feat: extend sim_data to allow execution from function of secondary devices extracted from lookup

This commit is contained in:
appel_c 2024-02-07 15:34:41 +01:00
parent 9642840714
commit 851a088b81
2 changed files with 168 additions and 79 deletions

View File

@ -251,7 +251,6 @@ class SimPositioner(Device, PositionerBase):
low_limit_travel = Cpt(SetableSignal, value=0, kind=Kind.omitted)
unused = Cpt(Signal, value=1, kind=Kind.omitted)
# TODO add short description to these two lines and explain what this does
SUB_READBACK = "readback"
_default_sub = SUB_READBACK

View File

@ -1,6 +1,9 @@
from abc import ABC, abstractmethod
from __future__ import annotations
from collections import defaultdict
import enum
import inspect
import time as ttime
import numpy as np
@ -28,6 +31,13 @@ class NoiseType(str, enum.Enum):
POISSON = "poisson"
class HotPixelType(str, enum.Enum):
"""Type of hot pixel to add to simulated data."""
CONSTANT = "constant"
FLUCTUATING = "fluctuating"
class SimulatedDataBase:
USER_ACCESS = [
"get_sim_params",
@ -38,12 +48,42 @@ class SimulatedDataBase:
def __init__(self, *args, parent=None, device_manager=None, **kwargs) -> None:
self.parent = parent
self.sim_state = defaultdict(lambda: {})
self._all_params = defaultdict(lambda: {})
self.sim_state = defaultdict(dict)
self._all_params = defaultdict(dict)
self.device_manager = device_manager
self._simulation_type = None
self.lookup_table = getattr(self.parent, "lookup_table", None)
self.init_paramaters(**kwargs)
self._active_params = self._all_params.get(self._simulation_type, None)
# self.register_in_lookup_table()
# self.lookup_table = self.update_lookup_table()
# def update_lookup_table(self) -> None:
# """Update the lookup table with the new value for the signal."""
# table = getattr(self.device_manager.lookup_table, self.parent.name, None)
# return getattr(self.device_manager.lookup_table, self.parent.name, None)
# def register_in_lookup_table(self) -> None:
# """Register the simulated device in the lookup table."""
# self.device_manager.lookup_table[self.parent.name] = {"obj": self, "method": "_compute_sim_state", "args": (), "kwargs": {}}
def execute_simulation_method(self, *args, method=None, **kwargs) -> any:
"""Execute the method from the lookup table."""
if self.lookup_table and self.parent.name in self.lookup_table:
# obj = self.parent.lookup_table[self.parent.name]["obj"]
method = self.lookup_table[self.parent.name]["method"]
args = self.lookup_table[self.parent.name]["args"]
kwargs = self.lookup_table[self.parent.name]["kwargs"]
# Do I need args and kwargs! Why!!
if method is not None:
method_arguments = list(inspect.signature(method).parameters.keys())
if all([True for arg in method_arguments if arg in args or arg in kwargs]):
return method(*args, **kwargs)
raise SimulatedDataException(f"Method {method} is not available for {self.parent.name}")
def init_paramaters(self, **kwargs):
"""Initialize the parameters for the Simulated Data
@ -119,13 +159,16 @@ class SimulatedDataBase:
self.sim_state[signal_name]["value"] = value
self.sim_state[signal_name]["timestamp"] = ttime.time()
def _update_init_params(self, sim_type_default: SimulationType) -> None:
def _update_init_params(
self,
sim_type_default: SimulationType,
) -> None:
"""Update the initial parameters of the simulated data with input from deviceConfig.
Args:
sim_type_default (SimulationType): Default simulation type to use if not specified in deviceConfig.
"""
init_params = self.parent.init_sim_params
init_params = getattr(self.parent, "init_sim_params", None)
for sim_type in self._all_params.values():
for sim_type_config_element in sim_type:
if init_params:
@ -191,10 +234,13 @@ class SimulatedDataMonitor(SimulatedDataBase):
signal_name (str): Name of the signal to update.
"""
if self.get_sim_type() == SimulationType.CONSTANT:
value = self._compute_constant()
method = "_compute_constant"
# value = self._compute_constant()
elif self.get_sim_type() == SimulationType.GAUSSIAN:
value = self._compute_gaussian()
method = "_compute_gaussian"
