This commit is contained in:
mohacsi_i 2022-11-14 17:37:03 +01:00
parent 19f5f728cc
commit c7867a910f
8 changed files with 174 additions and 373 deletions

View File

@ -25,18 +25,18 @@ fp = open(f"{path}/db/test_database.yml", "r")
lut_db = yaml.load(fp, Loader=yaml.Loader) lut_db = yaml.load(fp, Loader=yaml.Loader)
# Load SLS common database (already in DB) # Load SLS common database (already in DB)
#fp = open(f"{path}/db/machine_database.yml", "r") # fp = open(f"{path}/db/machine_database.yml", "r")
#lut_db = yaml.load(fp, Loader=yaml.Loader) # lut_db = yaml.load(fp, Loader=yaml.Loader)
# Load beamline specific database # Load beamline specific database
bl = os.getenv('BEAMLINE_XNAME', "X12SA") bl = os.getenv("BEAMLINE_XNAME", "X12SA")
fp = open(f"{path}/db/{bl.lower()}_database.yml", "r") fp = open(f"{path}/db/{bl.lower()}_database.yml", "r")
lut_db.update(yaml.load(fp, Loader=yaml.Loader)) lut_db.update(yaml.load(fp, Loader=yaml.Loader))
def createProxy(name: str, connect=True) -> OphydObject: def createProxy(name: str, connect=True) -> OphydObject:
""" Factory routine to create an ophyd device with a pre-defined schema. """Factory routine to create an ophyd device with a pre-defined schema.
Does nothing if the device is already an OphydObject! Does nothing if the device is already an OphydObject!
""" """
if issubclass(type(name), OphydObject): if issubclass(type(name), OphydObject):
return name return name
@ -45,27 +45,16 @@ def createProxy(name: str, connect=True) -> OphydObject:
cls_candidate = globals()[entry["type"]] cls_candidate = globals()[entry["type"]]
print(f"Device candidate: {cls_candidate}") print(f"Device candidate: {cls_candidate}")
try: if issubclass(cls_candidate, OphydObject):
if issubclass(cls_candidate, OphydObject): ret = cls_candidate(**entry["config"])
ret = cls_candidate(**entry["config"]) if connect:
if connect: ret.wait_for_connection(timeout=5)
ret.wait_for_connection(timeout=5) return ret
return ret else:
else: raise RuntimeError(f"Unsupported return class: {entry["type"]}")
raise RuntimeError(f"Unsupported return class: {schema}")
except TypeError:
# Simulated devices
if issubclass(type(cls_candidate), OphydObject):
return cls_candidate
else:
raise RuntimeError(f"Unsupported return class: {schema}")
if __name__ == "__main__": if __name__ == "__main__":
for key in lut_db: for key in lut_db:
print(key) print(key)
dut = createProxy(str(key)) dut = createProxy(str(key))

