mirror of
https://github.com/bec-project/ophyd_devices.git
synced 2025-07-08 17:58:05 +02:00
feat: introduce new general class to simulate data for devices
This commit is contained in:
337
ophyd_devices/sim/sim_data.py
Normal file
337
ophyd_devices/sim/sim_data.py
Normal file
@ -0,0 +1,337 @@
|
|||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from collections import defaultdict
|
||||||
|
import enum
|
||||||
|
import time as ttime
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from bec_lib import bec_logger
|
||||||
|
|
||||||
|
logger = bec_logger.logger
|
||||||
|
|
||||||
|
|
||||||
|
class SimulatedDataException(Exception):
|
||||||
|
"""Exception raised when there is an issue with the simulated data."""
|
||||||
|
|
||||||
|
|
||||||
|
class SimulationType(str, enum.Enum):
|
||||||
|
"""Type of simulation to steer simulated data."""
|
||||||
|
|
||||||
|
CONSTANT = "constant"
|
||||||
|
GAUSSIAN = "gauss"
|
||||||
|
|
||||||
|
|
||||||
|
class NoiseType(str, enum.Enum):
|
||||||
|
"""Type of noise to add to simulated data."""
|
||||||
|
|
||||||
|
NONE = "none"
|
||||||
|
UNIFORM = "uniform"
|
||||||
|
POISSON = "poisson"
|
||||||
|
|
||||||
|
|
||||||
|
class SimulatedDataBase:
|
||||||
|
USER_ACCESS = [
|
||||||
|
"get_sim_params",
|
||||||
|
"set_sim_params",
|
||||||
|
"get_sim_type",
|
||||||
|
"set_sim_type",
|
||||||
|
]
|
||||||
|
|
||||||
|
def __init__(self, *args, parent=None, device_manager=None, **kwargs) -> None:
|
||||||
|
self.parent = parent
|
||||||
|
self.sim_state = defaultdict(lambda: {})
|
||||||
|
self._all_params = defaultdict(lambda: {})
|
||||||
|
self.device_manager = device_manager
|
||||||
|
self._simulation_type = None
|
||||||
|
self.init_paramaters(**kwargs)
|
||||||
|
self._active_params = self._all_params.get(self._simulation_type, None)
|
||||||
|
|
||||||
|
def init_paramaters(self, **kwargs):
|
||||||
|
"""Initialize the parameters for the Simulated Data
|
||||||
|
|
||||||
|
This methods should be implemented by the subclass.
|
||||||
|
|
||||||
|
It should set the default parameters for:
|
||||||
|
- self._params (dict used for e.g. computation of gaussian)
|
||||||
|
- self._simulation_type (SimulationType, e.g. 'constant', 'gauss').
|
||||||
|
- self._noise (NoiseType, e.g. 'none', 'uniform', 'poisson')
|
||||||
|
|
||||||
|
It sets the default parameters for the simulated data,
|
||||||
|
in self._params that are required for the simulation of for instance
|
||||||
|
the siumulation type gaussian.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def get_sim_params(self) -> dict:
|
||||||
|
"""Return the parameters self._params of the simulation."""
|
||||||
|
return self._active_params
|
||||||
|
|
||||||
|
def set_sim_params(self, params: dict) -> None:
|
||||||
|
"""Set the parameters self._params of the simulation."""
|
||||||
|
for k, v in params.items():
|
||||||
|
try:
|
||||||
|
self._active_params[k] = v
|
||||||
|
except KeyError:
|
||||||
|
# TODO propagate msg to client!
|
||||||
|
logger.warning(
|
||||||
|
f"Could not set {k} to {v} in {self._active_params}.KeyError raised. Ignoring."
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_sim_type(self) -> SimulationType:
|
||||||
|
"""Return the simulation type of the simulation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
SimulationType: Type of simulation (e.g. "constant" or "gauss).
|
||||||
|
"""
|
||||||
|
return self._simulation_type
|
||||||
|
|
||||||
|
def set_sim_type(self, simulation_type: SimulationType) -> None:
|
||||||
|
"""Set the simulation type of the simulation."""