# value = self._compute_gaussian()
value = self.execute_simulation_method(method=getattr(self, method))
self.update_sim_state(signal_name, value)
def _compute_constant(self) -> float:
@ -210,12 +256,10 @@ class SimulatedDataMonitor(SimulatedDataBase):
v = self._active_params["amp"]
return v
else:
# TODO Propagate msg to client!
logger.warning(
raise SimulatedDataException(
f"Unknown noise type {self._active_params['noise']}. Please choose from 'poisson',"
" 'uniform' or 'none'. Returning 0."
" 'uniform' or 'none'."
)
return 0
def _compute_gaussian(self) -> float:
"""Computes return value for sim_type = "gauss".
@ -243,12 +287,9 @@ class SimulatedDataMonitor(SimulatedDataBase):
v += np.random.uniform(-1, 1) * params["noise_multiplier"]
return v
except SimulatedDataException as exc:
# TODO Propagate msg to client!
logger.warning(
f"Could not compute gaussian for {params['ref_motor']} with {exc} raised."
"Returning 0 instead."
)
return 0
raise SimulatedDataException(
f"Could not compute gaussian for {self.parent.name} with {exc} raised. Deactivate eiger to continue."
) from exc
class SimulatedDataCamera(SimulatedDataBase):
@ -282,13 +323,27 @@ class SimulatedDataCamera(SimulatedDataBase):
"amp": 100,
"noise": NoiseType.POISSON,
"noise_multiplier": 0.1,
"hot_pixel": {
"coords": np.array([[100, 100], [200, 200]]),
"type": [HotPixelType.CONSTANT, HotPixelType.FLUCTUATING],
"value": [1e6, 1e4],
},
},
SimulationType.GAUSSIAN: {
"amp": 100,
"amp": 500,
"cen_off": np.array([0, 0]),
"cov": np.array([[10, 5], [5, 10]]),
"noise": NoiseType.NONE,
"noise_multiplier": 0.1,
"hot_pixel": {
"coords": np.array([[240, 240], [50, 20], [40, 400]]),
"type": [
HotPixelType.FLUCTUATING,
HotPixelType.CONSTANT,
HotPixelType.FLUCTUATING,
],
"value": np.array([1e4, 1e6, 1e4]),
},
},
}
# Update init parameters and set simulation type to Gaussian if not specified otherwise in init_sim_params
@ -304,36 +359,33 @@ class SimulatedDataCamera(SimulatedDataBase):
signal_name (str): Name of the signal to update.
"""
if self.get_sim_type() == SimulationType.CONSTANT:
value = self._compute_constant()
method = "_compute_constant"
# value = self._compute_constant()
elif self.get_sim_type() == SimulationType.GAUSSIAN:
value = self._compute_gaussian()
method = "_compute_gaussian"
# value = self._compute_gaussian()
value = self.execute_simulation_method(method=getattr(self, method))
self.update_sim_state(signal_name, value)
def _compute_constant(self) -> float:
"""Compute a return value for sim_type = Constant."""
# tuple with shape
shape = self.sim_state[self.parent.image_shape.name]["value"]
v = self._active_params["amp"] * np.ones(shape, dtype=np.uint16)
if self._active_params["noise"] == NoiseType.POISSON:
v = np.random.poisson(np.round(v), v.shape)
return v
if self._active_params["noise"] == NoiseType.UNIFORM:
multiplier = self._active_params["noise_multiplier"]
v += np.random.randint(-multiplier, multiplier, v.shape)
return v
if self._active_params["noise"] == NoiseType.NONE:
return v
# TODO Propagate msg to client!
logger.warning(
f"Unknown noise type {self._active_params['noise']}. Please choose from 'poisson',"
" 'uniform' or 'none'. Returning 0."
)
return 0
try:
shape = self.sim_state[self.parent.image_shape.name]["value"]
v = self._active_params["amp"] * np.ones(shape, dtype=np.uint16)
return self._add_noise(v, self._active_params["noise"])
except SimulatedDataException as exc:
raise SimulatedDataException(
f"Could not compute constant for {self.parent.name} with {exc} raised. Deactivate eiger to continue."
) from exc
def _compute_multivariate_gaussian(
self, pos: np.ndarray, cen_off: np.ndarray, cov: np.ndarray
self,
pos: np.ndarray | list,
cen_off: np.ndarray | list,
cov: np.ndarray | list,
amp: float,
) -> np.ndarray:
"""Computes and returns the multivariate Gaussian distribution.
@ -345,16 +397,80 @@ class SimulatedDataCamera(SimulatedDataBase):
Returns:
np.ndarray: Multivariate Gaussian distribution.
"""
if isinstance(pos, list):
pos = np.array(pos)
if isinstance(cen_off, list):