View File

@ -11,10 +11,10 @@ from ophyd.pseudopos import pseudo_position_argument, real_position_argument, Ps
class DelayStatic(Device): class DelayStatic(Device):
""" Static axis for the T0 output channel """Static axis for the T0 output channel
It allows setting the logic levels, but the timing is fixed. It allows setting the logic levels, but the timing is fixed.
The signal is high after receiving the trigger until the end The signal is high after receiving the trigger until the end
of the holdoff period. of the holdoff period.
""" """
# Other channel stuff # Other channel stuff
ttl_mode = Component(EpicsSignal, "OutputModeTtlSS.PROC", kind=Kind.config) ttl_mode = Component(EpicsSignal, "OutputModeTtlSS.PROC", kind=Kind.config)
@ -30,10 +30,10 @@ class DummyPositioner(Device, PositionerBase):
class DelayPair(PseudoPositioner): class DelayPair(PseudoPositioner):
""" Delay pair interface for DG645 """Delay pair interface for DG645
Virtual motor interface to a pair of signals (on the frontpanel). Virtual motor interface to a pair of signals (on the frontpanel).
It offers a simple delay and pulse width interface for scanning. It offers a simple delay and pulse width interface for scanning.
""" """
# The pseudo positioner axes # The pseudo positioner axes
delay = Component(PseudoSingle, limits=(0, 2000.0), name='delay') delay = Component(PseudoSingle, limits=(0, 2000.0), name='delay')
@ -52,38 +52,37 @@ class DelayPair(PseudoPositioner):
@pseudo_position_argument @pseudo_position_argument
def forward(self, pseudo_pos): def forward(self, pseudo_pos):
'''Run a forward (pseudo -> real) calculation''' """Run a forward (pseudo -> real) calculation"""
return self.RealPosition(ch1=pseudo_pos.delay, ch2=pseudo_pos.delay+pseudo_pos.width) return self.RealPosition(ch1=pseudo_pos.delay, ch2=pseudo_pos.delay+pseudo_pos.width)
@real_position_argument @real_position_argument
def inverse(self, real_pos): def inverse(self, real_pos):
'''Run an inverse (real -> pseudo) calculation''' """Run an inverse (real -> pseudo) calculation"""
return self.PseudoPosition(delay=real_pos.ch1, width=real_pos.ch2 - real_pos.ch1) return self.PseudoPosition(delay=real_pos.ch1, width=real_pos.ch2 - real_pos.ch1)
class DelayGeneratorDG645(Device): class DelayGeneratorDG645(Device):
""" DG645 delay generator """DG645 delay generator
This class implements a thin Ophyd wrapper around the Stanford Research DG645 This class implements a thin Ophyd wrapper around the Stanford Research DG645
digital delay generator. digital delay generator.
Internally, the DG645 generates 8+1 signals: A, B, C, D, E, F, G, H and T0 Internally, the DG645 generates 8+1 signals: A, B, C, D, E, F, G, H and T0
Front panel outputs T0, AB, CD, EF and GH are a combination of these signals. Front panel outputs T0, AB, CD, EF and GH are a combination of these signals.
Back panel outputs are directly routed signals. So signals are NOT INDEPENDENT. Back panel outputs are directly routed signals. So signals are NOT INDEPENDENT.
Front panel signals:
Front panel signals: All signals go high after their defined delays and go low after the trigger
All signals go high after their defined delays and go low after the trigger holdoff period, i.e. this is the trigger window. Front panel outputs provide
holdoff period, i.e. this is the trigger window. Front panel outputs provide a combination of these events.
a combination of these events. Option 1 back panel 5V signals:
Option 1 back panel 5V signals: All signals go high after their defined delays and go low after the trigger
All signals go high after their defined delays and go low after the trigger holdoff period, i.e. this is the trigger window. The signals will stay high
holdoff period, i.e. this is the trigger window. The signals will stay high until the end of the window.
until the end of the window. Option 2 back panel 30V signals:
Option 2 back panel 30V signals: All signals go high after their defined delays for ~100ns. This is fixed by
All signals go high after their defined delays for ~100ns. This is fixed by electronics (30V needs quite some power). This is not implemented in the
electronics (30V needs quite some power). This is not implemented in the current device
current device
""" """
state = Component(EpicsSignalRO, "EventStatusLI", name='status_register') state = Component(EpicsSignalRO, "EventStatusLI", name='status_register')
status = Component(EpicsSignalRO, "StatusSI", name='status') status = Component(EpicsSignalRO, "StatusSI", name='status')
@ -112,7 +111,6 @@ class DelayGeneratorDG645(Device):
burstDelay = Component(EpicsSignal, "BurstDelayAI", write_pv="BurstDelayAO", name='burstdelay', kind=Kind.config) burstDelay = Component(EpicsSignal, "BurstDelayAI", write_pv="BurstDelayAO", name='burstdelay', kind=Kind.config)
burstPeriod = Component(EpicsSignal, "BurstPeriodAI", write_pv="BurstPeriodAO", name='burstperiod', kind=Kind.config) burstPeriod = Component(EpicsSignal, "BurstPeriodAI", write_pv="BurstPeriodAO", name='burstperiod', kind=Kind.config)
def stage(self): def stage(self):
"""Trigger the generator by arming to accept triggers""" """Trigger the generator by arming to accept triggers"""
self.arm.write(1).wait() self.arm.write(1).wait()
@ -145,10 +143,6 @@ class DelayGeneratorDG645(Device):
self.burstMode.set(0).wait() self.burstMode.set(0).wait()
# Automatically connect to test environmenr if directly invoked
# pair = DelayPair("DGEN01:", name="delayer", channel="CD") if __name__ == "__main__":
dgen = DelayGeneratorDG645("X01DA-PC-DGEN:", name="delayer") dgen = DelayGeneratorDG645("X01DA-PC-DGEN:", name="delayer")

