped together.
|
||||
"""Python wrapper for virtual slits
|
||||
|
||||
These devices should be implemented as an EPICS SoftMotor IOC,
|
||||
but thats not the case for all slits. So here is a pure ophyd
|
||||
implementation. Uses standard naming convention!
|
||||
|
||||
NOTE: The real and virtual axes are wrapped together.
|
||||
"""
|
||||
# Motor interface
|
||||
x1 = Component(EpicsMotor, "TRX1")
|
||||
@ -37,16 +31,15 @@ class SlitH(PseudoPositioner):
|
||||
gapx=real_pos.x2-real_pos.x1)
|
||||
|
||||
|
||||
|
||||
class SlitV(PseudoPositioner):
|
||||
""" Python wrapper for virtual slits
|
||||
|
||||
These devices should be implemented as an EPICS SoftMotor IOC,
|
||||
but thats not the case for all slits. So here is a pure ophyd
|
||||
implementation. Uses standard naming convention!
|
||||
|
||||
NOTE: The real and virtual axes are wrapped together.
|
||||
"""
|
||||
"""Python wrapper for virtual slits
|
||||
|
||||
These devices should be implemented as an EPICS SoftMotor IOC,
|
||||
but thats not the case for all slits. So here is a pure ophyd
|
||||
implementation. Uses standard naming convention!
|
||||
|
||||
NOTE: The real and virtual axes are wrapped together.
|
||||
"""
|
||||
# Motor interface
|
||||
y1 = Component(EpicsMotor, "TRY1")
|
||||
y2 = Component(EpicsMotor, "TRY2")
|
||||
@ -56,13 +49,12 @@ class SlitV(PseudoPositioner):
|
||||
|
||||
@pseudo_position_argument
|
||||
def forward(self, pseudo_pos):
|
||||
'''Run a forward (pseudo -> real) calculation'''
|
||||
"""Run a forward (pseudo -> real) calculation"""
|
||||
return self.RealPosition(y1=pseudo_pos.ceny-pseudo_pos.gapy/2,
|
||||
y2=pseudo_pos.ceny+pseudo_pos.gapy/2)
|
||||
|
||||
@real_position_argument
|
||||
def inverse(self, real_pos):
|
||||
'''Run an inverse (real -> pseudo) calculation'''
|
||||
"""Run an inverse (real -> pseudo) calculation"""
|
||||
return self.PseudoPosition(ceny=(real_pos.y1+real_pos.y2)/2,
|
||||
gapy=real_pos.y2-real_pos.y1)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user