cen_off = np.array(cen_off)
if isinstance(cov, list):
cov = np.array(cov)
dim = cen_off.shape[0]
cov_det = np.linalg.det(cov)
cov_inv = np.linalg.inv(cov)
N = np.sqrt((2 * np.pi) ** dim * cov_det)
norm = np.sqrt((2 * np.pi) ** dim * cov_det)
# This einsum call calculates (x-mu)T.Sigma-1.(x-mu) in a vectorized
# way across all the input variables.
fac = np.einsum("...k,kl,...l->...", pos - cen_off, cov_inv, pos - cen_off)
v = np.exp(-fac / 2) / norm
v *= amp / np.max(v)
return v
return np.exp(-fac / 2) / N
def _prepare_params_gauss(self, params: dict, shape: tuple) -> tuple:
"""Prepare the positions for the gaussian.
Args:
params (dict): Parameters for the gaussian.
shape (tuple): Shape of the image.
Returns:
tuple: Positions, offset and covariance matrix for the gaussian.
"""
x, y = np.meshgrid(
np.linspace(-shape[0] / 2, shape[0] / 2, shape[0]),
np.linspace(-shape[1] / 2, shape[1] / 2, shape[1]),
)
pos = np.empty((*x.shape, 2))
pos[:, :, 0] = x
pos[:, :, 1] = y
offset = params["cen_off"]
cov = params["cov"]
amp = params["amp"]
return pos, offset, cov, amp
def _add_noise(self, v: np.ndarray, noise: NoiseType) -> np.ndarray:
"""Add noise to the simulated data.
Args:
v (np.ndarray): Simulated data.
noise (NoiseType): Type of noise to add.
"""
if noise == NoiseType.POISSON:
v = np.random.poisson(np.round(v), v.shape)
return v
if noise == NoiseType.UNIFORM:
multiplier = self._active_params["noise_multiplier"]
v += np.random.uniform(-multiplier, multiplier, v.shape)
return v
if self._active_params["noise"] == NoiseType.NONE:
return v
def _add_hot_pixel(self, v: np.ndarray, hot_pixel: dict) -> np.ndarray:
"""Add hot pixels to the simulated data.
Args:
v (np.ndarray): Simulated data.
hot_pixel (dict): Hot pixel parameters.
"""
for coords, hot_pixel_type, value in zip(
hot_pixel["coords"], hot_pixel["type"], hot_pixel["value"]
):
if coords[0] < v.shape[0] and coords[1] < v.shape[1]:
if hot_pixel_type == HotPixelType.CONSTANT:
v[coords[0], coords[1]] = value
elif hot_pixel_type == HotPixelType.FLUCTUATING:
maximum = np.max(v) if np.max(v) != 0 else 1
if v[coords[0], coords[1]] / maximum > 0.5:
v[coords[0], coords[1]] = value
return v
def _compute_gaussian(self) -> float:
"""Computes return value for sim_type = "gauss".
@ -367,41 +483,15 @@ class SimulatedDataCamera(SimulatedDataBase):
Returns: float
"""
params = self._active_params
shape = self.sim_state[self.parent.image_shape.name]["value"]
try:
X, Y = np.meshgrid(
np.linspace(-shape[0] / 2, shape[0] / 2, shape[0]),
np.linspace(-shape[1] / 2, shape[1] / 2, shape[1]),
)
pos = np.empty((*X.shape, 2))
pos[:, :, 0] = X
pos[:, :, 1] = Y
params = self._active_params
shape = self.sim_state[self.parent.image_shape.name]["value"]
pos, offset, cov, amp = self._prepare_params_gauss(self._active_params, shape)
v = self._compute_multivariate_gaussian(
pos=pos, cen_off=params["cen_off"], cov=params["cov"]
)
# divide by max(v) to ensure that maximum is params["amp"]
v *= params["amp"] / np.max(v)
# TODO add dependency from motor position -> #transmission factor, sigmoidal form from 0 to 1 as a function of motor pos
# motor_pos = self.device_manager.devices[params["ref_motor"]].obj.read()[
# params["ref_motor"]
# ]["value"]
if params["noise"] == NoiseType.POISSON:
v = np.random.poisson(np.round(v), v.shape)
return v
if params["noise"] == NoiseType.UNIFORM:
multiplier = params["noise_multiplier"]
v += np.random.uniform(-multiplier, multiplier, v.shape)
return v
if self._active_params["noise"] == NoiseType.NONE:
return v
v = self._compute_multivariate_gaussian(pos=pos, cen_off=offset, cov=cov, amp=amp)
v = self._add_noise(v, params["noise"])
return self._add_hot_pixel(v, params["hot_pixel"])
except SimulatedDataException as exc:
# TODO Propagate msg to client!
logger.warning(
f"Could not compute gaussian for {params['ref_motor']} with {exc} raised."
"Returning 0 instead."
)
return 0
raise SimulatedDataException(
f"Could not compute gaussian for {self.parent.name} with {exc} raised. Deactivate eiger to continue."
) from exc