View File

@ -2,13 +2,13 @@ from ophyd import PVPositioner, Component, EpicsSignal, EpicsSignalRO, Kind
class InsertionDevice(PVPositioner): class InsertionDevice(PVPositioner):
""" Python wrapper for the CSAXS insertion device control """Python wrapper for the CSAXS insertion device control
This wrapper provides a positioner interface for the ID control. This wrapper provides a positioner interface for the ID control.
is completely custom XBPM with templates directly in the is completely custom XBPM with templates directly in the
VME repo. Thus it needs a custom ophyd template as well... VME repo. Thus it needs a custom ophyd template as well...
WARN: The x and y are not updated by the IOC WARN: The x and y are not updated by the IOC
""" """
status = Component(EpicsSignalRO, "-USER:STATUS", auto_monitor=True) status = Component(EpicsSignalRO, "-USER:STATUS", auto_monitor=True)
errorSource = Component(EpicsSignalRO, "-USER:ERROR-SOURCE", auto_monitor=True) errorSource = Component(EpicsSignalRO, "-USER:ERROR-SOURCE", auto_monitor=True)
@ -24,20 +24,3 @@ class InsertionDevice(PVPositioner):
# (NA for important devices) # (NA for important devices)
if __name__ == "__main__": if __name__ == "__main__":
pass pass

View File

@ -2,15 +2,16 @@ import numpy as np
from ophyd import Device, Component, EpicsSignal, EpicsSignalRO from ophyd import Device, Component, EpicsSignal, EpicsSignalRO
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
class SpmBase(Device): class SpmBase(Device):
""" Python wrapper for the Staggered Blade Pair Monitors """Python wrapper for the Staggered Blade Pair Monitors
SPM's consist of a set of four horizontal tungsten blades and are SPM's consist of a set of four horizontal tungsten blades and are
used to monitor the beam height (only Y) for the bending magnet used to monitor the beam height (only Y) for the bending magnet
beamlines of SLS. beamlines of SLS.
Note: EPICS provided signals are read only, but the user can Note: EPICS provided signals are read only, but the user can
change the beam position offset. change the beam position offset.
""" """
# Motor interface # Motor interface
s1 = Component(EpicsSignalRO, "Current1", auto_monitor=True) s1 = Component(EpicsSignalRO, "Current1", auto_monitor=True)
@ -24,14 +25,14 @@ class SpmBase(Device):
class SpmSim(SpmBase): class SpmSim(SpmBase):
""" Python wrapper for simulated Staggered Blade Pair Monitors """Python wrapper for simulated Staggered Blade Pair Monitors
SPM's consist of a set of four horizontal tungsten blades and are SPM's consist of a set of four horizontal tungsten blades and are
used to monitor the beam height (only Y) for the bending magnet used to monitor the beam height (only Y) for the bending magnet
beamlines of SLS. beamlines of SLS.
This simulation device extends the basic proxy with a script that This simulation device extends the basic proxy with a script that
fills signals with quasi-randomized values. fills signals with quasi-randomized values.
""" """
# Motor interface # Motor interface
s1w = Component(EpicsSignal, "Current1:RAW.VAL", auto_monitor=False) s1w = Component(EpicsSignal, "Current1:RAW.VAL", auto_monitor=False)
@ -101,4 +102,3 @@ if __name__ == "__main__":
print("---") print("---")
spm1.sim() spm1.sim()
spm2.sim() spm2.sim()