|
||||||
|
try:
|
||||||
|
self._simulation_type = SimulationType(simulation_type)
|
||||||
|
except ValueError:
|
||||||
|
raise SimulatedDataException(
|
||||||
|
f"Could not set simulation type to {simulation_type}. Valid options are 'constant'"
|
||||||
|
" and 'gauss'"
|
||||||
|
)
|
||||||
|
self._active_params = self._all_params.get(self._simulation_type, None)
|
||||||
|
|
||||||
|
def _compute_sim_state(self, signal_name: str) -> None:
|
||||||
|
"""Update the simulated state of the device.
|
||||||
|
|
||||||
|
If no computation is relevant, ignore this method.
|
||||||
|
Otherwise implement it in the subclass.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def update_sim_state(self, signal_name: str, value: any) -> None:
|
||||||
|
"""Update the simulated state of the device.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
signal_name (str): Name of the signal to update.
|
||||||
|
"""
|
||||||
|
self.sim_state[signal_name]["value"] = value
|
||||||
|
self.sim_state[signal_name]["timestamp"] = ttime.time()
|
||||||
|
|
||||||
|
|
||||||
|
class SimulatedDataMonitor(SimulatedDataBase):
|
||||||
|
"""Simulated data for a monitor."""
|
||||||
|
|
||||||
|
def init_paramaters(self, **kwargs):
|
||||||
|
"""Initialize the parameters for the Simulated Data
|
||||||
|
|
||||||
|
Ref_motor is the motor that is used to compute the gaussian.
|
||||||
|
Amp is the amplitude of the gaussian.
|
||||||
|
Cen is the center of the gaussian.
|
||||||
|
Sig is the sigma of the gaussian.
|
||||||
|
Noise is the type of noise to add to the signal. Be aware that poisson noise will round the value to an integer-like values.
|
||||||
|
Noise multiplier is the multiplier of the noise, only relevant for uniform noise.
|
||||||
|
"""
|
||||||
|
self._all_params = {
|
||||||
|
SimulationType.CONSTANT: {
|
||||||
|
"amp": 100,
|
||||||
|
"noise": NoiseType.POISSON,
|
||||||
|
"noise_multiplier": 0.1,
|
||||||
|
},
|
||||||
|
SimulationType.GAUSSIAN: {
|
||||||
|
"ref_motor": "samx",
|
||||||
|
"amp": 100,
|
||||||
|
"cen": 0,
|
||||||
|
"sig": 1,
|
||||||
|
"noise": NoiseType.NONE,
|
||||||
|
"noise_multiplier": 0.1,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
if self.parent.init_sim_params:
|
||||||
|
sim_type = self.parent.init_sim_params.pop("sym_type", SimulationType.CONSTANT)
|
||||||
|
for v in self._all_params.values():
|
||||||
|
for k in v.keys():
|
||||||
|
if k in self.parent.init_sim_params:
|
||||||
|
v[k] = self.parent.init_sim_params[k]
|
||||||
|
else:
|
||||||
|
sim_type = SimulationType.CONSTANT
|
||||||
|
self.set_sim_type(sim_type)
|
||||||
|
|
||||||
|
def _compute_sim_state(self, signal_name: str) -> None:
|
||||||
|
"""Update the simulated state of the device.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
signal_name (str): Name of the signal to update.
|
||||||
|
sim_type (SimulationType, optional): Type of simulation to steer simulated data. Defaults to SimulationType.CONSTANT.
|
||||||
|
"""
|
||||||
|
if self.get_sim_type() == SimulationType.CONSTANT:
|
||||||
|
value = self._compute_constant()
|
||||||
|
elif self.get_sim_type() == SimulationType.GAUSSIAN:
|
||||||
|
value = self._compute_gaussian()
|
||||||
|
|
||||||
|
self.update_sim_state(signal_name, value)
|
||||||
|
|
||||||
|
def _compute_constant(self) -> float:
|
||||||
|
"""Compute a random value."""
|
||||||
|
v = self._active_params["amp"]
|
||||||
|
if self._active_params["noise"] == NoiseType.POISSON:
|
||||||
|
v = np.random.poisson(np.round(v), 1)[0]
|
||||||
|
elif self._active_params["noise"] == NoiseType.UNIFORM:
|
||||||
|
v += np.random.uniform(-1, 1) * self._active_params["noise_multiplier"]
|
||||||
|
elif self._active_params["noise"] == NoiseType.NONE:
|
||||||
|
v = self._active_params["amp"]
|
||||||
|
else:
|
||||||
|
# TODO Propagate msg to client!
|
||||||
|
logger.warning(
|
||||||
|
f"Unknown noise type {self._active_params['noise']}. Please choose from 'poisson',"
|
||||||
|
" 'uniform' or 'none'. Returning 0."