View File

@ -4,12 +4,12 @@ import matplotlib.pyplot as plt
class XbpmCsaxsOp(Device): class XbpmCsaxsOp(Device):
""" Python wrapper for custom XBPMs in the cSAXS optics hutch """Python wrapper for custom XBPMs in the cSAXS optics hutch
This is completely custom XBPM with templates directly in the This is completely custom XBPM with templates directly in the
VME repo. Thus it needs a custom ophyd template as well... VME repo. Thus it needs a custom ophyd template as well...
WARN: The x and y are not updated by the IOC WARN: The x and y are not updated by the IOC
""" """
sum = Component(EpicsSignalRO, "SUM", auto_monitor=True) sum = Component(EpicsSignalRO, "SUM", auto_monitor=True)
x = Component(EpicsSignalRO, "POSH", auto_monitor=True) x = Component(EpicsSignalRO, "POSH", auto_monitor=True)
@ -21,16 +21,16 @@ class XbpmCsaxsOp(Device):
class XbpmBase(Device): class XbpmBase(Device):
""" Python wrapper for X-ray Beam Position Monitors """Python wrapper for X-ray Beam Position Monitors
XBPM's consist of a metal-coated diamond window that ejects XBPM's consist of a metal-coated diamond window that ejects
photoelectrons from the incoming X-ray beam. These electons photoelectrons from the incoming X-ray beam. These electons
are collected and their current is measured. Effectively are collected and their current is measured. Effectively
they act as four quadrant photodiodes and are used as BPMs they act as four quadrant photodiodes and are used as BPMs
at the undulator beamlines of SLS. at the undulator beamlines of SLS.
Note: EPICS provided signals are read only, but the user can Note: EPICS provided signals are read only, but the user can
change the beam position offset. change the beam position offset.
""" """
# Motor interface # Motor interface
s1 = Component(EpicsSignalRO, "Current1", auto_monitor=True) s1 = Component(EpicsSignalRO, "Current1", auto_monitor=True)
@ -48,23 +48,20 @@ class XbpmBase(Device):
offsetV = Component(EpicsSignal, "PositionOffsetY", auto_monitor=False) offsetV = Component(EpicsSignal, "PositionOffsetY", auto_monitor=False)
class XbpmSim(XbpmBase): class XbpmSim(XbpmBase):
""" Python wrapper for simulated X-ray Beam Position Monitors """Python wrapper for simulated X-ray Beam Position Monitors
XBPM's consist of a metal-coated diamond window that ejects XBPM's consist of a metal-coated diamond window that ejects
photoelectrons from the incoming X-ray beam. These electons photoelectrons from the incoming X-ray beam. These electons
are collected and their current is measured. Effectively are collected and their current is measured. Effectively
they act as four quadrant photodiodes and are used as BPMs they act as four quadrant photodiodes and are used as BPMs
at the undulator beamlines of SLS. at the undulator beamlines of SLS.
Note: EPICS provided signals are read only, but the user can Note: EPICS provided signals are read only, but the user can
change the beam position offset. change the beam position offset.
This simulation device extends the basic proxy with a script that This simulation device extends the basic proxy with a script that
fills signals with quasi-randomized values. fills signals with quasi-randomized values.
""" """
# Motor interface # Motor interface
s1w = Component(EpicsSignal, "Current1:RAW.VAL", auto_monitor=False) s1w = Component(EpicsSignal, "Current1:RAW.VAL", auto_monitor=False)
@ -134,20 +131,3 @@ if __name__ == "__main__":
print("---") print("---")
xbpm1.sim() xbpm1.sim()
xbpm2.sim() xbpm2.sim()

View File

@ -3,11 +3,10 @@
Created on Wed Oct 13 18:06:15 2021 Created on Wed Oct 13 18:06:15 2021
@author: mohacsi_i @author: mohacsi_i
IMPORTANT: Virtual monochromator axes should be implemented already in EPICS!!!
""" """
import numpy as np import numpy as np
from math import isclose from math import isclose
from ophyd import EpicsSignal, EpicsSignalRO, EpicsMotor, PseudoPositioner, PseudoSingle, Device, Component, Kind from ophyd import EpicsSignal, EpicsSignalRO, EpicsMotor, PseudoPositioner, PseudoSingle, Device, Component, Kind
@ -16,9 +15,10 @@ from ophyd.sim import SynAxis, Syn2DGauss
LN_CORR = 2e-4 LN_CORR = 2e-4
def a2e(angle, hkl=[1,1,1], lnc=False, bent=False, deg=False): def a2e(angle, hkl=[1,1,1], lnc=False, bent=False, deg=False):
""" Convert between angle and energy for Si monchromators """Convert between angle and energy for Si monchromators
ATTENTION: 'angle' must be in radians, not degrees! ATTENTION: 'angle' must be in radians, not degrees!
""" """
lncorr = LN_CORR if lnc else 0.0 lncorr = LN_CORR if lnc else 0.0
angle = angle*np.pi/180 if deg else angle angle = angle*np.pi/180 if deg else angle
@ -30,20 +30,20 @@ def a2e(angle, hkl=[1,1,1], lnc=False, bent=False, deg=False):
def e2w(energy): def e2w(energy):
""" Convert between energy and wavelength """Convert between energy and wavelength
""" """
return 0.1 * 12398.42 / energy return 0.1 * 12398.42 / energy
def w2e(wwl): def w2e(wwl):
""" Convert between wavelength and energy """Convert between wavelength and energy
""" """
return 12398.42 * 0.1 / wwl return 12398.42 * 0.1 / wwl
def e2a(energy, hkl=[1,1,1], lnc=False, bent=False): def e2a(energy, hkl=[1,1,1], lnc=False, bent=False):
""" Convert between energy and angle for Si monchromators """Convert between energy and angle for Si monchromators
ATTENTION: 'angle' must be in radians, not degrees! ATTENTION: 'angle' must be in radians, not degrees!
""" """
lncorr = LN_CORR if lnc else 0.0 lncorr = LN_CORR if lnc else 0.0
@ -61,13 +61,11 @@ def e2a(energy, hkl=[1,1,1], lnc=False, bent=False):
return angle return angle
class MonoMotor(PseudoPositioner): class MonoMotor(PseudoPositioner):
""" Monochromator axis """Monochromator axis
Small wrapper to combine a real angular axis with the corresponding energy. Small wrapper to combine a real angular axis with the corresponding energy.
ATTENTION: 'angle' is in degrees, at least for PXIII ATTENTION: 'angle' is in degrees, at least for PXIII
""" """
# Real axis (in degrees) # Real axis (in degrees)
angle = Component(EpicsMotor, "", name='angle') angle = Component(EpicsMotor, "", name='angle')
@ -86,12 +84,12 @@ class MonoMotor(PseudoPositioner):
class MonoDccm(PseudoPositioner): class MonoDccm(PseudoPositioner):
""" Combined DCCM monochromator """Combined DCCM monochromator
The first crystal selects the energy, the second one is only following. The first crystal selects the energy, the second one is only following.
DCCMs are quite simple in terms that they can't crash and we don't DCCMs are quite simple in terms that they can't crash and we don't
have a beam offset. have a beam offset.
ATTENTION: 'angle' is in degrees, at least for PXIII ATTENTION: 'angle' is in degrees, at least for PXIII
""" """
# Real axis (in degrees) # Real axis (in degrees)
@ -110,10 +108,7 @@ class MonoDccm(PseudoPositioner):
@pseudo_position_argument @pseudo_position_argument
def forward(self, pseudo_pos): def forward(self, pseudo_pos):
""" """WARNING: We have an overdefined system! Not sure if common crystal movement is reliable without retuning"""
WARNING: We have an overdefined system! Not sure if common crystal movement is reliable without retuning
"""
if abs(pseudo_pos.energy-self.energy.position) > 0.0001 and abs(pseudo_pos.en1-self.en1.position) < 0.0001 and abs(pseudo_pos.en2-self.en2.position) < 0.0001: if abs(pseudo_pos.energy-self.energy.position) > 0.0001 and abs(pseudo_pos.en1-self.en1.position) < 0.0001 and abs(pseudo_pos.en2-self.en2.position) < 0.0001:
# Probably the common energy was changed # Probably the common energy was changed
return self.RealPosition(th1=-180.0*e2a(pseudo_pos.energy)/3.141592, th2=180.0*e2a(pseudo_pos.energy)/3.141592) return self.RealPosition(th1=-180.0*e2a(pseudo_pos.energy)/3.141592, th2=180.0*e2a(pseudo_pos.energy)/3.141592)
@ -126,5 +121,3 @@ class MonoDccm(PseudoPositioner):
return self.PseudoPosition(en1=-a2e(3.141592*real_pos.th1/180.0), return self.PseudoPosition(en1=-a2e(3.141592*real_pos.th1/180.0),
en2=a2e(3.141592*real_pos.th2/180.0), en2=a2e(3.141592*real_pos.th2/180.0),
energy=-a2e(3.141592*real_pos.th1/180.0)) energy=-a2e(3.141592*real_pos.th1/180.0))