|
||||||
|
)
|
||||||
|
return 0
|
||||||
|
return v
|
||||||
|
|
||||||
|
def _compute_gaussian(self) -> float:
|
||||||
|
"""Compute a gaussian value.
|
||||||
|
|
||||||
|
Based on the parameters in self._params, a value of a gaussian distributed
|
||||||
|
is computed with respected to the motor position of ref_motor.
|
||||||
|
|
||||||
|
If computation fails, it returns 0.
|
||||||
|
"""
|
||||||
|
|
||||||
|
params = self._active_params
|
||||||
|
try:
|
||||||
|
motor_pos = self.device_manager.devices[params["ref_motor"]].obj.read()[
|
||||||
|
params["ref_motor"]
|
||||||
|
]["value"]
|
||||||
|
v = params["amp"] * np.exp(
|
||||||
|
-((motor_pos - params["cen"]) ** 2) / (2 * params["sig"] ** 2)
|
||||||
|
)
|
||||||
|
if params["noise"] == NoiseType.POISSON:
|
||||||
|
v = np.random.poisson(np.round(v), 1)[0]
|
||||||
|
elif params["noise"] == NoiseType.UNIFORM:
|
||||||
|
v += np.random.uniform(-1, 1) * params["noise_multiplier"]
|
||||||
|
return v
|
||||||
|
except SimulatedDataException as exc:
|
||||||
|
# TODO Propagate msg to client!
|
||||||
|
logger.warning(
|
||||||
|
f"Could not compute gaussian for {params['ref_motor']} with {exc} raised."
|
||||||
|
"Returning 0 instead."
|
||||||
|
)
|
||||||
|
return 0
|
||||||
|
|
||||||
|
|
||||||
|
class SimulatedDataCamera(SimulatedDataBase):
|
||||||
|
"""Simulated data for a 2D camera."""
|
||||||
|
|
||||||
|
def init_paramaters(self, **kwargs):
|
||||||
|
"""Initialize the parameters for the simulated camera data"""
|
||||||
|
self._all_params = {
|
||||||
|
SimulationType.CONSTANT: {
|
||||||
|
"amp": 100,
|
||||||
|
"noise": NoiseType.POISSON,
|
||||||
|
"noise_multiplier": 0.1,
|
||||||
|
},
|
||||||
|
SimulationType.GAUSSIAN: {
|
||||||
|
"amp": 100,
|
||||||
|
"cen": np.array([50, 50]),
|
||||||
|
"cov": np.array([[10, 0], [0, 10]]),
|
||||||
|
"noise": NoiseType.NONE,
|
||||||
|
"noise_multiplier": 0.1,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
if self.parent.init_sim_params:
|
||||||
|
sim_type = self.parent.init_sim_params.pop("sym_type", SimulationType.CONSTANT)
|
||||||
|
for v in self._all_params.values():
|
||||||
|
for k in v.keys():
|
||||||
|
if k in self.parent.init_sim_params:
|
||||||
|
v[k] = self.parent.init_sim_params[k]
|
||||||
|
else:
|
||||||
|
sim_type = SimulationType.CONSTANT
|
||||||
|
self.set_sim_type(sim_type)
|
||||||
|
|
||||||
|
def _compute_sim_state(self, signal_name: str) -> None:
|
||||||
|
"""Update the simulated state of the device.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
signal_name (str): Name of the signal to update.
|
||||||
|
sim_type (SimulationType, optional): Type of simulation to steer simulated data. Defaults to SimulationType.CONSTANT.
|
||||||
|
"""
|
||||||
|
if self.get_sim_type() == SimulationType.CONSTANT:
|
||||||
|
value = self._compute_constant()
|
||||||
|
elif self.get_sim_type() == SimulationType.GAUSSIAN:
|
||||||
|
value = self._compute_gaussian()
|
||||||
|
|
||||||
|
self.update_sim_state(signal_name, value)
|
||||||
|
|
||||||
|
def _compute_constant(self) -> float:
|
||||||
|
"""Compute a random value."""