View File

@ -1,130 +0,0 @@
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 13 18:06:15 2021
@author: mohacsi_i
"""
import numpy as np
from math import isclose
from ophyd import EpicsSignal, EpicsSignalRO, EpicsMotor, PseudoPositioner, PseudoSingle, Device, Component, Kind
from ophyd.pseudopos import pseudo_position_argument, real_position_argument
from ophyd.sim import SynAxis, Syn2DGauss
LN_CORR = 2e-4
def a2e(angle, hkl=[1,1,1], lnc=False, bent=False, deg=False):
""" Convert between angle and energy for Si monchromators
ATTENTION: 'angle' must be in radians, not degrees!
"""
lncorr = LN_CORR if lnc else 0.0
angle = angle*np.pi/180 if deg else angle
# Lattice constant along direction
d0 = 5.43102 * (1.0-lncorr) / np.linalg.norm(hkl)
energy = 12.39842 / (2.0 * d0 * np.sin(angle))
return energy
def e2w(energy):
""" Convert between energy and wavelength
"""
return 0.1 * 12398.42 / energy
def w2e(wwl):
""" Convert between wavelength and energy
"""
return 12398.42 * 0.1 / wwl
def e2a(energy, hkl=[1,1,1], lnc=False, bent=False):
""" Convert between energy and angle for Si monchromators
ATTENTION: 'angle' must be in radians, not degrees!
"""
lncorr = LN_CORR if lnc else 0.0
# Lattice constant along direction
d0 = 2*5.43102 * (1.0-lncorr) / np.linalg.norm(hkl)
angle = np.arcsin(12.39842/d0/energy)
# Rfine for bent mirror
if bent:
rho = 2 * 19.65 * 8.35 / 28 * np.sin(angle)
dt = 0.2e-3 / rho * 0.279
d0 = 2 * 5.43102 * (1.0+dt) / np.linalg.norm(hkl)
angle = np.arcsin(12.39842/d0/energy)
return angle
class MonoMotor(PseudoPositioner):
""" Monochromator axis
Small wrapper to combine a real angular axis with the corresponding energy.
ATTENTION: 'angle' is in degrees, at least for PXIII
"""
# Real axis (in degrees)
angle = Component(EpicsMotor, "", name='angle')
# Virtual axis
energy = Component(PseudoSingle, name='energy')
_real = ['angle']
@pseudo_position_argument
def forward(self, pseudo_pos):
return self.RealPosition(angle=180.0*e2a(pseudo_pos.energy)/3.141592)
@real_position_argument
def inverse(self, real_pos):
return self.PseudoPosition(energy=a2e(3.141592*real_pos.angle/180.0))
class MonoDccm(PseudoPositioner):
""" Combined DCCM monochromator
The first crystal selects the energy, the second one is only following.
DCCMs are quite simple in terms that they can't crash and we don't
have a beam offset.
ATTENTION: 'angle' is in degrees, at least for PXIII
"""
# Real axis (in degrees)
th1 = Component(EpicsMotor, "ROX1", name='theta1')
th2 = Component(EpicsMotor, "ROX2", name='theta2')
# Virtual axes
en1 = Component(PseudoSingle, name='en1')
en2 = Component(PseudoSingle, name='en2')
energy = Component(PseudoSingle, name='energy', kind=Kind.hinted)
# Other parameters
#feedback = Component(EpicsSignal, "MONOBEAM", name="feedback")
#enc1 = Component(EpicsSignalRO, "1:EXC1", name="enc1")
#enc2 = Component(EpicsSignalRO, "1:EXC2", name="enc2")
@pseudo_position_argument
def forward(self, pseudo_pos):
"""
WARNING: We have an overdefined system! Not sure if common crystal movement is reliable without retuning
"""
if abs(pseudo_pos.energy-self.energy.position) > 0.0001 and abs(pseudo_pos.en1-self.en1.position) < 0.0001 and abs(pseudo_pos.en2-self.en2.position) < 0.0001:
# Probably the common energy was changed
return self.RealPosition(th1=-180.0*e2a(pseudo_pos.energy)/3.141592, th2=180.0*e2a(pseudo_pos.energy)/3.141592)
else:
# Probably the individual axes was changes
return self.RealPosition(th1=-180.0*e2a(pseudo_pos.en1)/3.141592, th2=180.0*e2a(pseudo_pos.en2)/3.141592)
@real_position_argument
def inverse(self, real_pos):
return self.PseudoPosition(en1=-a2e(3.141592*real_pos.th1/180.0),
en2=a2e(3.141592*real_pos.th2/180.0),
energy=-a2e(3.141592*real_pos.th1/180.0))

View File

@ -2,20 +2,14 @@ from ophyd import Device, Component, EpicsMotor, PseudoPositioner, PseudoSingle
from ophyd.pseudopos import pseudo_position_argument,real_position_argument from ophyd.pseudopos import pseudo_position_argument,real_position_argument
class SlitH(PseudoPositioner): class SlitH(PseudoPositioner):
""" Python wrapper for virtual slits """Python wrapper for virtual slits
These devices should be implemented as an EPICS SoftMotor IOC, These devices should be implemented as an EPICS SoftMotor IOC,
but thats not the case for all slits. So here is a pure ophyd but thats not the case for all slits. So here is a pure ophyd
implementation. Uses standard naming convention! implementation. Uses standard naming convention!
NOTE: The real and virtual axes are wrapped together. NOTE: The real and virtual axes are wrapped together.
""" """
# Motor interface # Motor interface
x1 = Component(EpicsMotor, "TRX1") x1 = Component(EpicsMotor, "TRX1")
@ -37,15 +31,14 @@ class SlitH(PseudoPositioner):
gapx=real_pos.x2-real_pos.x1) gapx=real_pos.x2-real_pos.x1)
class SlitV(PseudoPositioner): class SlitV(PseudoPositioner):
""" Python wrapper for virtual slits """Python wrapper for virtual slits
These devices should be implemented as an EPICS SoftMotor IOC, These devices should be implemented as an EPICS SoftMotor IOC,
but thats not the case for all slits. So here is a pure ophyd but thats not the case for all slits. So here is a pure ophyd
implementation. Uses standard naming convention! implementation. Uses standard naming convention!
NOTE: The real and virtual axes are wrapped together. NOTE: The real and virtual axes are wrapped together.
""" """
# Motor interface # Motor interface
y1 = Component(EpicsMotor, "TRY1") y1 = Component(EpicsMotor, "TRY1")
@ -56,13 +49,12 @@ class SlitV(PseudoPositioner):
@pseudo_position_argument @pseudo_position_argument
def forward(self, pseudo_pos): def forward(self, pseudo_pos):
'''Run a forward (pseudo -> real) calculation''' """Run a forward (pseudo -> real) calculation"""
return self.RealPosition(y1=pseudo_pos.ceny-pseudo_pos.gapy/2, return self.RealPosition(y1=pseudo_pos.ceny-pseudo_pos.gapy/2,
y2=pseudo_pos.ceny+pseudo_pos.gapy/2) y2=pseudo_pos.ceny+pseudo_pos.gapy/2)
@real_position_argument @real_position_argument
def inverse(self, real_pos): def inverse(self, real_pos):
'''Run an inverse (real -> pseudo) calculation''' """Run an inverse (real -> pseudo) calculation"""
return self.PseudoPosition(ceny=(real_pos.y1+real_pos.y2)/2, return self.PseudoPosition(ceny=(real_pos.y1+real_pos.y2)/2,
gapy=real_pos.y2-real_pos.y1) gapy=real_pos.y2-real_pos.y1)