|
||||||
|
# tuple with shape
|
||||||
|
shape = self.sim_state[self.parent.image_shape.name]["value"]
|
||||||
|
v = self._active_params["amp"] * np.ones(shape, dtype=np.uint16)
|
||||||
|
if self._active_params["noise"] == NoiseType.POISSON:
|
||||||
|
v = np.random.poisson(np.round(v), v.shape)
|
||||||
|
return v
|
||||||
|
elif self._active_params["noise"] == NoiseType.UNIFORM:
|
||||||
|
multiplier = self._active_params["noise_multiplier"]
|
||||||
|
v += np.random.randint(-multiplier, multiplier, v.shape)
|
||||||
|
return v
|
||||||
|
elif self._active_params["noise"] == NoiseType.NONE:
|
||||||
|
return v
|
||||||
|
else:
|
||||||
|
# TODO Propagate msg to client!
|
||||||
|
logger.warning(
|
||||||
|
f"Unknown noise type {self._active_params['noise']}. Please choose from 'poisson',"
|
||||||
|
" 'uniform' or 'none'. Returning 0."
|
||||||
|
)
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def _compute_multivariate_gaussian(self, pos: np.ndarray, cen: np.ndarray, cov: np.ndarray):
|
||||||
|
"""Return the multivariate Gaussian distribution on array pos."""
|
||||||
|
|
||||||
|
dim = cen.shape[0]
|
||||||
|
cov_det = np.linalg.det(cov)
|
||||||
|
cov_inv = np.linalg.inv(cov)
|
||||||
|
N = np.sqrt((2 * np.pi) ** dim * cov_det)
|
||||||
|
# This einsum call calculates (x-mu)T.Sigma-1.(x-mu) in a vectorized
|
||||||
|
# way across all the input variables.
|
||||||
|
fac = np.einsum("...k,kl,...l->...", pos - cen, cov_inv, pos - cen)
|
||||||
|
|
||||||
|
return np.exp(-fac / 2) / N
|
||||||
|
|
||||||
|
def _compute_gaussian(self) -> float:
|
||||||
|
"""Compute a gaussian value.
|
||||||
|
|
||||||
|
Based on the parameters in self._params, a value of a gaussian distributed
|
||||||
|
is computed with respected to the motor position of ref_motor.
|
||||||
|
|
||||||
|
If computation fails, it returns 0.
|
||||||
|
"""
|
||||||
|
|
||||||
|
params = self._active_params
|
||||||
|
shape = self.sim_state[self.parent.image_shape.name]["value"]
|
||||||
|
try:
|
||||||
|
X, Y = np.meshgrid(
|
||||||
|
np.linspace(0, shape[0] - 1, shape[0]),
|
||||||
|
np.linspace(0, shape[1] - 1, shape[1]),
|
||||||
|
)
|
||||||
|
pos = np.empty((*X.shape, 2))
|
||||||
|
pos[:, :, 0] = X
|
||||||
|
pos[:, :, 1] = Y
|
||||||
|
|
||||||
|
v = self._compute_multivariate_gaussian(pos=pos, cen=params["cen"], cov=params["cov"])
|
||||||
|
# divide by max(v) to ensure that maximum is params["amp"]
|
||||||
|
v *= params["amp"] / np.max(v)
|
||||||
|
|
||||||
|
# TODO add dependency from motor position -> #transmission factor, sigmoidal form from 0 to 1 as a function of motor pos
|
||||||
|
# motor_pos = self.device_manager.devices[params["ref_motor"]].obj.read()[
|
||||||
|
# params["ref_motor"]
|
||||||
|
# ]["value"]
|
||||||
|
|
||||||
|
if params["noise"] == NoiseType.POISSON:
|
||||||
|
v = np.random.poisson(np.round(v), v.shape)
|
||||||
|
return v
|
||||||
|
elif params["noise"] == NoiseType.UNIFORM:
|
||||||
|
multiplier = params["noise_multiplier"]
|
||||||
|
v += np.random.uniform(-multiplier, multiplier, v.shape)
|
||||||
|
return v
|
||||||
|
except SimulatedDataException as exc:
|
||||||
|
# TODO Propagate msg to client!
|
||||||
|
logger.warning(
|
||||||
|
f"Could not compute gaussian for {params['ref_motor']} with {exc} raised."
|
||||||
|
"Returning 0 instead."
|
||||||
|
)
|
||||||
|
return 0
|
Reference in New Issue
Block a user